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ABSTRACT

Several previous papers {1, 2, 3, 4] treat the rate of interest as a
stochastic process in the determination of values of insurances and annuity
functions. None of these papers consider the current interest rate as a
starting point in the model. In this paper, autoregressive interest models,
which are conditional upon current and past interest rates, are developed.
1t is shown how these models may be applied to the evaluaticn of moments of

interest, insurance and annuity functions. Numerical results are also given.
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INTRODUCTION

Non-participating insurance products are priced using interest assump-
tions that reflect anticipated yield rates on a portfolio of assets. Such
rates usually reflect in some way both current levels of yield rates as well
as some ultimate level that can be reasonably expected to occur. In order
to reflect the stochastic nature of yield rates and its associated risk,
insurers usually introduce some element of conservation into the assumptions.
This usually means a reduction in the expected interest rate by some amount,
such as 1%.

This paper is concerned with the quantification of the stochastic
nature of yield rates and the resultant effect on interest, insurance and
annuity values. The theory developed in this paper recognizes not only that
the yield rate on a portfolio of invested assets is stochastic but also that
the yield rates in future years are often correlated. That is to say, if
the yield rate is high in one year, it will tend to be higher in the next year
than if the yield rate is relatively lower. In addition, the theory recog-
nizes the current level of yileld rate as a starting point in the stochastic
structure of interest rates,

Recent papers by Pollard [3, 4}, Boyle [1] and Panjer and Bellhouse [2]
have considered the interest rate as a stochastic process. All of these
authors use the normal or a related distribution to describe the variation
in interest rates from expected values. Boyle [1] assumes that interest
rates in successive years are uncorrelated while Pollard [3, 4] assumes that
a second order autoregressive stochastic process can be used to model interest
rate variability. Panjer and Bellhouse [2] develope general results, based
on the moment generating function of the interest rate model, which can be

applied to any model. They apply these results to the class of normal
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processes and more specifically to autoregressive models of interest rate
variation.

None of the authors mentioned above use current levels of interest
rates as a starting point for the model. This would seem to be the approp-
riate strategy when pricing insurance and annuity products using realistic
assumptions. In this paper results are obtained for discrete autoregressive

models conditional on past and current levels of interest.

THE BASIC MODEL

Let it and St =In (1 +it) denote the interest rate and force of

interest respectively applicable in year ¢ (¢t = I1,..., n). The value at
time 0 of a payment of I made at time ¢ is given by exp{—At}, where

A, =8, +8,+ ...+ 38 This last sum may be expressed as a vector product.

£

T
, & )7, where 7T denotes the transpose, and

Let $ = (61,62,..‘ "

1, = (1,1,..., 1,0,..., O)T be n-element column vectors where the latter
At
. T
~ 7 - ’ =

vector contains ¢t 1’s and n-t 0's. Then At %t Q.

1f 3 is stochastic, Panjer and Bellhouse [2] have shown that the expected
values and variances of various interest, insurance and annuity functions
depend on the expectations E[exp{—At}] and E‘[exp{—At -AS}], which are the

moment generating functions of A, and At + As respectively, each evaluated at

t

the point -1. The symbol E denotes the expectation operator with respect to §.

For example, the annuity certain

has mean value
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n
Elag ) = tgl Elexpl-8,})

and variance

2o o i 1 ’
Ela—~]- [a=) = Elexp{-a,~4A_}] - Elexpl-a,}]".
gl Ry toe t=1 t
1f Q is a normal process, then
\ T 1.7
E[emp{—At}] = exp{-%t 9+ E—{t T %t} (1)
and
Efexp{-a, -4 1] = expl- (%t+%e)TQ + é—q’t+%s)Tr (%t+%s)}, (2)

where § = (81,..., Gn)T is the mean vector of § and I’ is the variance-

$
Y
covariance matrix with elements Yop T Cou[és, Gt], s,t =1,..., n. Equations

{1} and (2) correspond to equations (12} and (13} for discrete time in Panjer

. . T T T
and Bellhouse [2]. [t remains only to determine %t 9, (%t-#%s) 8, %t r %t’

™
’ 4 . -
and ‘%t +£s) r (%t-+%s) when 6t is conditional on the present and past rates

to obtain the conditional analogue to the results of Panjer and Bellhouse [2]

THE CONDITIONAL AUTOREGRESSIVE MODEL

The conditional autoregressive process of order p for dt can be written

as

Yp =g ¥y F by gt -0 ? ¢p Yeop *oey (3

where t = 1,..., n and Ye = 5 - 6, and where ya,y are constants

+ LY y_p+1

and not random variables. The error variables €4 t = 1,..., n are independent
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and identically distributed normal random variables each with mean 0 and
variance 72. Model (3) implies that interest rates in any given year depend
on the rates in the previous p years. In most practical situations the values

of 6t at t = 0,-1,-2,..., -pt+1 will be known, that is, at the current time,

t = 0, and at the p-1 previous periods. The distribution of y = (yl,..., yn)T
A

and subsequent expectations of functions of the elements of y 15 then obtained
as conditional on yo,y_],..., y—p+1'
The system of equations (3) for t = 1,2,..., n > p can be written in

matrix notation as

y =9y + e (4)
" \ 4"
where
4 0 0 0 0 . 0 . 0 01
¢1 0 g 0 0 g 0 0
by 0, 0 0 0 0 0 0
b ¢ ¢ 0 o ... 0 ... 0 0
° = .3 2 1 e (5)
¢p ¢p_1 ¢p—2 ¢1 0 4 0 0
0 6, b, by b 0 0 0
L 0 0 0 s 0 o ... ¢p fee ¢1 0_

is an n x»n matrix. The "error'" vector e is comprised of two components,

e = + where ¢ = A
£=8*¢ & (67’ )
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o, 6, o bpp bpg O ] ¥,
b, b5 by by b, 0 v
8, 6, o, 6, 0 0
. Y.z
g - 4, 0 0 0 0 0 6
¥
6 o 0 0 0 0 -ptl
L 0 0 0 0 0 0

The matrix in (6) is nxp. Since £ has mean vector Q, the n-element column
vector of ¢0's, and variance-covariance matrix YZI, where I is the n x»n identity
matrix, then i has mean vector z and variance-covariance matrix YZI.
On rewriting (4) as (1 ~%) y = gory= (I-—@)‘lg, and since £ is multi-
N v
variate normal, then the distribution of y given YpoY_gorees ¥ pt1 is obtained
g - -

. . . -1 . .
as a multivariate normal with mean vector (I - ¢) $ and variance-covariance

matrix

T = (I-¢)-1(I-®T)_ZY2 (7
Since Q = % + G{n then Q given 60,6_1,..., 6—p+1 has the same distribution as
% but with mean vector

o= r-0)"1 g 40 8

L B % ’{n' (8)

The inverse of T-¢ and hence I - ¢T may be found for any order of the
process p < n. From (5) it may be noted that I-% is a lower triangular matrix
with diagonal elements of value 1. The (]'--(P)—Z is also lower triangular with

diagonal elements of value 7. An algorithm for the inversion of a lower

triangular matrix may be found in Ralston [5, p. 446]. Denote the (s,t)-th
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element of (I-—dw’_Z by r Then P, = 0 for s < t and r,, = 1. On applying

t tt
the algorithm it is found that the elements in row t are the solutions to the

gt’
set of equations

r t=8-1,8-2,..., 1, (9)

m
st~ jEJ ¥ Yo teg = O

where m = min (8-t, p). Equation (9) is a difference equation of at most

for s » ¢ can be obtained using difference
1

order p. The values of Tos

equation techniques. Once (I-¢J) ° is obtained then (r-3%71 is obtained

as the transpose of (1-9)"1. Then 9 and T may be evaluated.

APPLICATION TO AR(1) AND AR(2) PROCESSES

Autoregressive Processes of Order One - AR(1)

The model is obtained from (3) with ¢1 = ¢ and ¢2 = ... = ¢p = 0, that

is

8 =9+¢{dt_1-9}+6

t t?

where the ¢'s have the same distribution as (3). On applying (9) to find

(r-4)"1, the recursion relationship
rs,t = ¢ rs,t+1’ t =g-1, 8-2,..., 1
where P = 1, is obtained. Hence



r 1 g Q [ a
¢ 1 0 0 0
- 2
(r-¢7t = " ¢ 7 ... 0 0 (10)
n-1 ~2 -3
¢ A
L
For the AR(1l) process, 4= (¢yo,0,..., O)T so that
_ 2 3 n T
8= (0 Y ad ype-s Sy, + 0L 1y

Provided that ~1 < ¢ < ] the effect of the initial deviation ¥, = 50 - b is

reduced exponentially over time. On applying (11), the expressions %ZO and

T .
(%t'+%s) Q in (1) and (2} reduce to

7 ¢
%tg_te+¢(1-¢)(60-9)/(1-¢) (12)
and
(7.+1 )78 = (tre)e + oo ot 4%its —a)/(1- ) (13)
At AsT N 2 ’

In the unconditional AR(1) process, Panjer and Bellhouse {2] obtained ¢@ and
(t+s)6 for (12) and (13) respectively. The difference in both cases may be
viewed as a correction term to take into account the deviation of the current
force of intcerest from the average force of interest.

The variance-covariance matrix ' can be obtained from (7) and (10}.
After some algebra the (s,t/-th element of I reduces to
Y2

Y 9
Cov(s, 8, ) = glt-sl (1< 075 /01 - 6%, (14)

where m = min (#,8). The asymptotic result, obtained by fixing ¢-s and letting

m hecome large, is the covariance in the unconditional model obtained from

.



equation (19) of Panjer and Bellhouse [2].

Consider the functions

x 21 u
Glz) =5 + T o (z-ul¢
u=1
X
Lz l+te  I1-¢
“37C ] (15)
(1-4)

and

2 2x  x-1
Az = 4 [1‘“’ 1 r1-¢2(”'“)J}

1-472 2 u=1
2 2x
_ ¢ I1-9 ¢ x x-1
_1—¢2[ 5 +——~1_¢(l—¢)(l-¢ ):] {16)

Then from (14), (15) and (16) and by using arguments similar to those given in
Appendix 1 of Panjer and Bellhouse [2] for the discrete unconditional process

the expressions ,@li r '{t and (’Lt+%s)T T (’lt+'{s) in (1) and (2) reduce to

T 2
L, T, =2 {G(t) - H(t)} 17}
and

(1, +30TT 0, + 2,0 = 257 120608) - (L)) + 2(0(a) - H(2))

- 6tle-sl) - o7uclt -8}, (18)

where 0% = Y2/(I —¢>2) and m = min {s,t). Panjer and Bellhouse [2] obtained

2 2
20°G(t) and 20°(2G(t) + 8G(s) - G{|t~s|)} for (17) and (18) respectively.
The difference in each case shows the reduction in variance obtained by using

the known current value 50.



Autoregressive Processes of Order Two - AR(2)

The model 1s a special case of (3} withp = 2 or

8, =8 + 4,08, -0} # 8,06, ,-8) +e,,

t

where, again, the ¢'s have the same distribution as (3). The recursion rela-

tionship [9) to find {I-—¢)~1 becomes

0, t==8-2 8-3,...,1 (19)

Yot~ ®1Tg,t41 T $17g,te2 T

]

with initial conditions r = 1 and r ¢,. Again, the elements r , =0
88 8 1 I:2

,8-1

for t < . The solution to (19) is

g-t 8-t
= ulw] + agd, t =8,8-1,..., 1 20)

where w;l and w;l are the roots of the characteristic equation

2
$fr) =1 - ¢1r - ¢2r .
Upon noting that
WI + WZ = ¢ {21)
and since r =1 and r = ¢, the coefficients reduce to
ss 8,8-1 2
0y = /0, -b,) and oy = g/ (Y -y, ). (22)

For the AR(2) process g = (6y, + 644 1, 958,050 s 0;T. From (20)
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and {22) and noting that
szg = -¢1 (23)

the Z-th (¢ = 1,..., n) entry of 2 reduces to

, n . .
R O TN 2 TR T IR ULy VAT I (24)
On applying (24), the expressions %g R and {%t + {B)T g in (1) and (2) reduce
to
T, _ 2 t
Lo 8=t 0+ L (1-w )Ty )y, +¥y ;)
2 t
R SRR PP I FA S RN PV R PV PR PO R
and

T . _ a t 8
(L, + 1) B = (E+8)e + (WI(1-0,) (247 - 43y + ¥y 4)
Wit 2wl WSty vy V(1= (1= ), ~b,))
T ¥y 1 g~ Yo/ T V¥ 4 1 PG IS T

The variance-covariance matrix T may be obtained from (7), (20) and
(22). After some algebra the (s,t)-th element of T reduces to
2m
'1)1

- t-
OV LA NG U PG B NG SRRV Lol PO A

2m
by (1=05 03]/ (¥~ byl (25)

where m = min(s,t),

>
t

2
byl "’1) / ““’1 SRS +w1w2) 3,
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as in Panjer and Bellhouse [2], and

of = Fiatug, /T -u g (1= 02100 (26)

On using (21) and (23) it may be noted that (26) is the variance of 5t in
the unconditional model studied by Panjer and Bellhouse [2]. The asymptotic
result, obtained by fixing t-s8 in (25) and letting m become large, agrees
with the covariance of St and 68 in the unconditional model obtained from
equation (21) in Panjer and Bellhouse [2].

Consider the functions

x-1
G (x) =5 + uzl (x-u)v.p:f, i=1,2, (27

and

1
iU VI R (P P TP (28)

H..(x] =
= u=1

X
RS B S
T-%0;

Then from (26), (27) and (28), and using the same arguments as for the AR(1)
process, the expressions {g T it and (%t-+%B)T T (%tyfie) in (1} and (2)
reduce to

7
Lt

_ 0.2
T %t = 20 {XGI(t) + (1-—A)Gz(t) - [AWIHZI(t) - AWZHIZ(t)

F 1= N Hy (8] = (1=2)WH0 (8] / (4 = 9y))

and
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(1,+2)70 (1, +1,) = 26°(26(t) + 2G(s) - G(|t-s|) =~ [ F ) = N,F o # (1= 204 F
- (J—A)szz]/ (wl-wz)} 29)
where in (29)
Glz) = AGy(z) + (1-2)Gy(x).
and

= - m -
Fy5= 2H;5(a) + B, () = (4,05) Hij(lt 8|/,

NUMERICAL ILLUSTRATIONS

Tables 1, 2 and 3 give the mean present value of an annuity certain, a
whole life annuity and a whole life insurance respectively. Each table is
based on the conditional autoregressive model of oxrder I with a value of 6 of
€%, values of ¢ of 1% and 10%, values of @ of 0, .25, .50 and .75 and values

of § the starting values of 4%, 6% and 8%.

0’

From these tables it is noted that the expected present values increase
as the variability as measured by the standard deviation o increases, increases
as the degree of dependency, @, increases and decreases as the current rate, 60,
increases.

Table 4 gives the net annual premium for an ordinary life insurance
policy under the above assumptions. The values are obtained by dividing the
values in Table 3 by those in Table 2 increased by an amount of 1.

It can be seen that the net annual premium increases as o increases,
as # increases and as 60 decreases. Changes in the starting value 60, do not

affect the net annual premium as much as it did the net single premiums in
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Tables 1, 2 and 3. The effect of 60 may be more pronounced for other types
of policies. The value of # seems to be much more important than the value
of g or 60. This demonstrates that the correlation of yield rates in suc-
cessive years is an important variable in the determination of interest,
insurance and annuity values.

The reader is cautioned that those observations apply only to the

ordinary life plan. The effects of the various parameters may be more or

less pronounced for other plans.
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TABLE 1: Mean present value of an n-year annuity certain

n

(2] o} ¢ 60 10 20 30 40 50
.06 .01 0 any 7.298 11.306 13.506 14.714 15.378
.28 .04 7.346 11.382 13.599 14.816 15.485

.06 7.299 11.308 13.511 14.720 15.384
.08 7.253 11.235 13.423 14.624 15.284
.50 .04 7.430 11.523 13.773 15.010 15.690
.06 7.300 11.313 13.518 14.730 15.397
.08 7.173 11.106 13.268 14.456 15.108
.75 .04 7.607 11.870 14.220 15.514 16.227
.06 7.302 11.321 13.534 14,753 15.424
.08 7.010 10.799 12.884 14.032 14.664

.10 0 any 7.482 11.799 14.290 15.727 16.556
.25 .04 7.622 12.169 14.881 16.499 17.464

.06 7.573 12.090 14.784 16.391 17.350

.08 7.525 12.012 14.688 16.284 17.236

.50 .04 7.841 12.836 16.021 18.052 19.347

.06 7.704 12.600 15.722 17.712 18.982

.08 7.569 12.368 15.428 17.379 18.624

.75 .04 8.178 14.320 19.092 22.809 25.703

.06 7.844 13.635 18,129 21.629 24,354

.08 7.526 12.984 17.217 20.513 23.080
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TABLE 2: Mean present value of a life annuity using 1958 CSO Mortality Tables

Age
8 g ¢ 60 0 i0 20 30 40
.06 .01 0 any 15.437 15.290 14.858 14.162 12.983
.25 .04 15.545 15.398 14.961 14,260 13.072

.06 15.544 15,297 14.864 14.168 12.987
.08 15,343 15.198 14.767 14.075 12.903

.50 .04 15.752 15.601 15.158 14.446 13.240
.06 15.457 15.310 14.876 14,177 12.995
.08 15.169 15.024 14.598 13.914 12.755

.75 .04 16.297 16.138 15.673 14,927 13.667
.06 15.489 15.340 14.902 14.199 13.012
.08 14.723 14,584 14,171 13,509 12,390

.06 .10 0 any 16.731 16.519 15.980 15.14¢ 13.773

.25 .04 17.744 17.475 16.847 15.889 14,373
.06 17.629 17.361 16.737 15.785 14.279
.08 17.514 17.248 16.628 15.682 14.186

.50 .04 19.929 19.504 18.651 17.411 15.555
.06 19.552 19.136 18.299 17.084 15.265
.08 19.182 18.775 17.955 16.763 14,980

.75 .04 28 .447 26.988 24.883 22.276 19.003
.06 26.937 25.564 23.582 21.126 18.042
.08 25.511 24.218 22,351 20,038 17.133

8 g [ 60 50 60 70 80 90
.06 .01 0 any 11.235 8.962 6.431 4.073 2.174
.25 .04 11.311 9.022 6.473 4.099 2.187
.06 11.238 8.964 6.432 4.074 2.174
.08 11.165 8.906 6.391 4,048 2.161
.50 .04 11.453 9.131 6.547 4.142 2.206
.06 11.243 8.967 6.434 4.074 2.174
.08 11.038 8.806 6.322 4.007 2.142
.75 .04 11.804 9.389 6.709 4.225 2.238
.06 11.254 8.973 6.436 4.075 2.174
.08 10.732 8.577 6.175 3.930 2.112
.06 .10 0 any 11.810 9.327 6.627 4,160 2.202
.25 .04 12.244 9.602 6.776 4,227 2.226
.06 12.165 9.541 6.733 4.200 2.212
.08 12.086 9.479 6.690 4.174 2.199
.50 .04 13.067 10.098 7.026 4.329 2.256
.06 12.826 9.915 - 6.903 4.257 2.222
.08 12,589 9.736 6.782 4.187 2.189
.75 .04 15.215 11.227 7.506 4.486 2.290
.06 14.472 10.708 7.189 4,323 2.224
.08 13.767 10.216 6.888 4.166 2.160
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TABLE 3: Mean present value (net single premium) of a whole life insurance
using 1958 CSO Mortality Tables

Age

0 54 ) 60 0 10 20 30 40
.06 .01 0 any 43.58 52.09 77.27 117.75 186.36
.25 .04 43.90 52.49 77.87 118.64 187.73
.06 43.62 52.15 77.35 117.86 186.49
.08 43.34 51.80 76.84 117.08 185.26
.50 .04 44.50 53.29 79.04 120.41 190.45
.06 43.70 52.26 77.51 118.07 186.74
.08 42.92 51.25 76.00 115.77 183.11
.75 .04 46.17 55.62 82.46 125,58 198.29
.06 43.92 52.56 77.92 118.60 187.37
.08 41.80 49.68 73.64 112.01 177.06
.10 0 any 51.15 62.48 91.34 136.29 209.45
.25 .04 57.70 71.26 102.91 151.13 227.48
.06 57.32 70.79 102.23 150.13 225.97
.08 56.96 70.32 101.55 149.14 224.48
.50 .04 74.68 93.34 130.89 185.47 267.13
.06 73.28 91.51 128.33 181.83 261.91
.08 71.91 89.72 125.83 178.27 256.79
.75 .04 184.66 220.24 272.37 336.90 418.37

.06 174.36 207.61 256.78 317.63 394.67
.08 164.64 195.71 242.10 299.48 372.34

] [o4 ¢ 60 50 60 70 80 90
.06 .01 0 any 288.08 420.33 567.60 704.80 815.33
.25 .04 290.15 423.25 571.42 709.38 820.39

.06 288.24 420.48 567.73 704.89 815.38
.08 286.33 417.73 564.06 700.43 810.41

.50 .04 294,18 428.86 578.49 717.35 828.35
.06 288.52 420.75 567.94 705.03 815.44
.08 282.96 412.80 557.59 692.92 802.74

.75 .04 305.48 443.74 595.64 734.26 842.35
.06 289.17 421.31 568.32 705.20 815.48
.08 273.75 400.08 542.35 677.44 789.59

.10 0 any 314.49 447.34 591.82 723.87 828.62

.25 .04 334,67 467.68 609.99 738.34 839.06
.06 332.46 464.61 606.04 733.66 833.94
.08 330.27 461.57 602.12 729.00 828.84

.50 .04 376.66 507.39 642.77 761.82 853.63
.06 369, 36 497.73 - 630.96 748.63 840.25
.08 362.21 488.26 619.37 735.68 827.09

.75 .04 513.72 616.29 716.17 802.92 872.34
.06 485,37 584.01 682.14 770.26 844,09
.08 458.61 553.48 649.84 739.09 816.91
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TABLE 4: Net annual premium of a §$100 ordinary life insurance policy using
1958 CSO Mortality Tables

Age

8 a ¢ 60 0 10 20 30 40
.06 .01 0 any 2.65 3.20 4.87 7.77 13.33
.25 .04 2.65 3.20 4.88 7.77 13.07
.06 2.64 3.20 4.88 7.77 13.33
.08 2.65 3.20 4.87 7.77 12.90
.50 .04 2.66 3.21 4.89 7.80 13.37
.06 2.66 3.20 4.88 7.78 13.34
08 2.65 3.20 4.87 7.76 13.31
.75 .04 2.67 3.25 4.95 7.88 13.52
.06 2,66 3.22 4,90 7.80 13,37
.08 2.66 3.19 4.85 7.72 13.22
.10 0 any 2.88 3.57 5.38 8.44 14.18
.25 .04 3.08 3.86 5.77 8.95 14.80
.06 3.08 3.86 5.76 8.94 14.79
.08 3.08 3.85 5.76 8.94 14.78
.50 .04 3.57 4.55 6.66 10.07 16.14
.06 3.57 4.54 6.65 10.05 16.16¢
.08 3.56 4.54 6.64 10.04 16.07
.75 .04 6.27 7.87 10.52 14.47 20,92
.06 6.24 7.82 10.45 14.36 20.73
.08 6.21 7.76 10.37 14.24 20.53

5 54 ¢ 60 50 60 70 80 90
.06 .01 0 any 23.55 42.19 76.38 138.93 256.88
.25 .04 23.57 42.23 76.46 139.12 256.42
.06 23.55 42.20 76.39 138.92 256.89
.08 23.54 42,17 76.32 138.17 256.38
.50 .04 23.62 42.33 76.65 139.51 258.37
.06 25.57 42.21 76.40 138.95 256.91
.08 23.51 42.10 76.15 138.39 255.49
.75 .04 23.86 42.71 77.27 140.53 260.15
.06 23.60 42.25 76.43 138.96 256.93
.08 23.33 41.78 75.59 137.41 253.72
.10 0 any 24.55 43,32 77.60 140.28 258.78
.25 .04 25.27 44.11 78.45 141.26 260.09
.06 25.25 44.08 78.37 141.09 259.54
.08 25.24 44.05 78.30 140.90 259.09
.50 .04 26.78 45.72  80.09 142.96 262.17
.06 26.71 45.60 79.84 142.41 260.79
.08 26.65 45.48 79.59 141.83 259.36
.75 .04 31.68 50.40 84.20 146.28 265.15
.06 31.37 49.88 83.30 144.70 261.81
.08 31.06 49.35 82.38 143,07 258.52
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