ACTUARIAL RESEARCH CLEARING HOUSE 1981 VOL. 1

Bond Immunization Strategies
by

William A. Dreher
The search for certainty has an eternal appeal for anyone who acknowledges his fear or anxlety about unpredictable future events. The investor greedy fellow that he is - yearns not only for certainty in investment returns, but the highest possible total return on his capital. In today's atmosphere, the high returns available on bonds have attracted much investor interest, and it is only natural that fixed income investors look for ways to essure the maintenance of high returns on their bond portfolios. Bond immunzation offers that potential.
IMMUNIZATION STRATEGIES

1. DURATION
2. ACTUARIAL
a. STATIC GROUP I WHOLE LIFE
b. DYNAMIC GROUF ILIMITEO YEARS

The first American author on bond immuization was the economist Frederick Macauley writing in 1938. Fourteen years later, in 1952, the idea was described by a British actuary, F.M. Redington, an officer for an English life insurance company. The premise, which they proved for a simplified model, was that a portfolio with a duration equal to its investment horizon would have a highly predictable total rate of return over that investment horizon, regardless of any subsequent changes in coupon rates. Under this condition, any changes in current yields - which determine the reinvestment rates for income and principal repayments - are exactly offset by changes in the market value of the portfolio. 39 -
(The "duration" of a portfolio is the average time that must elapse before the owner receives the cash due on the portfolio assets, with each cash payment weighted by its present value and the time remaining before that cash payment is due.) we know now that the proofs by Redington and Macauley were only special cases of a much more complicated environment. The yield curve is neither flat nor rigid and our understanding of immunization theory and implementation tactics is still evolving. Marty Leibowitz and Salomon Brothers deserve much credit for their splendid technical and theoretical work in this field. The experiments and investigations help us deal with the real world of constantly changing yield curves, and achieve the goals of an immunization strategy with remarkable accuracy.

The other major approach to reducing uncertainty in future bond returns could be called actuarial immunization or cash matching. Its basic premise is that the uncertainty associated with the reinvestment of coupons or principal payments will be eliminated if the portfolio's cash requirements exactly match the cash generated by the investments.

This concept has particular significance for pension funds. My remarks will focus on its application to two situations: paying the benefits for a defined group of pensioners, with a cash requirement that declines from year to year as these pensioners die, but continues for many decades into the tuture. The second example focuses on a dynamic group of pensioners, in other words, a group that constantly being replenished by new retirees.

Abstract

When imnunization is applied to an expanding group of pensioners, it cannot reach to the end of their lives. An immunized bond portfolio must necessarily be linited to a few years into the future -- perhaps five or ten -- since the pension fund is simply not large enough to protect payments that extend for any longer period.

Using a bond portfolio to match a set of actuarial liabilities is more complex than it appears at first glance. The cash flows themselves can only be estimated, since they depend upon forecasts of future mortality and, for dynamic groups, upon the prediction of the retirement dates and future salary increases for employees not yet retired, since these events determine the amount of annual payments.

Furthermore, if a plan has a cost-of-living feature or some other formula for increasing benefits after retirement, the projected cash flows are subject to the accuracy of an inflation forecast. In addition, benefit payments are due monthly, whereas bond coupons are typlcally paid semiannually. For these and other reasons we must realize that the practical world prevents immunization in the absolute sense. Fortunately, we can achleve a close approximation to our goal of removing uncertainty in future rates of return.

```
In the ecumenical and scientific spirit that brings us together today, we should acknowledge that the substance of an immization strategy can be implemented in many ways. The choice among them requires judgments about the desired degree of certainty, opportunity costs, administrative efficiency and constraints on future investment policy.

\section*{IMPLEMENTATION TECHNIQUES}
1. IMMUNIZED BOND PORTFOLIOS
- DURATIONIHORIZON
- matched biabilities
2. TERMINAL FUNDING ANNUITY
- SINGLE PREMIUM
- 5 yEAR PAYMENT
3. GUARANTEED INVESTMENT CONTRACTS
- discount instrument
- COMEINED WITH IMMUNIZED PORTFOLIO
4. MORTGAGES
- DIRECT OWNERSHIP
- INSURED POOLS

Itrough bond portfcli.os we can remove most of the uncertainty about future returns on the portiolio. There is only one way in which absolute certainty san be achieved: through contractual relationships with an insurance company that is willing to accept responsibility for all or part of a pension flen's liabilities in exchange for a specified capital transfer or premium.

For today's purpose, it is most useful to concentrate on terminal funding annuicy contracis. For those not familiar with that term, let me explain that terminal funding annuities are typically purchased for a group of pensioners who are receiving benefits on the date the contract is issued.

The insurance company agrees to pay all of the benefits to which they are entitled in exchange for a single premium. The pension fund is simultaneously relieved of its obligation to pay future benefits to those participants and separated from part of its portfolio. A pension Flan may also use terminal funding on a continuing basis. As each person reaches retirement the insurance company is paid a lump sum and thereupon becomes responsible for Euture payments to that pensioner.
```

One disadvantage of a ierminal funding contract is that it imposes
spiking demands for cash on the pension portiolio. Under some conditions
the terninal funding premiums may exceed the total of new contributions and
Eie current incone on the portfolio. This would require a forced liquidation
of the plan's assets. This possibility could lead to security sales in
depressed markets or force the plan to adopt a more conservative investment
policy.

```

One way to minimize of eliminate this hazard, while retaining the advantages af insuring retired life liabilities, is to pay the insurance company a level anmual premium over several years after each participant retires, rather than a lump sum at the time of retirement. Such contracts are not generally available from insurance companies today, but the idea has been around for at least 20 vears. I remember exploring this concept with one major insurance company as far back as 1959. If bond immunization becomes a major \(=\) hrust of pension fund investment policies, I would predict that level premium terminal runding wili be a significant source of business for enterprising companies in the group annuity business.

Guaranteed investment contracts get much of the credit for she curcent interest in immunized bond portfolios. They have been enormously successful for artracting pension fund capital, as well as the assets of profit sharins and thrift plans. Here again, we see that the concert is ifferent from the practical reality only the bullet fotm of guaranteed investment contract can achieve to the fullest Lezree the soals of immuniation. The bullet form involves a siagle जeposi: with the insurance company and a single repayment date at which time both the original capital and the accumulated interest are paid. -43-

If the GIC rate oi investment return is subject to future market forces or either incorte of capital are returned before the ultimate payment date, plan sponsor has not completely escaped the uncertainty associated with forecasts of Euture coupon yields.

Immenization concepts and strategies can also be implemented through a blend of techniques, such as a combinarion of GICs and an immunized bond portfolio, and by using other financial instruments, such as mortgages.

I would like to draw your attention to two other variations of the imnunization ineme.

\begin{abstract}
A plan sponsor who is interested in reaching for the higher returns that may be available on common stock portfolios can use an immunized bond portiolio to dampen the overall volatility of his portfolio. Knowing char the immunized bond portfolio has a highly predictable rate of return over its investment horizon and knowing that ERISA will permit him to value the bond portfolio at book value, thus assuring zero volatility for actuarial purposes, a plan sponsor who believes that the equity risk premium is worth pursuing can pose this question: "If \(I\) am prepared to accept a standard deviation of \(\mathrm{X} \%\) for my total portfolio return, what fraction of my pension fund assets must be committed to an immunized portfolio?"
\end{abstract}

The issue of maximum common stock exposure in a pension fund can be addressed in another fashion. A pian sponsor might make this statement: "We want to be completed satisfied that the cash generated on our fixed income portfolio will closely match the projected benefit payments to plan participants in the next five or ten years. Once our liquidity requirements for the next Eive or ten years have been satisfied, all -44-
of the remaincer of the plan's assets may be allocated to stocks or other variable assets." This concept of five to ten year forward coverage of benefit payments implies a program for annually adding to the fixed income portfolio in anticipation of the benefit payments coming due five or ten years in the future. Thus, the plan sponsor who adopts this principle must set aside out of each year's contribution an amount adequate, along with accumulated interest, to cover the projected payments at that future date. Having done so, he has additional degrees of freedom in choosing the investment policy for the remainder of the plan's assets.

Let me give you now two illustrations of actuarial immization and then show how immunization cechniques can justify a reduction in the plan sporsor's current contributions.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{MATCHING RETIRED LIFE LIABILITIES} \\
\hline Yoar & Benpfits & Investment Cash & Net Cash \\
\hline 1980 & \$25.8 & 25.6 & 0.0 \\
\hline . & . & . & . \\
\hline \(\therefore\) & : & : & : \\
\hline 1985 & 21.2 & 21.2 & 0.0 \\
\hline - & . & . & . \\
\hline : & - & - & \\
\hline \(\cdots\) & . & - & : \\
\hline 1990 & 16.4 & 16.4 & 0.0 \\
\hline . & - & . & - \\
\hline . & - & - & - \\
\hline . & & & \\
\hline 1995 & 11.5 & 11.5 & 0.0 \\
\hline . & . & - & . \\
\hline : & \(:\) & : & - \\
\hline 2000 & & & \\
\hline 2000 & 7.2 & 7.2 & 0.0 \\
\hline . & \(\cdots\) & - & . \\
\hline . & & - & - \\
\hline 2005 & 3.9 & 3.9 & 0.0 \\
\hline & . & & . \\
\hline \(\div\) & . & - & - \\
\hline 2009 & 2.1 & 0.0 & 8.2 \\
\hline 2010 \& Eeyond & 8.2 & 0.0 & 0.0 \\
\hline Total & 388.8 & 388.8 & 0 \\
\hline Portolio Market & & & \$185.1 million \\
\hline Duration: & & & 5.95 years \\
\hline Internsi Rate of & & -45- & 10.58\% \\
\hline
\end{tabular}

Finis siide illustrates the frinciple of actuarial immunzation for an existing roup of retired emplovees. In this particular plan employees now retired re receiving payments that total approximately \(\$ 26\) million. In 1980 they
 to the survivors from the original group will be \(\$ 21.2\) million. Each year the payments will decline and, by the 30 th year, will be down to \(\$ 2.1\) million. Eayments in the year 2010 and thereafter will total \(\$ 8,200,000\). The total Cash payments received by these retirees nill be \(5388,800,000\). Dr. Leibowitz and his stafi identified several portfolios of government or corporate Boncs that would generate cash from coupons and maturities closely matching chis series of annual beneift payments. The cash created by the portfolio and the sumulative get cash after making all benefit payments are illustrated in the last two columns of the slide.
\(\vdots\) should alert you that the matching is not as neat as the slide suggests, for several reasons. Bond coupons are paid semi-annually and it is necessary to accumulate cash in advance of the monthly benefit requirements. This creates a -loat which has to be invested in cash equivalents at the prevailing rate and this rate is not predictable. Also, in the later years of the analysis, particularly for government bond portfolios, there is not a wide enough array of maturities co provide exact matching. This means that the float can be ¿irlv large.

Finally, it is not practical to extend the matching process beyond thirty years. However, the present value of the payments due beyond the 30 th year is only about \(1 / 3\) of \(1 \%\) of the total value of the portfolio, so this error is insignificant. \(A r\) the bottom of the slide we see that the market value of a portfolio of government securities with these cash characteristics is \(\$ 165,000,000\). It has an internal rate of return of \(10 \frac{1}{2} \%\) and a duration, calculated at \(8 \frac{1}{2} \%\), of 5.95 years. For the sake of comparison the duration would be 5.4 years, if the discount rate were \(10 \frac{1}{2} \%\), and 9.6 years at a zero discount rate.


The next slide gives an example of dynamic actuarial matching. In this situation we have an expanding population of retirees. The new retirees more than offset those who die. Furthermore, their benefit payments are considerably larger. The plan sponsor's projected annual contributions over the next ten years are indicated in the second column. They will rise from \(\$ 42\) million to \(\$ 67\) million. finis example assumes that the projected payments over the next five years will always be covered bv short term fixed income securities. The present value of -47-
benefir payments in the first five years, using a discount rate of \(9 \%\), equals \(33 \%\) of the orizinal portfolio. To maintain five year forward protection of the projected benefit payments, it is necessary to set aside out of each year's contribution an amount equal to the discounted value of the payments that will be due five \(\because\) ears hence. The third column shows the discounted value in each year of the estimated benefit payments five years later. The discount rate is also \(9 \%\). For example, in the first year, \(\$ 26.5\) million -- which is \(62 \%\) of the plan sponsor's contribution in that year -- is dedicated to the benefit payments in the sixth year. The amount of chose projected benefit payments -- which is not shown on the slide -- is \(\$ 41\) million. As we see in the fourth column, this program ties up a large ~- and rising -~ part of each year's contribution.
ty the tenth year, \(85 \%\) of the current contribution is committed to the short term portfolio. The fifth column shows that the mandatory commitment to the shorter end of the debt market declines from \(33 \%\) of total plan assets in the Eisst year to \(25 \%\) in the 10 h year, leaving \(2 / 3\) rds to \(3 / 4\) of the portfolio Tvajlable for investment in common stocks or other variable assets. This is an apparent anomaly, in view of the fact that an increasing part of each Year's contribution is allocated to the debt portfolio. The explanation for this relationship is that the short term debt portfolio is constantly being depleted by benefit payments, whereas the remainder of the portfolio has no cash strain and all of its income and capital appreciation are accumulating. In today's environment -- with an inverted yield curve and very high short term rates -- five year immunization of projected benefit payments is an attractive idea.

This technique is also helpful in making a judgment about a plan's tolerance For volatility and its ability to reach toward common stocks, if the perceived return on stocks provides sufficient compensation for the greater investment risk and volatility of the stock market.

My last example illustrates the potential for an immediate improvement in pension costs as a resuit of adopting a bond immunzation strategy. This can be accomplished by increasing the actuarial investment recurn assumption by an amont winich represents the economic vaiue of the immunization strategy. This is achieved by comparing the investnent return on the immunized portfolio with the investant retirn underlying the plan's present actuarial basis. This is not an easy task for several reasons, the principal one being that most plans have an actuarial investment return assumption that does not look realisticially at the economy and the capital markets. This sicuation is vividly and dismally illustrated by a survey recently conducted by my Firm. We gathered data on the actuarial bases of 235 persion plans that use Peat, Marwick, Mitchell \& Co. as audutors, but not \(a s\) actuaries. 180 of these plans have benefits based on finai salary. Their average investrent return assumption is \(5.9 \%\) This understatement of the iavestment return assumption -- which on the surface suggests that these costs are extremely conservative -- is offset by a tendency to understate their projections of future salary increases. The average annual salary increase assumption for these 180 plans is \(4 \% \%\).

\footnotetext{
You mast measure the effect of an immization strategy by comparing the return a the immunized portfolio with the plan's "true" investment expectaticn. Dee approach to analyzing the underdying investment return assumption for a pension plan is shown in the next slide.
}


Uou have to develop expected returns for the principaj asset categories in the portiolio. Ihis illustration assumes that the portfolio is restricted to bonds and stocks. The analysis begins with an estimate of the long term inflation rate. Y have assumed a jin inflation rate. This is, of course, materially lower than our current experience but is generally in line with the results of another Peat, Marwick survey recently conducted among 30 consulting economists and economists with major financial institutions.
Next you have to allow for the real returns on plan assets. I assumed that the
real return on bonds, after allowing Eor management fees and trading costs,
would be \(2 \%\). The real return an stocks was estimated at \(6 \%\).
atis assunes an ectity risk premium of approximately 4 over the return on a Siversified portfolio of high cuality bonas. These assumptions produce Expetec returns of 7 on bonds and llf on stocks. To derive tise actuarial Investment return assumption we now make assumptions about the portfolio's asset -50-
mix, then introduce a contingency margin to reflect the possibility that our expectations will be disappointed. On the assumption that the portfolio will be about equally divided between bonds and stocks and that the uncertainty in the iorecast of stock returns requires a contingency margin of \(1 \%\), we can nowderive the investment return assumption. One half of the portiolio will generate a net return of \(7 \%\) and the other half will have a net return of \(10 \%\), after allowing for the contingency margin of \(1 \%\). The result is an actuarial investment return assumption of \(8 \frac{1}{2} \%\).

We now have a reference point for measuring the economic significance of an immuniation strategy.
\begin{tabular}{|c|c|c|}
\hline & INVESTMENT
\[
7 \%
\] & ASSUMPTION
\[
81 / 2 \%
\] \\
\hline Retred Life Liabilly & \$224.5 & \$205.4 \\
\hline Present Value at \(101 / 2 \%\) & 184.7 & 184.7 \\
\hline Actuarial Gain & 5 39.8 & \$ 20.8 \\
\hline \multicolumn{3}{|l|}{Lmortied over} \\
\hline 15 years & 54.1 & \$ 2.4 \\
\hline \multicolumn{3}{|l|}{Annual Cost:} \\
\hline Original & \$ 425 & \$ 42.5 \\
\hline Adjusted & 538.4 & \$ 40.1 \\
\hline \% Reduction & 81/2\% & 6\% \\
\hline \(S\) in millions & & \\
\hline
\end{tabular}

The top ine of this slide shows the actuarial value of the benefits due to a group of retired employees using two different investment return assumptions: \(7 \%\) and \(8 \frac{1}{5} \%\). Two rates are shown because there are two different ways in which you can look at the economic advantage of immunization. One way is to say
that the benefits from immuization should be compared to the expected return on the bonds in the portfolio, that is, the \(7 \%\) developed in the previous slide. The other point of view is to say that the benefits from immuization should be compared to the composite expectation for plan assets, that is, the Es\% developed in our example. The second is obviously more conservative than the first.

The expected return on the immunized portiolio is assumed to be \(10{ }^{1} \%\). This conclusion comes from the government bond portfolio noted on the third slide. We see that the true actuarial value of the future benfit payments tc curvent retirees is only \(\$ 185,000,000\). This creates an artuarial gain of Sio million by reference to a \(7 \%\) or \(\$ 21\) million if our reference point is an si\% investment return assumption. The plan sponsor cannot immediately capture all of this prospective economic gain. Like other actuarial gains and losses, its effect must be amortized over the future life of the plan. If the gains from immunization are recognized over 15 years, using the period specified in ERISA for calculation of the minimum funding standard account, the cutrent benefit from an immanzation strategy is approximately one-tenth of the prospective economic gain. That is, 54.2 million if we compare to a \(-\%\) investment return assumption and \(\$ 2.4\) million if the comparison is with an \(8 \frac{1}{2} \%\) investment return assumption.

The pension plan from which this example is drawn had a current pension cost of \(\$ 42.5\) million, as shown in the slide. An immunization strategy focused on the plan's liability for benefits to currently retired employees woulc have permitted the sponsor to cut contributions by 6 to \(10 \%\).

I believe that tie can Eairly conclude that immonization strategies are beneficial For many pension gians. They can reduce the uncertainty of investment returns, can influence tive investment policy for the remainder of the pension fund and can be used to justizy an immediate improvement in the plan sponsor's current pension expense. Each of the potential outcomes is appealing. They justify a careful results-oriented analysis by a thoughtful plan fiduciary.```

