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Section 1 

Introduction and Summary 

The purpose of this paper is to show how to use personal information 

such as medical history, family characteristics, insurance characteristics, 

etc. in a logical statistical fashion for the purpose of modifying an 

existing mortality table to reflect the collected underwriting information. 

The technique presented is applicable even when the relevant information 

has only been gathered on a relatively small group of individuals, as 

well as cases in which more extensive experience has been gathered. 

Consequently, some smaller scale medical studies can be made useful 

for actuarial calculations. 

Additional benefits of the proposed technique are: 

i) It uses information in all ages to gather information about the 

effect of the measured underwriting characteristics. In a sense it 

smooths the data over age as well as covariate experience groups. 

ii) It modifies the entire standard mortality table in light of the 

pertinent information, and does not smooth the table by ad hoc ratio 

smoothing at specific ages. 

iii) There is a firm statistical foundation for the technique. 

Accordingly, inference can be made about covariate experience effect 

upon mortality. Thisisimpossible using the traditional actuarial methods 

which ignore the random aspects of the mortality curve adjustments, 

i.e., that the information gathered is sample information. 

iv) Confidence intervals for the mortality table adjustments may be 

made, allowing risk protection in calculation of annuities and life 
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insurance functions involving the experienceadjusted table. 

v) The technique is easily programmed on a computer. This means that 

policy premiums can be calculated, and underwriting done on an 

individual by individual basis. Thus a policy can be constructed and 

priced tailored to each individual's personal history and expected 

mortality. Mortality tables are obsolete in this era of modern computers; 

however if an actuary desires, such a table complete with associated 

commutation functions may be printed out for each individual policy 

holder, or group of policy holders. The aggregation of such individual 

personal mortality characteristics for the purpose of reserve calculation, 

etc. poses no significant mathematical or statistical problems and shall 

be dealt with in a subsequent article. 

Section 2 

A method for lifetable adjustment 
in light of covariate information 

Suppose we know certain information about an individual such as 

medical history, smoking or non-smoking, diabetes, mental illness, etc. 

How should the actuary take this information into account when under-

writing? Actuaries traditionally use such covariate information as sex, 

age, years since purchase of insurance, etc. to obtain a lifetable, and 

then using this specific lifetable, they calculate the desired quantaties. 

For many covariates of interest for example in disability insurance or 

higher risk underwriting there is insufficient mortality data gathered 

within company on the specific covariates to directly obtain a mortality 

table. Often only small scale medical studies, and/or limited company 

experience can be brought to bare on the calculations. In this section 
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(2.1) 

we shall present a statistically based method for incorporating such 

information. 

For a mathematical description of our procedure, let g
1

, g
2

, ••. , 

~ denote the numerical values of M > 1 covariates for which we wish to 

adjust a standard mortality table. For example gl might denote cholesterol 

level deviation from the normal, g
2 

might denote blood pressure deviation 

from normal, etc. Discrete variables may also be used, for example 

g
3 

might be 0 if no diabetes is present and one if diabetes is present, 

g
4 

might be one if a moderate smoker, zero otherwise, gS might be one 

if a heavy smoker and zero otherwise. 

Given the numerical measures z
1

, z
2

, ••. , ~ , we assume that the 

effect of the covariate values is multiplicative upon the force of mortality. 

This is a quite natural assumption, since roughly it says that in a small 

interval of time (x, x+dx) the chance of death given the covariates 

" g
1

, ••• , gM•just a constant multiple of the same chance when g,=O, g 2=0, 

- .11 •.• , gM-0 . Mathematically we write ~t(g) = ~t(O)exp{S 1 g1+ .. +SM gM} 

using the natural exponent to induce the multiplicative effect, and the 

symbol ~t(g) to denote the force of mortality at timet given the covariate 

vector g = (g
1

, g
2 

•. , Zn). 

In the equation 

the numbers sl'"""'~1 represent unknown parameters expressing the actual 

effect of the covariates upon survival. When Sj = 0, the covariate j has 

no effect upon mortality, while if Sj ~ 0 there is an effect of 

-1fhe assumption that the effect of the covariates be multiplicative can 
easily be relaxed. If the covariates do not act multiplicitively, then one 
might stratify the population and assume~ (g) = ~t(j)(O) exp{S1gJ:+ .. +SMgM.} 
in the jth strata. See Kalbfleisch and Pr~ntice (1980) for detai s. 
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covariate j upon survival. The model represented by equation (2.1) 

is called the proportional hazards model in the biostatistical litera-

ture. An excellent reference on the topic is the recent book by Kalb-

fleisch and Prentice (1980). 

Our procedure for adjusting a standard mortality table to reflect 

the impact of the covariate vector!= (g
1

, g
2

, .•. , gM) may now be 

briefly summarized as follows: 

1) estimate the covariate effects~= (S1 .a2 •••• ,SM) by S 

using published medical data, or company data. 

2) estimate the baseline average covariate value ~(I) corresponding to 

the sample study upon which the covariate effect assessment was made. 

This may not be the same average value as that for the population to 

which the adjusted table is to be applied. For example, if a company 

wishes to modify a standard mortality table of white male insured lives 

to obtain a table for white male insured lives with diabetes, they might 

refer to a study on mortality of diabetes patients published in a medical 

journal. The base line population for the medical journal study, is 

not the same as that in the insurance company, so this variation must 

be accounted for. In this step the medical study covariate average vector 

is represented by g(l) • 

3) Using the results of 1) and 2) and the force of mortality function vt 

from the standard table we derive the covariate adjusted standard force of 

mortality via the equation 

where 

= v 
t 

-(2) 
~ 

exp{~t~ + j(l) - j(2))} 

is the average covariate value for the standard table upon 

which we are making the adjustment. 

In this step the force of mortality has been adjusted to reflect the 
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(2. 3) 

differences between the study group standard, and the company standard, 

as well as for the covariate effects. 

4) The new adjusted mortality table St(~) reflecting the covariate 

information e is now calculated in the usual manner from the force of 
(t 

mortality, namely the survival function is St~ exp{ J 0vu(~)du} 
In the proportional hazards model this becomes 

( -(1) - -;;-(2)} 
st (~)= ( s t (std))exp{S ~ + ~ , 

where S (std) is the standard survival curve upon which the adjustments 
t 

are to be made. Thus the new table is obtained by 

-(1) -ll.l) 
a power, namely to the power s

1
(e

1
- e

1 
+ Z 

raising the old table to 

+ •.. + s <~(1) _-g:<2> ... f ) 
M M rt n • 

The only consideration still to be discussed is how to estimate the 

covariate effects~= (S
1

, ••• ,Sm) from the data in the medical study, or 

from the small experience company data. This will be provided in the next 

section where the innovative technique of partial likelihood due to D.R. Cox 

(1972) will be used. 
Section 3 

The estimation of parameters 

To implement the procedure outlined in the previous section, one 

might proceed in any of several ways: 1) assume a specific parametric 

model (e.g., Makeham or Gompertz) for the baseline survival function and 

use the principal of maximal likelihood to estimate ~. Gross and Clark 

(1975) is a good reference concerning this method and the inferential 

procedures associated with it. 2) Assuming the baseline survival 

function cannot be specified in advance, one may proceed using the partial 

likelihood method developed by D.R. Cox (1975). This is the method we 

shall pursue here. A very good account of partial likelihood and its 
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(3.1) 

inferential implication is to be found in Kalbfleisch and Prentice (1980). 

Consider a study group or company sample containing n individuals. 

For individual i we record the data set (ti' oi,gi) where ti is the time 

of death or event, or possibly censoring, o. is the indicator of failure 
~ 

with oi = 1 if failure occurs, and oi = 0 otherwise, and ~i = (gil' giZ' 

giM) is the covariate vector for the ith individual. By censoring 

here we mean that the individual withdrew or was lost from the study 

before failure occured. 

For convenience, let us order the failure times (i.e., those individuals 

with 1), so that t(l)' t(Z)'"""' t(k) are the k reported failure 

times, and ~(l)' ~(Z)' ... , ~(k) are these people's covariate vectors. 

Additionally, let R(t) denote the set of individuals at risk of failure 

at timet, i.e., those people alive and uncensored at time t-0. Partial 

likelihood compares the covariate vector of the individual who failed 

at time t(j) with the covariate vector of those persons at risk at time 

Thus, using the proportional force of mortality assumption (2.1) 

we have in essence 

Pr {individual(i) fails at t(i) J R(t(i)) , and one item fails at t(i)} 
jl (g . ) 

t (i) - (~) 

'"11t <E.) 
'- (i) J 

j £ R(t(i~ 

exp{(:l'~(i)} 

Multiplying over all the failure times gives the partial likelihood. 

L(@) 
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in the case of no tied failure times. 

If ~is chosen to maximize L( 13). then under suitable regularity 

conditions 6 behaves just like a maximum likelihood estimator, e.g.,] 
il /'. 

is the unique solution of ae-logL(~) = 0, ~ is asymptotically normally 

distributed with mean~ and -approximate covariance matrix I-l(~} where 

I(S) 
2 a 

(-il ln L(_)). For a proof of these results, see Tsiatis 

asi asj 

(1981). The beauty of this model is that no assumptions whatsoever need 

be made about the underlying study baseline force of mortality function, 

and yet still inference concerning the covariate effects may be using 

(2.1) and partial likelihood. 

A fortran computer code to implement partial likelihood estimation 

may be found at the end of the book by Kalbfleisch and Prentice (1980). 

They additionally provide a program to implement the estimation when 

the covariates are time dependent (such as history of attacks of some 

ailments or disability). 

Section 4 

Other models and further extensions 

In this paper we have shown how to incorporate the personal profile 

information in the simplist possible situation. This was done for ease 

of presentation, and to clarify the basic technique. In particular appli-

cations however there may be complications such as time varying covariates, 

non-proportional forces of mortality, tied failure times for the study 

group, or grouped data problems. Such complications can be handled by 

suitable extensions of the model. Kalbfleisch and Prentice discuss these 
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(4.1) 

problems and extensions in some detail, and the interested reader is 

referred to this book. 

Concerning alternative models for incorporating covariate information 

in adjusting standard tables, the first method which leaps to mind is 

the accelerated failure time model from engineering and biostatistics. 

In this model it is assumed that the effect of the covariates is to act 

multiplicative on time itself rather than upon the force of mortality. 

Thus the effect of the covariates is to speed up or slow down an individual's 

progression along the time axis, essentially ageing him at a rate possibly 

different than calendar time. See Kalbfleisch and Prentice (1980) for more 

details. Mathematically, in terms of the survival function we have 

S(tle) = s (tes-~) 
- 0 

where S(ti~) is the survival curve for someone with covariates and~ and s (.) 
0 

is the baseline survival function. The parameters~= (S1 , s2 , ••. ,SM) 

again represent covariate effect. If S
0

(·) is known (e.g., Makeham 

or Gompertz) then parametric estimation procedures can be used to 

estimate s. Once ';i' is found, the adjusted table is formed by taking 

S(t I~) 

using S
0 

as the standard table. 

As a practical matter, the Gompertz law fits mortality data quite 

well in most age ranges, and it is easily seen that the Gompertz curve 

simultaneously fits the proportional force of mortality model, and also 

accelerated failure time models. Hence the adjusted tables calculated 

using equation (4.1) and those calculated using equation (2.3) should be 

quite close. If the underlying survival function S
0 

is unknown, one can 
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still use accelerated failure time modeling to estimate the 6 parameters, 

either using the totally non-parametric method of Arnold and Brockett 

(1982), or of Buckley and James (1979), or else using the standard table 

to fill in expected survival times for the censored individuals and then 

using least squares on the log survival times. Of course S need not be known 
0 

to use the proportional force of mortality technique with partial likelihood. 

Concerning the computation of life insurance functions based upon 

the adjusted table we have for example the life insurance function 

A (i!i) = 
X • 

S(t + X I ~) 
----- J.lx+t(~)dt 
S(x I ~) 

For the proportional force of mortality function assumption model this 

may be calculated on a computer. With the accelerated failure time 

model, we have the closed from solution 

A (i!i) at discount rate v, and covariates i!i 
X • • 

= A at discount vexp{-_s'i!i} using the standard table, where y ~xe~-~­
y 

is the "biologically equivalent age". Other life functions may similarly 

be related to the standard table. 
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