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I. INTRODUCTION 

The purpose of this paper is to explore the rationale under

lying the development of the family of linear compound grad

uation formulas. As the title suggests, the paper also at

tempts to defend the Min-R
0 

member of that family against 

the unqualified charge that it is a "poor" graduation method. 

It concludes with a description of a simple modification of 

the Min-R
0

, and an analysis of the improvement obtained by 

that modification. 

The paper presumes that the reader has a basic understanding 

of this graduation method. The fundamentals can be reviewed 

in Miller [4] or in Greville [1]. Note that Greville prefers 

the term moving-weighted-average. 

II. THE PURPOSE OF GRADUATION 

The analysis of this graduation method will be seen to be di

rectly related to the fundamental question of the purpose of 

graduation. 

Miller defines graduation to be "the process of securing, from 

an irregular series of observed values of a continuous vari

able, a smooth regular series of values consistent in a gen-
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eral way with the observed series of values". Kimeldorf and 

Jones (2] observe that "graduation has traditionally been 

associated with smoothing". Greville, although not specific

ally defining graduation, clearly implies that the primary 

objective is smoothing. 

But George King [3] is quoted as saying: "What is the real 

object of graduation? Many would reply, to get a smooth 

curve; but that is not quite correct. The reply should be, 

to get the most probable deaths". 

As Miller points out in his chapter, a series of observ-

ed values contains random statistical fluctuations (errors) 

away from a true underlying series. The graduation process 

produces a series of graduated values which hopefully is a 

better representation of the true underlying values than was 

the series of observed values. Of course the true values are 

not known, but are presumed to form a smooth sequence. Thus, 

to approximate the true values, the graduated values should 

exhibit this characteristic of smoothness. Thus the objec

tive of graduation is smoothing, goes the chain of reasoning. 

Indeed Miller himself is led to this conclusion as shown by 

his definition quoted above. But it should be stressed that 

the purpose is not really smoothing, per se, according to 

King and really Miller as well, but rather to estimate the 

true values, themselves believed smooth. Thus the smooth 

result is somewhat of a consequence, albeit a very desirable 

one, rather than the direct, fundament objective. 

76 



III. THE DEVELOPMENT OF LINEAR COMPOUND GRADUATION 

Linear compound graduation was developed initially by E.L. De 

Forest in the 1870's. As reported by both Miller and Greville, 

his work was published in obscure places, and not brought to 

the attention of the actuarial community until 1925 by Wolfenden 

[6]. Meanwhile largely independent development of these for-

mulas was being done by Sheppard [5]. 

The first attempt to develop a linear compound formula made 

use of the idea of "reduction of error". It is recognized 

that the observed values contain errors (that is, deviations 

away from the true values) and that the graduated values, to 

be a good representation of true values, ~hould have minimum 

residual error. Thus the coefficients in the linear compound 

are derived, in part, to minimize this expected residual error. 

The formula so de'ri ved is called the Minimum-R
0 

formula. 

Now it follows that if the graduation process has produced 

values with a minimized deviation from the true underlying 

values, then these values constitute our best estimate of the 

true values, and are thus the most "accurate" that can be 

produced. Both De Forest and Sheppard referred to these Min-

R results as "accurate" in the above sense. 
0 

As stated earlier, however, graduated results
1
should be smooth, 

and unfortunately the Min-R results generally fail to satisfy 
0 I 

this requirement. For this reason the Min-Rz formulas, espe-

cially with z = 2, 3, and 4, were developed. 
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That a Min-R
3 

formula, for example, will produce smoother 

results than a Min-R is self-evident from the criteria of 
0 

smoothness traditionally used, namely the smallness of the 

third differences of the graduated values. The Min-R3 

coefficients were derived, in part, so as to achieve such 

smallness. The Min-R
0

, on the other hand, has no such object

ive of smooth results directly incorporated in its derivation, 

so the resulting lack of smoothness comes as no surprise. 

Thus we might summarize by saying that use of the Min-R
0 

is consistent with an objective of "accurate" results, whereas 

use of the Min-R
3 

(or Min-R4 ) is consistent with an objective 

of "smooth" results. Since smoothness is such an essential 

result, (indeed the very purpose of graduation according to 

many authorities), the Min-R
0 

has, understandably, come to 

be considered a poor graduation method. 

IV. TESTING FOR "ACCURACY" 

Even if smoothing were the fundamental objective of a gradua-

tion process, it is interesting to further explore the concept 

of accuracy. Since accuracy means closeness to true underly-

ing values, these must be "known" in order to measure the 

accuracy in graduated results. Perhaps the impossibility of 

measuring accuracy in practice. contributes to the down-play 

of accuracy (and the corresponding up-play of smoothness) as 

criteria for the success of a graduation. 

In a controlled, experimental environment, however, the true 
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values are known. At a given value of x, select a rate of 

mortality from a standard table. This rate will now con-

stitute what we are referring to as the true rate, and is de-

noted as in the remainder of this paper. 

Using this rate in a Monte Carlo technique, random decimal 

numbers are generated. Each random number is a trial; if the 

number is less than qx' that trial is a death. Each trial 

is independent. In this way an observed number of deaths is 

determined, and thus an observed rate of mortality, based on 

a number of trials Ex. 

Now the procedure is clearly defining a binomial random vari-

able, 9, for the number of deaths, having a mean of Ex · qx' 

and a variance of 

random variable 

Ex . qx · (l-qx) · 

Q=9/E. Thus Q 

From 9 is derived the 

is a rate type of random 

variable, derived from a binomial, with mean of qx and 
qx(l-qx) 

variance of 
E 

X 

From this we obtain an interpretation of our heretofore 

mystical "true" rate; it is the mean, or expected value, of 

the random variable Q, and q" 
X 

is one observed value of that 

random variable. In the graduation process, q~ is replaced 

G 
by the graduated value, qx 

Once the set of observed values q~ , over some range of x, 

have been generated, and then graduated to produce the set 

q: , the accuracy of the results can be measured by comparing 

the graduated set to the true set 
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V. EXPERIMENTAL RESULTS 

Table 1 shows an excerp of such an experiment. The exposures 

were taken from Miller, page 63, and the "true" rates, used 

in the Monte Carlo generation of the observed rates, are 

taken from the 1941 CSO Table. The linear compound formulas 

are 17-term, symmetric, reproducing a cubic. 

TABLE 1 

Graduated Rates 
~ Exposure True Rate Observed Rate Min-ru Min-R3 

43 36007 . 00715 .00733 .00761 .00743 
44 40861 .00804 .00803 .00807 .00796 
45 41259 .00861 .00829 .00864 .00858 
46 46040 .00923 .00910 .00930 .00927 
47 44534 .00991 .01053 .00994 .01002 

48 48060 .01064 .01001 .01074 .01079 
49 51343 .01145 .01274 .01148 . 01159 
50 53261 .01232 . 01211 .01231 .01241 
51 52689 .01327 .01330 .01324 • 01327 
52 54977 .01430 .01395 .01425 .01420 

53 56130 .01543 .01545 .01520 .01521 
54 53121 .01665 .01585 .01648 .01636 
55 51909 .01798 .01822 .01761 .01764 
56 51034 .01943 .01858 .01920 .01910 
57 52071 .02100 .02093 .02074 .02073 

Smoothness: .00016 .03727 .00284 .00028 
Accuracy: . 21108 .02651 .02934 

The smoothness measure in Table 1 is the sum of absolute values 

of third differences. As expected, the Min-R3 results are 

much more smooth than the Min-R results, being, in fact, 
0 
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nearly as smooth as the assumed true rates. 

The accuracy measure is the sum of weighted squared deviations 

away from true, or expected, values. It is shown for the ob

served values to give an indication of plausible deviation 

in observations, and also as a standard for comparing the 

accuracy measures of the graduated values. 

A interesting fact revealed in Table 1 is that the accuracy 

measure for Min-R
0 

is really not much better than that for 

Min-R
3

. This is partly a consequence of the specific data 

in the illustration, and partly due to assumptions underlying 

the derivation of the Min-R
0

. A simple modification in that 

derivation leads to an improved accuracy measure. 

VI. MODIFIED MIN-R0 

In order to develop a reasonable working formula, the tradi

tional Min R
0 

makes the assumption that the variance in 

each random variable in the sequence is the same. Since 

the random variables are rates derived from a binomial, it 

is clear that the variance in each one is dependent inversely 

on the number of trials (exposure) underlying that random 

variable. Since the exposures are not equal for each vari

able, then neither should be the variances. 

This leads to the development of a Modified Min R
0 

formula. 

The assumption upon which this new formula is based is that 

the variances in the several variables involved in one applic

ation are inversely proportional to their respective exposures. 
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Thus the coefficients for each application depend on the ex-

posures for the variables involved, and thus a separate set 

of coefficients must be calculated for each application. 

This tremendous increase in amount of calculation involved 

may partly explain the persistence of the illogical assumption 

inherent in the traditional formula. The derivation of this 

new formula is given in the appendix. 

' The entire data set, from which Table 1 is excerpted, was 

graduated by Mod Min-R
0

. The smoothness measure for the 15-

age excerp was .00241, a slight improvement over traditional 

Min-R
0

, and the accuracy measure was .01903, a more significant 

improvement. 

Another modification is to change the constraints on the 

linear compound coefficients from the requirement that the 

formula reproduce a cubic. This requirement is traditionally 

imposed under the assumption that the true underlying values 

are closely approximated by a cubic over the limited range 

of one application of the formula. In this investigation, 

the underlying (expected) values are from the 1941 CSO, and 

thus follow Makeham's Law. 

Several plausible observed sets of values were generated from 

the 1941 CSO by the Monte Carlo technique and graduated by 

Mod Min-R
0 

with the revised constraint requirements. The 

results generally show a better accuracy measure for Mod Min-

R
0 

than for the other linear compound formulas. 

In both cases (cubic reproduction and Makeham reproduction) 

certain observed data sets, being randomly generated, would 
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have characteristics which caused more accurate results (as 

well as smoother results) to be produced by Min-R3 or Min-R4 

than by Mod Min-R
0

. But for the 200 total repetitions of 

the experiment, Mod Min-R produced the most accurate results 
0 

more often than any other formula, as should be expected from 

the theory. Traditional Min-R
0 

(i.e., assumption of equal 

variance in all terms) came in second. 

VII. SUMMARY 

The research described herein indicates that when graduation 

is viewed as an attempt to approximate true underlying values, 

interpreted as expected values in this paper, then the Min-R
0 

formula, especially with the modification to recognize unequal 

variance in the terms, does a better job than the other linear 

compound formulas. 

If a way could be found to improve the smoothness of these 

more accurate results, without reducing the accuracy level, 

then an ideal graduation formula would have been discovered. 

Further research in this area is underway. 

The author would like to thank Neil L. Haynes, an Actuarial 

Science major at University of Waterloo, for his assistance. 

Mr. Haynes wrote the computer programs and guided the entire 

project through the Computer Center at the University. 
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APPENDIX 

In traditional MWA graduation, the set of coefficients 

~r for r = 0,1, •.• ,8 for a symmetric 17-term Min R0 formula 

are derived by minimizing the ratio of the variance in 

graduated values to the variance in ungraduated values, subject 

to the constraints assuring that the formula reproduces a 

cubic. 

The same set {ar} is used for each application of the 

averaging formula. In order to obtain this convenience, it 

was necessary to assume that each random variable in the 

series had the same theoretical variance. 

Since variance is influenced by sample size, that is, 

exposure, the above assumption is quite suspect. More 

reasonably, the variance of a random variable should vary 

inversely with the exposure involved. 

Thus Modified Min R0 MWA graduation derives the 

coefficients for each application by considering the exposures 

involved in that application. As a result, a different set 

of coefficients is derived for each application. 

Since 

then 
2. cr u 

X 

, where 

n 
\ (·- ) 2 2 .. II 

l. as cr ux+s 
-n 
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Now we define 
2. II 2 and presume that the variance 0 ux = e 

at other arguments relates to e2 in proportion to exposure. 

Thus 

tJ2ux 
n 2 e2 Ex r (as) 

Ex+s -n 

and 

To minimize 2 Ro , subject to the constraints that 

n n 2 l a = 1 and r s a
8 

= 0, we s -n -n 
n n 

s 2a ,. first write ao + 2 l a = 1 and r 0 to 
1 s 1 s 

reflect the symmetric nature of the formula. 

Then 
n 

s 2a al = - r 
2 s 

n n 2 n 
and ac : 1 - 2al - 2 r a 1 + 2 r s a

8 - 2 r as 
2 s 2 2 

Substituting these expressions for a 0 and a1 into R0
2, 

R2 E [ao2 +al2 + ;~12 +a/ +a/ + ••• +an2 +an2] 
0 x Ex Ex+l Ex-1 \+2 Ex-2 Ex+n ~ 

[

( 1+2 £ 
= E 2 

X 

2 n 2 
s a -2 ~ ) s L as 

2 + 
2 2 

a2 a2 
+-+-+ ••• 

Ex+-2 ~2 





and the vector, a, of unknowns with elements ar, r = 2, ••• ,8 

and the vector, b, of constants with elements 

Then the 

·.1r.knowns a2' 

Finally 

-2 (r 2-l) 
br = E for r = 2, ••. ,8. 

X 

matrix equation (D + C)a b 

a3, ... ,a8 

ao and al 

a = 1 

are obtained by 

8 
s2as - L 

2 
8 8 

1+2 L s 2
a -2 L as 

2 s 2 
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