ACTUARIAL APPLICATIONS CE TCHEBYSHEF'S INEQUALITY

Dr. Murray Silver, A.S.A. Department of Insurance and Risk Temple University Philadelphia, PA 19122

Introduction: The purpose of this paper is to introduce some actuarial applications of Tchebyshef's Inequality.

A proof of this inequality may be found in [1], page 43 <u>Application to ordinary annuities</u>: Let $v_k = v^k$, $s_k = {}_k p_x$ and insert into (1): $n \sum_{k=1}^{n} v^k \cdot k^p x = \sum_{k=1}^{n} v^k \cdot n_{k=1}^{n} k^p x$ or $a_x:\overline{n} = a_{\overline{n}} \cdot e_x:\overline{n}$ (2)

This lower bound for $a_{\chi;\overline{n}}$ has the interesting property that it is a simple combination of the interest component $a_{\overline{n}}$, the mortality component $e_{\chi;\overline{n}}$ and the term n. $\frac{a_{\chi;\overline{n}}}{e_{\chi;\overline{n}}}$ $\frac{a_{\overline{n}}}{n}$ compares the ratio of the life contingent functions to the certain

functions.

In (2), set n = ...-x:

$$a_x = \frac{a_{a-x} + e_x}{a_{a-x}}$$
(3)

Since $-x \ge e_x$, $a_{\overline{e_x}} \ge a_{\overline{e_y}}$. This together with (3) implies:

$$a_{x} \ge a_{\overline{e_{x}}}(\frac{e_{x}}{-x})$$
(4)

Inequality (4) compliments the classical results that $a_{\overline{e_J}} \ge a_x$; thus,

$$\stackrel{a_{e_x}}{=} x \stackrel{a_{e_x}}{=} x \left(\frac{e_x}{-x} \right)$$
(5)

95

Application to fractional annulties: Let
$$a_k = v^{-1}$$
, $\beta_k = \frac{p}{m}$ and apply (1):

$$n \cdot m \sum_{k=1}^{nm} v^{k/m} \cdot \frac{p}{m} x \ge \sum_{k=1}^{nm} v^{k/m} \sum_{k=1}^{m} \frac{k^p x}{m}$$
or
$$(m) \quad (m) \quad (m)$$

$$a_{\mathbf{x}}^{(m)} \geq \frac{a_{\mathbf{n}}^{(m)} \cdot \mathbf{e}_{\mathbf{x}}^{(m)}}{n}$$
(7)

This is clearly a generalization of inequality (2).

Let m approach infinity:

$$a_{x:\overline{n}} \leq \frac{a_{n}}{n} \leq \frac{e_{x:\overline{n}}}{n}$$
(8)

<u>Application to decreasing annuities and insurances</u>: Let $\alpha_k = (n-k+1)v^k$, $\beta_k = k^p x$ and apply (1)

$$(Da)_{x:\overline{n}} = (Da)_{\overline{n}} \cdot \frac{e_{x:\overline{n}}}{n}$$
 (9)

If α_k is as before and $\beta_k = \frac{1}{k-1} q_x^*$:

$$\begin{array}{c} (Da)_{1} \geq (Da)_{\overline{n}1} \cdot n^{q} x \\ x:\overline{n} & n \end{array}$$
(10)

Inequalities for $(Da)_{x:\overline{n}}^{(m)}$, $(D\overline{a})_{x:\overline{n}}^{(m)}$, $(DA)_{1}^{(m)}$ and $(D\overline{A})_{1}$ are also easily derived. $x:\overline{n}$ $x:\overline{n}$

Final Application: For a given $a_{x;\overline{n}}$, the rate of interest i is to be found by an iterative scheme. The appropriate mortality table is known; an approximate value i_0 is desired to start the iteration. This problem has been solved for an annuity certain in [2]:

* This assumes that d_{x+k} is a decreasing function of k for fixed x.

$$i = \frac{1 - (\frac{a_{\overline{n}}}{n})^2}{a_{\overline{n}}}$$
(11)

If inequality (2) is used as an approximation for $a_{\overline{n}}$:

Thus,

$$i_{0} = \frac{1 - (\frac{a_{x} \cdot \overline{n}}{e_{x} \cdot \overline{n}})^{2}}{n \cdot (\frac{a_{x} \cdot \overline{n}}{e_{x} \cdot \overline{n}})}$$
(12)
(13)

For example, if $a_{30} = 22.478$ and the 1958 C.S.O. male tables are used, $\omega = 100$ and $e_{30} \doteq 40.75$. (13) gives $i_0 = 1.8\%$; the actual value of i is 3%.

REFERENCES

[1] Hardy, G.H., Littlewood, J.E., Polya G Inequalities Cambridge University Press 1934

[2] Silver, M. <u>An Approximate Solution For the Unknown Rate of Interest For An Annuity</u> <u>Certain</u>

To appear in the Journal of Risk and Insurance (March 1981)