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1 STATISTICAL REVIEW

1.1 RANDOM VARIABLESAND DISTRIBUTIONS

Unlike the deterministic functions that mathematicians usually deal with, statisticians and probabilists
need to be able to handle quantities that vary randomly. These are referred to as random variables.
Random variables are described through their probability distributions. Probability distributions tell us
the probabilities with which the variabl e takes various val ues.

This chapter introduces a few probability distributions that play an important role in understanding
and anadyzing healthcare data.  While theoretical in nature, these distributions model rea life if
appropriately chosen. Probability distributions are mathematical representations of how statistical data
behave.

Random variables and their distributions can be broadly classified as discrete or continuous. If the
variable under study takes a finite or countably infinite number of values (countably infinite means that
the values the variable takes can be put in one-to-one correspondence with positive integers), then the
distribution is discrete. Any variable that involves counting the number of occurrences of an event will
automatically be a discrete variable. The number of insurance policies where at least one claim is made,
the number of days elapsed before the first claim is made for a particular policyholder or the tota
numbers of claims made by all policyholdersin ayear are examples of discrete random variables.

On the other hand, if the variable takes al values in an interval or union of intervas, then the
distribution is continuous. Time between occurrences of accidents on a highway, the amount of rainfall in
Santa Barbara County, the height and weight of people or the amount of carbon dioxide emissons are
all examples of continuous random variables. One of the important distinctions of continuous
distributions from the discrete is that the probability of a continuous random variable taking a specific
value is infinitesmally small. In other words while P(X =x) can be defined for a discrete random

variable X , this probability will always be zero for a continuous random variable. So for a continuous
random variable X , wetalk about P(X <x), P(X >X) or P(x< X <vy).
1.1.1 Discrete Random Variables

Definition 1.1.1 The probability distribution of a discrete random variableisalisting of all valuesther.v.
takes, along with the corresponding probabilities.



Definition 1.1.2 The function p, (x) = P(X =X), or simply p(x), is caled the probability mass
function of X .

Note that
+ X denotes the random variable whereas x denotes a possible valuefor X .

* p(x) isaways non-negative.

. Z P(X = x) =1, where the summation is over all possible values of x.

X

Definition 1.1.3 The distribution function or the cumulative distribution function (CDF) F, orjust F of
arandom variable X isafunction givenby F (x) =P(X <x). If X isdiscrete, then

Fe=2 . P(y).

Example 1.1.4 Tossapair of coins. The sample spaceisgivenby S={HH,HT,TH,TT} . Let X denote
the number of heads obtained. Then X (HH)=2,X(HT)=1,X(TH)=1 and X (TT)=0. If the coins
arefair, you associate a probability of 0.25 with each sample point. Then P(X =0)=0.25,

P(X =1)=05and P(X =2) = 0.25.

So the digtribution of X defined in this example can be written as

X |
p

Example 1.1.5 For the earlier example the distribution function of X isgiven by

F(X)zO xf<
=1 < xi& C
4
:E <x¥ 1
4
=1 X >

1.1.2 Expectation of Discrete Random Variables

Definition 1.2.1 Let X be adiscrete random variable with probability mass function p. Then the expec-
tation (or the expected value or mean) of X isgiven by

bo=E(X) =D xp(X)



where the summation istaken over al possible values x of X .If g isarea-valued function, then the
expectation of g(X) isgivenby E(g(X))=>_g(x) p(X.

Example 1.2.2 Suppose Y isarandom variable with the following distribution:

0 |1 |2 |3
101/02|04]|03
Then E(Y) =0(0.1)+1(0.2)+ 2(0.4)+3(0.3) =1.9

Example1.2.3 Let Y beasin Example1.22. Then E(Y )=i( ) p(y)=(0%)(0.0)+(1°)(0.2)+

(2°)(0.4)+(3°)(0.3)=45.

Definition 1.2.4 If X isarandom variable then the variance of X isdefined by
sy =V (X)=E(X") - (E(X)’

and the standard deviation of X isdefined by

s, =D (X)=WV(X)

Example 125 Let Y beasin Example 1.2.2. E(Y?) =4.5. ThusV (Y) = 45- 1.9 = 0.8€ and hence
SD(Y) =/0.89 = 0.94

Properties of Expectation and Variance: Let X be any random variable, continuous or discrete. For
any two real numbers a and b,

1. E(aX +b)=aE(X)+b
2. V(aX +b)=a’V(X)

3. SD(aX +b) =|a| SD(X)

1.1.3 Important Discrete Distributions

Some commonly occurring distributions have special names. Some famous names are given below.
They are all discrete distributions.

1. Discrete Uniform

2. Bernoulli



3. Binomial

4. Hypergeometric
5. Geometric

6. Negative Binomia
7. Poisson

1.1.3.1 Discrete Uniform

If arandom variable X takes n possiblevalues, a,a,,...,a_ , al with probability 1 then X issaidto
n

have adiscrete uniformdistributionon {a,,a,,...,a }.
Example 1.3.1 Roll adieand let X be the number that comes up. If the dieiswell balanced, then X

has discrete uniform distribution on {1, 2, 3, 4, 5, Then:

(a)E(x)- 222

_(b-a+1)*-1
(b)v (x)= =22 D=

1
1. Let ¥ Discrete Uniform{1,2,..n} SOthat p(x)=— for x=1,2,..n. Then:
n
n+1
(Q)E(X)="=

(B)v(x)="2

2. Let X ~ Discrete Uniform {0,1,2,...n} sothat p(x) = ( 11) for x=1,2,..n. Then:
n+

(Q)E(X)=7

n(n+2)
(b)V(X)=T

Example 1.3.2 Let X be the number that comes up when adieisrolled once. Here X has a uniform

distribution over the set {1,2,3,4,5,6}. Hence E(X ) = 67+1 =35 and

2
V(X)= 61;1= 35/12= 2.92




1.1.3.2 Bernoulli

A Bernoulli random variable is one that takes values 1 and 0 with probabilities p and 1- p.

Example 1.3.3 Toss a coin whose probability of headsisp. Let X be the number of heads obtained. Then
X isdistributed as Bernoulli( p)-

If X ~Bernoulli(p), then
1. E(X)=p
2. V(X) = p(l-p)

Example 1.3.4 Let X bethe number of sixesthat come up when adieisrolled once. Here X has

Bernoulli distribution with parameter 1 Hence E(X) =1 and V(X) :[EX§j =£.
6 6 6 6/ 36

1.1.3.3 Binomia
The Binomial distribution occurs in the following way. Suppose an experiment consists of n

independent identicd trials, each having two possible outcomes:. success or failure. For a given trial the
probability of success is p. (Such trids are called Bernoulli trials). Then X the total number of

successes in n trials, has binomia distribution with parameters n and p. Note that when n=1,
Binomial(n, p) reducesto Bernoulli(p) .
If X ~Bin(n,p) thatis, X isdistributed as Binomial(n, p) , thenfor k=0,1,2,...,n,

P(X =k) {E] p(1- p = (E] P ()"

where q=1-p.

Example 1.3.5 Take a coin whose probability of headsis % andtossit 10times. If X isthe number of

headsin 10 tosses then X isdistributed as Bin(lo’%j )

Example 1.3.6 A coin has % probability of heads. If this coin istossed 20 times, find the probability that
you get

1. No heads

2. Exactly two heads

3. At least one head

4. Lessthan or equal to 18 heads

5. Between 3 and 5 heads, both inclusive.



Solution:

Let X bethe number of heads obtained. Then X isarandom variable distributed as Bin(ZO,%j.

1LP(X=0)= (soj G)O Gjm = 0.003171

2.P(X=2)= GOJ (%)2 Gjlg — 0.06695

3.P(X>1)=1-P(X =0)=0.996829

4.P(X <18)=1-[P(X=19+P(X= 20]=1- ngj Gj G) + cgj Gj G)} _1-5548x10™
o[RS -

Example 1.3.7 Suppose a box has 6 balls where two are white and four are black. We choose 10 balls
from it with replacement. Let X be the number of white balls. The fact that the sampling is done with

replacement makes this experiment conformable to the binomial model. Thus X ~ Bin(loéj.

If X ~Bin(n,p),then
1. E(X)=np
2. V(x) =np(1-p)

If you toss acoin 100 times, and if the probability of headsis 0.4, on average you can expect 40 heads.
Similarly, if the number of tossesis n and the probability of headsis p, you expect np heads, so the

expectation formula makes sense. Y ou may also think of Binomial(n,p)asasum of n independent
Bernoulli(p) random variables. Therefore the expectation and variance of binomial are n timesthe
expectation and variance of Bernoulli.

Example 1.3.8 Let X bethe number of sixesthat came up when adieisrolled 30 times. Here X has

binomial distribution with parameters n=30 and p:%. Hence EUO:%%EZS and V(X) =

{332

1.3.4 Hypergeometric

If, in an example similar to the above, the sampling were done without replacement, one can easily see
that the resulting random variable will not be binomial. Let us consider a case where 2 balls are chosen
from the six balls. Asthere are only two white balls, the number of white ballscan only be 0, 1, or 2. The
probability that it is 1, for instance, is given by



[Pyl
HEHE,

b
2 H

Now let us consider the general situation. Assume there are N balls, of which d are white and the
rest black. We choose n balls from these without replacement and let X be the number of white ballsin
the sample. Note that both d and n are integers between 0 and N. This X is then distributed as
hypergeometric(N,d,n) .

In this case the probability that there are exactly k white ballsis calculated as follows:

[HW -0
-k B
VO
B

For what values of k isthisvalue non-zero? The necessary conditionsare 0<k<d and 0sn—k<N-—d.
Thisimpliesthat k must be between max(0,n+d -N) and min(n,d)-

P(X=k)=

Example 1.3.9 A box has 25 bolts, of which 10 are defective. A sample of size 5 is chosen without
replacement and X isthe number of defective boltsin the sample. Find the distribution of X .
Here X ishypergeometric with N =25, d =10, and n=5. Thus

[10C5 O
B B -«
(250
& 5

P(X=k)=

for k=0, 1,2, 3,4and5. In particular,

C10CTH 50
= Hs B

5 B

For problems where a sample of size n is chosen from a population of N objects of which d areof a
special type and X is the number of objects in the sample that are of that specia type, the rule is the
following: If the sampling is without replacement what we have is hypergeometric(N,d,n); if the sampling

iswith replacement, thenitis Bin[n,ﬂj.
n
If X OHypergeometric(N,d,n), then
Od O

Od M dON-nC

# V0GB E



Similar to binomial, the expectationis np where p =% isthe proportion of special items. The formulafor

N-n

the varianceis npq¢ where . = is called the finite population correction. If N is very large compared

to n,¢ isvery closeto 1, and can be ignored.

Example 1.3.10 A box contains 7 white balls, 3 black balls, and 2 red balls. A sample of 4 ballsis drawn
from the box without replacement. Let X represent the number of white ballsin the sample. Here X has

hypergeometric distribution with parameters N =12, d =7, and n=4. Hence E(X) = 4(1ZJ:Z and

3
5)8) 77
V(X)=4 ===
12)\11) 99
1.35 Geometric
Suppose we perform Bernoulli trials until the first successis obtained. Let X be the number of failures.

X then issaid to have geometric distribution.

Note that the sample space is given by {S,FS,FFS,FFFS,FFFFS,..}, where S indicates success and

F indicates failure. Note that the sample spaceisinfinitein thiscase. Thus X takesvaluesO, 1, 2, 3, ..
. with probahilities given by

P(s)=p
P(Fs)=p(1-p)=pq
P(FFS)=p(1-p) =pq’

= P(FF..FS)=pq" k=01,23,.

)
>
1
[E
I

Thus we have aformulato compute the probabilities for geometric distribution.

Example 1.3.11 Roll adie until asix is obtained. Find the probability that the first six occurs
1. at thefourthtrial.
2. at or beforethethird trial.
3. after thefourth trial.

Solution: Let X bethe number of failures.

mOsD 125
L PX=3)=pq “EeEEBE 1296
11 1D5D2 91

2. P(X<2)=P(X=0)+P(X=1)+P(X=2)=_+ B+ ="

00125 91 U 625

3. P(X24)=1-P(X<3)=1- %1296 216%':1296

10



Note: There is a faster way of computing (3) and hence (2). You will see how in the next
result.

Properties of Geometric Distribution: Let X have Geometric(p) distribution. Then for nonnegative
integer k,

1. P(X 2k)=4q"
2. P(X <k)=1-¢"
3. P(X >k)=q""

4. P(X <k)=1-¢""
If X ~Geometric(p), then

1 E(x)=L

2.v(x)=L

2

Unsurprisingly, the average waiting time, as seen in the expression for expectation, increases as the
probability p of occurrence decreases.

Example 1.3.12 An experiment whose success probability is 0.25 is repeated until a successis obtained.
Let X represent the number of failuresand Y represent the number of trials. Find the mean and variance
for Xand Y.

a_75

Here X has geometric distribution with p=.25 and Y =X+1. So E(X)=— Je =3 and
p .
E(Y)=3+1=4. V(X):i2 :%25 =12. Itisone of the properties of variance that adding a constant
1% '

does not change the variance. Thus V(Y)=V(X+1)=V(X)=12.

11



1.3.6 Negative Binomid

Suppose we perform Bernoulli trials until r successes are obtained. Let X be the number of failures.
Then X is said to have negative binomial distribution with parameters r and p, where p is the

probahility of success for the Bernoulli trias.

Geometric distribution is a special case of negative binomia distribution; negative binomial with
r =1 is geometric.

The probability distribution of X is computed as follows. For X to be equal to k, S should be the
last link inachainof S and F of length k+r such that exactly r -1 of thefirst k+r—-1is S. This

k+r-1LC

B-1 E

way we make sure that before the r' success there are k failures. As there are ways of

selecting such chains and each has probability p" (1-p)", we get

jp’(l—p)"

k+r-1

P(X:k):(

r —

for k=0,1,2....
If X has negative binomial distribution with parameters r and p and we need to compute the
probability that the total number of trialsis n, then the formulais given by

[

Example 1.3.13 A coin has probability . of heads. It istossed until 5 heads are obtained. Find the
3

probability that exactly 8 tosses are required.

Solution: Let X isthe number of tails. Then X has negative binomial distribution with parameters

2 L .
r=5 and ng. Exactly 8 tossesarerequired if and only if X =3.

P(X—3)—(3+5_1j(3)5(1)3—1120
7 s5-1 3)\3) 6561

12



In general, for n=5,6,7..., the probability that the number of tossesisnis given by
N SIG)
4 3 3
If X ~Negative Binomial(r,p), then

1. E(x)=4
p

2

2. v(x)="4
p

Example 1.3.14 A dieisrolled until 3 sixes are obtained. Let X represent the number of non-sixesand Y
represent the number of rolls. Find the mean and variancefor X and Y.

Here X has negative binomial distribution with r =3 and p:l ,andY is X+3.S0
6

i o)
E(X)=%=T6=15 and E(Y)=15+3=18. V(X) = =~/ _ g0,

5 " (5

V(Y) =V(X +3) =V(X) = 90.

1.3.7 Poisson

Poisson distribution is used when we count the number of occurrences of an event in a specified time
interval. Some examples are the number of traffic accidents on a highway per month, the number of
phone calls that go through a telephone switchboard in an hour and the number of customers arriving at a
bank in a day. The probability mass function of a Poisson random variable X with parameter 1 is given
by
e'l”
P(X =k) = o
for k=0,1,2,3,.... Herethe parameter | indicates the average number of occurrences of the event.

Example 1.3.15 Assume that X , the number of callsthat go through a telephone switchboard in an hour,
follows Poisson distribution with parameter | =5. Find

1. P(X<)
2. the probability that at |east one call comes through between 10:00 and 10:30.
Solution:
-5.0 5.1
1 P(X<1) = P(X=0)+P(X =1) = © o|5 + 2 115 _6e >,

2. If Y isthe number of calsin the half-hour then Y isdistributed as Poisson(2.5). P(Y 21)=

13



1-P(Y= D= te”
If X ~ Poisson(l), then
1. E(X)=1

2. V(X)=1

Example 1.3.16 Assume that the number of typing errorsin a page of abook is distributed as Poisson(9) .

1. Find the mean and standard deviation of the number of errorsin arandomly chosen page of the book.

2. Find the mean and standard deviation of the total number of errorsin four randomly chosen pages of the
book.
If X denotesthe number of errorsin one randomly chosen page, E(X) =V (X) =9 and the standard deviation of

X is3. If Y denotesthe number of errorsin five randomly chosen pages, E(X)=V (X)=9(4)=36 and the
standard deviation of Y is6.

1.4 Continuous Random Variables

As explained previously, arandom variable is said to be continuousif F, (x) = P(X < X) isacontinuous function of
X.

Note: All continuous random variables take infinitely many values. Also, for a continuous random variable X,
P(X: x)= Ofor all x, and consequently, P(a< X <b)=P(a< X <b)=P(a< X <b)=P(a< X <h).

Definition 1.4.1 A function f issaid to be the probability density function (pdf) (or just the density function)
of a continuous random variable X if P(X £X) = _[; f (t)dt

Proposition 1.4.2 If f isthe probability density function of a continuous random variable X, then

1. f(x)=0 foral x

©

2 If(x)dx=1

3. if(x)dx:P(aSXSb)

a

1.5 Expectation and Variance of Continuous Random Variables
Definition 1.5.1 let X be a continuous random variable with density function f . Then the expectation

(or the expected value) of X isgiven by

am=Tﬁmm

V(X) = E(X*)-(E(X))* = T x*f (x)ax— (E(X))*

D(X) =WV (X)

14



Example 1.5.2 Let X bearandom variable with density function f givenby f (x)=3x2 if 0< x < land zero
otherwise. Find E(X)and E(X?).

E(X) = T xf (x)dx

1
= j 3x3dx

0

Il
1
w
NP
N
IS
o [

m
—_—
X
N
SN—
I
§—8 Nlw

3x*dx

Il
ot—r

Il
w
o
o
| I
o [

ol w

1.6 Important Continuous Distributions

The following are some of the commonly occurring continuous distributions.
1. Continuous Uniform
2. Exponential
3. Gamma
4. Beta
5. Normal
6. Weibull
7.t
8. Chi-square

9. F

1.6.1 Continuous Uniform

A random variable X has uniform(a,b) distribution if its pdf is given by



for a< x<b. That the above function integratesto 1 is easy to verify by asimpleintegration, or by the fact that the
area of arectangle with length b—a and height bi isl.
-a

The following are examples of uniform distribution:

Uniform(0,1) Uniform(~2,2)
et 05k
04
15k
o3
1.0
02}
).5 r
0lf
L A i L i L L i i 1 i L 1 i il L L 1
0.2 04 0.6 0.8 1.0 =2 -1 1 2

Example 1.6.1 Let X bearandom real number chosen from the interval (3, 5). Find the probability that X isless
than or equal 4.5.

45
Solution: The X has uniform(3,5) distribution. P(X <4.5) = j%dx:%:O.?S
3

Proposition 1.6.2 Let X be arandom variable with uniform(a,b) distribution. Then

a+b
B (b—a)?
2. V(X) = o

2
Example 1.6.3 Let X bethe random variable in Example 1.6.1. Then E(X) =3;25 and V(X) :%:%

1.6.2 Exponential
A random variable X has exponential (1) distribution if its pdf is given by

f()=le"

for x>0. Exponential distribution is the simplest distribution that can be used to model survival time waiting time
for occurrences of events. Here, 1 iscalled the rate parameter, measuring the rate at which events occur.

Exponential(.8) Exponential(2)
08
j\.
\ \
- I.
0.6F \ L5F\
L\
04k \‘\_ 10F- \
\
0.2 0
L o —— n L B
2 4 6 [ 1 2 3 4

Example 1.6.4 Thelifetimein years of alight bulb is represented by arandom variable X with exponential(.5)
distribution. Find the probability that the bulb will last for less than 18 months.

16



1.5
P(X<15) = j Se 5 dx
0

I
=[],
=1-e7
=0.5276
Proposition 1.6.5 Let X bearandom variable with exponential(1) distribution. Then

1. E(X):I1

2 V(X)=I—12

Note that the expression for the expectation tells us that the average waiting time is inversely related to the rate of
occurrence of the event, which makes intuitive sense. If on the average, 10 events occur per unit time, the average

L A .
waiting time or the next occurrenceis E units of time.

The exponential distribution has the memoryless property: if at a particular time point, we know that no
event has occurred, the waiting time for the next event is unchanged. Mathematically
P(X>s+t| X >s)=P(X>t).Inother words, if we aretold that until time s no event has occurred, the

probability that we need to wait at least t more units of time is exactly equal to the probability that we need to wait
atleast t unitsinthefirst place.

Example1.6.6 Let X betherandom variable in Example 1.6.4. Then E(X):%:Z and V(x):%:m

1.6.3 Gamma

The Gamma Function, represented by I'(X) , is an extension of the factorial function. If a€{1,2,...n} then
I'(@)=(a—-21!. A random variable X has gamma(a,l) distribution if its pdf is given by
F(0) = el
I'@)
for x> 0.1 istherate parameter, and a is called the shape parameter.

Gamma(2.2) Gamma($,.5)

0ol

Example 1.6.7 Thetime in years atransplanted heart lastsis given by a gamma(a = 2,1 =.5) random variable X .
Find the probability that the heart will last for more than 3 years.

17



The density function of X isgiven by

52
f(X)=——xe ™ ==xe>
2 4
for x>0.
P(X >3) = j Lyesdx
34

= %[—2){9"5" ]: + %IZe'SXdX

0

=15e"°-[e™]

3
— 1 5e7145 + e7145

=25e"?
=0.5578

Proposition 1.6.8 Let X bearandom variable with gamma(a, 1) distribution. Then

Example1.6.9 Let X betherandom variablein Example 1.6.7. Then E(X):ES:4 and V(X) :é:8

Note that some books use the notations exponential(q) and gamma(a,q) in place of exponential(l)and
gamma(a, 1) where g =Tl. Then the expectation and variance of exponentia will change to q and q*
respectively, and the expectation and variance of gamma will changeto aq and aq’respectively. The parameter

I isreferred to as the rate parameter whereas the parameter g, in the case of exponential, is referred to as the
mean parameter.

Example 1.6.10 Let X be exponentially distributed with mean 0.2. Find the probability that X islessthan 0.3.

Herethemeanis0.2,s0 q =0.2. I , therate, is L5 Now P(X <.3) iseasily seentobe 1-e™*° .
q

164 Beta

A random variable X has beta(a,b) distribution if its pdf is given by

_T@a+b) ..

f(x)_l“(a)l“(b)xa @A-x)°"

for 0<x<1.

The following are examples of beta distribution:

18



Beta(5,2)

Beta(2.8)
1.5
35k - —~
/
3 f '-\\ : \_\
30F \ v \
rlllf -.\.. 2.0 4 \
'II .\' 4 II.
J b / 1
\ 15 / !
20F | \ '\I
! \ F \
| o \
13 -JI 1.0 ;"' \
| N \
| \ 1
LoH \
i 0.5 |
0.5p In
. |
e o~ \
1 | e 1 L } =t L L L A
0.2 0.4 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0
Beta(2.2)
14F e s
12
10} :
0.8
/ \
/ \
06
f AY
o4k / \
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Example 1.6.11 The proportion of car owners who service their car by the due dateis given by a beta(a = 2,b =3)

random variable X . Find the probability that this proportion is less than or equal to 0.7.
The density function of X isgiven by

I C) RN P
f(X)_F(Z)F(3)X( x) =12x(1-x)
for 0<x<1.

N
P(X <0.7) = j 12x(1— X)%dx
0
N
= 12J X(1—2x+ x?)dx
0

N
=12j X—2X%% + X3dx
0

2 3 4

2 3 4]

2 3 4
D) LA

2 3 4
=0.9163

Proposition 1.6.12 Let X be arandom variable with beta(a,b) distribution. Then
a
a+b
ab
(a+b)2(a+b+1)

1. E(X)=

2.V(X) =

19



Example 1.6.13 Let X bethe random variable in Example 1.6.11. Find the mean and standard deviation of X .

2 6 1 1
E(X)=¢ andV(X)—@—E.SO DX) =5 -
1.6.5 Waeibull

A random variable X has Weibull(a,l) distribution if its pdf is given by
f(x)=al (1x)* ™

for x> 0. Notethat when a =1, Weibull(a, 1) reducesto exponential(l).

Weibull distribution is often used to model the size of reinsurance claims. It is aso used in survival analysis,
reliability, failure analysis, in industrial engineering to represent manufacturing and delivery times, in weather
forecasting to describe wind speed distributions, and the cumulative development of asbestosis losses, among many
others.

Proposition 1.6.14 Let X bearandom variable with Weibull (a,b) distribution. Then

1 E(X):%F(Halj

Z.V(X):Lz[r@zj_[r(uij} }
| a a
1.6.6 Normal

A random variable X has normal distribution or Gaussian distribution with parameters m and s if itspdf is
given by

Normal(0,1) Normal(-2.2)

0,44

Proposition 1.6.15 Let X be anormal random variable with parameters m and s . Then E(X) = and

V(X)=s?

Normal distribution is by far the most important distribution. It is widely used in many practical applications.
We get avery specia case of normal called standard normal when the mean u is zero and the standard deviation
s is1. A standard normal random variableis usually denoted by Z and has density function given by

L e%X2 .

N

For computation of probabilities for normal distribution, we have to use tables. Tables are available only for
standard normal, but we can convert non-standard normal to standard normal by a procedure called standardization,
which is, subtracting the mean and dividing by the standard deviation.
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Example 1.6.16 Let Z ~N(0,1) . Find
1. P(Z<12)

2. P5<Z72<23)
3. P(2=2)
4. a suchthat P(Z <a)=.9251

5. b suchthat P(Z > b) =.1230

Solution:
1. P(Z2<1.2)=.8849

2. P(1.5<Z <2.3)=.9893-.9332 =.0561

3. P(Z2>22)=1-P(2<2)=1-.9772=.0228

4. From the body of the table, we seethata=1.44.
5.P(Z >b)=.1230= P(Z <b)=.8770. So b=1.16.

Example1.6.17 Let X ~N(2.3,1.5). Find
1. P(X<19

2. P(3.8<X <53
3. P(X= 2
4. a suchthat P(X<a)= .9251

5. b suchthat P(X>b)=.123C

Solution:
1.2-2.3
1. P(X<13=P|Z< =P(Z<- JF=P(Z> .93 4 7673 232
> P(38<X<53)= P(3'81_52'3 <Z 35'31_52'3j =P(4Z< )= 9772 8413 .135
3. P(X> 9= P(Z > 2_2'3} P(Z>- P=P(Z< = 579
4 P(X<a)= 9251 P(Z ga—2.3j: 925527 2% qa4a- 44
5 P(X>b)=.1230= P(X<b)= .8770= P(Z sb_2'3j: .877e>b1—§'3 =  136b= 4

Note: The remaining continuous distributions, t, ¢®, and F areimportant for statistical estimation and

inference, but it is not necessary for usto learn their density functions, expected values etc. In the subsequent
chapters we will learn how these distributions are used to construct confidence intervals and perform tests of
statistical hypotheses.

1.7 Jointly Distributed Random Variables

Let X and Y betwo random variables defined on the same sample space (that is, both are numerical outcomes of
the same random experiment). Knowing the probability distributions of X and Y separately is not sufficient to
know their behaviour completely. For instance, from knowing P(X< )} and P(Y< 3, we will not normally be
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able to compute P(X< 1Y< 2. We need to know their joint distribution. Study of joint distributions can be
complicated, particularly if it involves many random variables that that are interdependent.

On the other hand, if the random variables are known to behave independent of each other, then the joint
probabilities can be calculated from the respective individual probabilities by multiplying them together. In the
previous example, P(X< 1LY< P=P(X< )P(Y< ) if X and Y are independent. If you decide that it is
reasonable to assume that the numbers of car insurance claims in California(X) and Pennsylvania(Y) are
independent of each other, then the probability that there are at least 200 claimsin Californiaand at least 100 claims
in Pennsylvania in a given year can be calculated by multiplying the two individual probabilities. In other words,
P(X> 200Y> 10)=P(X> 20QP(Y> 10).

Definition 1.7.1 The Covariance between X and Y isgiven by
Cov(X,Y)=E(XY)-E(X)E(Y)
The Correlation between X and Y isgiven by
Cov(X,Y)
SD(X)SD(Y)

1.8 Properties of Covariance and Correlation

Corr(X,Y) =

Theorem 1.8.1

: COV(Zinllaixi’Z?:lbiYi):Zzlz?:laibicov(xi’Yi)
'V(Z;ilaixi)ZZLaiZV(Xi)+Zi<jaiaicov(xi’Yi)
. Cov(X,X)=V(X)

. Cov(aX +b,cY +d)=acCov(X,Y)

.V (aX+bY)=aV(X)+b*V(Y)+ AbCov(X Y)
V(X +Y) =V (X)+V(Y)+2Cov(X,Y)

=

L DX +Y) = /(SD(X))? +(SD(Y ))? + Tov(X Y)

. —XKCorr(X,Y)< 1

. Corr(aX +b,cY +d) =Corr(X,Y) if ac>0, =-Corr(X,Y) if ac<0, =0 if ac=0.
10. If X and Y areindependent,

(8 Cov(X,Y)=0

(b) Corr(X,Y)=0

(©) V(X+Y)=V(X)+V(Y)

© 00N O 0B~ WwDN

(d) SD(X +Y) =/(SD(X ))* +(SD(Y ))*

Note: The converses of (10a) and (10b) above are false. Even though independence implies that covariance and
correlation are zero, two dependent random variables can have zero covariance, and hence zero correlation.

Example1.8.2Let X and Y beindependent with SD(X) =4, SD(Y)=5.Find

1 V(X+Y)
2. Cov(X+Y,X-Y)

3. Corr(X+Y,X-Y)
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Solution:
L V(X+Y)=V(X)+V(Y)=16+25=41, 50 D(X +Y) =41
2. Cov(X +Y,X-Y)=Cov(X,X)+Cov(Y,X)-Cov(X,Y)-Cov(Y,Y)=V(X)-V(Y)=-9
3.V(X—Y):V(X)+V(Y):16+25:41,So
Cov(X +Y,X-Y) :—_9
D(X+Y)D(X-Y) 41

Corr(X+Y,X-Y)=

Example 1.8.3 Let X and Y betwo random variableswith V(X)=4, V(Y)=9, Cov(X,Y)=-2. Find

1. Cov(2X +3,-4Y +2)
2. Cov(2X -1,4-X)

3. V(2X -Y)

4. Corr(X,Y)

5. Corr(3X +1,-2Y +2)

Solution:
1. Cov(2X +3,-4Y +2) = 2(~4)Cov(X,Y) = 2(-4)(-2) = 16
2. Cov(2X -1,4—X) =2(-1)Cov(X,X)=(-2V(X)=-8

3. V(2X -Y) =4V (X)+V(Y)-4Cov(X,Y) =16+9+8=33

4. Corr(X,Y) = Cov(X,Y) _ -2 _-1
' T D)D(Y) (2B 3

5.Corr (3X +1,-2Y +2) = (-1)%:%

1.9 Centra Limit Theorem

Theorem 1.9.1 Let X, X,,..., X, beindependent identically distributed random variables with mean m

and standard devidtion s . Let X = 0t %2t X0 e
n
- —~\ S
E(Xn):m and S:)(Xn):—
Jn

Theorem 1.9.2 Central Limit Theorem
Let X;,X,,..., X, beindependent identically distributed random variables with mean m and standard deviation s .

Let X, =t Kot Xy e
n
M_)d N(0,1)
S
Jn

where —¢ indicates distributional convergence.
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Example 1.9.3 The content of 500ml bottles of Coca-Cola has normal distribution mean 503ml and stan-dard
deviation 5ml.

1. Find the probability that a randomly chosen bottle has less than 500ml colainit.
2. Find the praobability that a randomly chosen 6-pack of bottles has an average of less than 500ml.

Solution:
1. P(X <500) = P(Z <&5503j - P(Z < -0.6) = 0.2743.
2. P(X <500)=P| Z < w - P(Z < -1.47) = 0.0708.
J6

Example 1.9.4 The waiting time for a particular service for a person is exponentially distributed with mean 5
minutes. Find the probability that atotal service time for hundred people is no more than 8 hours.

Solution: For exponentia distribution the mean is the same as the standard deviation, so s =5. From the
CLT we know that the sample mean is approximately normal. Let T bethetotal servicetimein minutes.

P(T < 480) = P(Y< 4.8) ~P|Z <$ = P(Z < -0.4) = 0.3446 .

+/100
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Chapter 2

Confidence Intervals and Hypothesis
Testing

2.1 Confidence Intervals

As mentioned before, if we specify a range or an interval around the point estimator within which the parameter
being estimated is expected to lie, then that is called an interval estimator. Usually it will be aninterval such that the
point estimator isin the center, but not always. First we decide on what is called a confidence coefficient a , often
chosen to be 0.05. Then the interval around the point estimator is so chosen that the probability that this random
interval actually contains the unknown parameter is 1-a . Such an interval is called a 100(1-a)% confidence
interval. If a is0.05, then we get a 95% confidence interval. In general, a 100(1-a)% confidence interval for a
parameter q based on asample X isarandom interval of the form (L(X), R(X)) such that
Pla e (L(X),R(X))] =1-a
For themean m of anormal population whose standard deviationisknownto be s , a 100(1-a)%
confidence interval isgiven by
S

B

Xtz
2

8

where z is the value found in the standard normal table (al
exceedingitis (thatis, P(Z>z)=¢).

When s isunknown, asisthe casein most situations, we need to useits estimator s initsplace. Inthis case,
you substitute sin placeof s and t inplaceof z to get

known as the Z -table) so that the probability of Z

S
n—l% \/ﬁ

where t L is from the t -distribution with n—1 degrees of freedom. We no longer use the values from the Z -
Hr)

tablein this case unless n isvery large. If the sample islarge, then the requirement that the underlying populationis
normal is not necessary. All we need is finiteness of the variance.

Xtt

The following table summarizes the methods for different cases.
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Table 2.1: Confidence Intervals

Distribution Pop. St. Deviation Sample Size Conf. Interva
Normal Known Small/Large . s
Xtz —
3n
Normal Unknown Small/Large s
Xtt | —=
Non-normal Known Large _ s
Xtz —
zn
Non-normal Unknown Large 4
X+t —=
Non-normal Small No formula

Example2.1.1 A sample of size 100 taken from a population with s = 12 yielded a sample mean of
X = 31.6. Construct a 99% confidence interval for the population mean.

Solution: Here the population standard deviation is known, so we use the z confidence interval. As

a =0.01, weusetheformula X+ z S

12

31.6+ 2.576(Ej =31.6+3.091= (28.509,34.69]) .

. Substituting, we get

Example 2.1.2 A sample of size 16 was taken from a normal population with s =3. The sample mean and the
sample standard deviation were X =17.6 and s=3.7. Construct a 95% confidence interval for the population mean.

Solution: Here the population standard deviation is known, so we use the z confidence interval. As a =0.05, we

. S
use the formula X+ z

025 ﬁ

. Substituting, we get

17.6i1.96(§1j =17.6+1.47 = (16.13,19.07)

Note that here we ignored the value of s because when we know the value of s , we don’t need s.
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Example 2.1.3 A sample of size 36 was taken from a population and the sample mean and the sample variance
obtained were X =19.9 and s” = 32.8329. Construct a 90% confidence interval for the population mean.

Solution: Here the population standard deviation is unknown, so we usethe t confidence interval. As

S
35,.05 E '

a =0.1 andthe d.f.=35, weusetheformula X+t

Substituting, we get:

19.9i1.690[5'—g:3J = (18.286,21.514) .

2.2 Testing Statistical Hypotheses

221 TheNull and Alternative Hypotheses

A satistical hypothesis is an assertion or conjecture about one or more population parameters or the nature of the
population. The idea is first to formulate a hypothesis, which we shall call null hypothesis, then to check if thereis
enough statistical evidence to refute it. The null hypothesisis usually denoted by H, .

The hypothesis which we use as an alternative to null hypothesis, which we accept if null hypothesisis rejected,
is called the alter native hypothesis. The alternative hypothesisis usually denoted by H, or H, or H,. It coversall

or part of the situations not covered by the null hypothesis. For example, we may have
Ho: H=Ho VS Hit <y

or
Ho: H=Hy VS Hit B>,

or
Ho: H# Hy VS Hit =1,

Thefirst two alternatives are called one-sided alternatives and the third alternative is called a two-sided alternative.

Whether we reject a null hypothesis or not depends on the value of the statistic we use for thetest. Thisiscalled
atest statistic. If the test statistic fallsin a specific region, wereject H, and accept it otherwise. Thisregionis called
the critical region or the rejection region. Its complement is called the acceptance region.

It is possible that we make an error in deciding whether the null hypothesisis true or not. If H, istrue and you
decided that it is not, you made what is known as the type | error. On the other hand, if you made the wrong
decisonthat H, istrue when it realy is not, then you are making type Il error. Obviously when you try to reduce
one of them, the other will increase. The type | error is deemed more serious of the two. Because of this, the
statistician tries to keep the probability of making that type of error no more than a specified value a , known also
as the level of significance, and make decision that would minimize the type Il error. Most of the times a is taken
to be 0.05. The probability of type Il error is usually denoted by b , and 1-b is called the power. Naturaly, the
higher the power of the test is, the better.

Table 2.2: Hypothesis Testing

Accept H, Reject H,

H, istrue Correct(l-a) Typel error(a)

H, isfase Typell error(b) Correct(1-b)
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The alternative hypotheses are usually composite hypotheses (hypotheses that cover more than possibil-ities) as
opposed to the null hypotheses which are usually simple hypotheses (covering only one possibility). So when we
talk about the probability of type Il error, it will strongly depend on the value of the parameter. Thus b , and hence
the power, are functions of the parameter. The latter is called the power function.

Suppose we want to test a hypothesis with a two-sided alternative about the population mean. Formally, we are
testing

Hy: H=m, vs. H,: m=m,

where we regject the null hypothesis if the value of the test statistic istoo large or too small. If s isknown, then the
test statisticis

7 X—m,
S
Jn
and we regject the null hypothesis H if Z >z, or Z <-z,_ (inother words, wereject H, if |Z|2 z). If
2 2 2

-z, <Z< Z, , we do not reject the null hypothesis.
2

2
In case of aone-sided dternativeof H : pu>p,, wereect H, if Z>z and incaseof aone-sided

aternativeof H,: p<p,,wergect if Z<-z . These cut-off values beyond which wereject the null hypothesis

are called critical values.
If s isunknown, use s inthe placeof s and t instead of z. The test statistic used in this case is thus

a

X—m -
t= S % . The critical value would then be t,

Jn
sided alternative. To use either the Z -procedure or the t -procedure for small samples, the underlying population
distribution has to be normal.

or t  depending on whether we have a one-sided or a two-
n-1,—
2

Example 2.2.1 The manufacturer of a certain brand of cigarettes claim that the average nicotine content does not
exceed 2.5 milligrams. Suppose that when a sample of size 100 was taken, it was found that the sample mean and
the sample standard deviation are 2.55 and 0.5 respectively. Decide whether there is enough statistical evidence to
reject the manufacturer’s claim based on a 0.05 level test.

The manufacturer’s claimisto beregjected only if u isgreater than 2.5 milligrams and accepted if it isless than
or equal to 2.5 milligrams. As we will always specify the null hypothesis as a single number, this is how we will
formulate the null and alternative hypotheses:

Hy: H=25vs H;: u>25

2.55-25
05
4100

than 1.66, we do not reject the null hypothesis.

The t -statistic is equal to =1 which isto be compared to ty o5 * tip s =1.66. Asthe t valueissmaller

Note: The right terminology is to say that we not reject H, rather than accept H,. Failing to reject the null

hypothesis does not mean that we have concluded it to be true. It is just that we do not have sufficient evidence to
reject it.
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Table 2.3: Rejection Regionsfor Z - and t -Tests

s Distribution | Sample Size | Alternative | Rejection Region
m>m, Zz2z
Normal Small/large m<m, Z< -z,
Known m # My |Z| 2%
m>m, Zz2z
Non-normal Large m<m, Z< -z,
m#m, 2| > z,
Non-normal Small No formula
m>m, t>t .
Normal Small/large m<m, N
Unknown m # m, ]2t 1a
m>m, t>t .,
Non-normal Large m<m, t<t .
m # m, t|=t, ..
Non-normal Small No formula

Example 2.2.2 An economist wants to test whether the average annual household income of a small town is below
$25000. Assume that the population is normal with a known population standard deviation 2000. A sample of size
25 was taken and the mean of this sample was 24000. Formulate the hypotheses and test the null hypothesis at 5%
level of significance.

H,: 1=25000 vs. H,: p< 25000
24000- 25000
Z= 00 - -25

V25

As the calculated value of z is smaller than —z,, = —1.645, we reject the null hypothesis in favor of the alternative
that p < 25000.

Example 2.2.3 A sample of size 20 was taken from a normal population. The sample mean and sample variance are
12.1 and 12.25 respectively. Test the null hypothesis p=10 against a two-sided aternative. Use 1% level of
significance.

Hy: =10 vs. H;: p=10

t= 12.1 =2.683

V12.25

20
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Asthe caculated value of t issmaller than t, s = 2.861, we do not reject the null hypothesis.

2.2.2 P-Values

There is another way of looking at the hypothesis-testing problem — through so-called p-values. We now discuss
how thisis done.

Suppose we suspect that a certain cereal company’s 5009 packets of cereal are being under filled. We cannot
accuse the company unless we feel quite confident that we are correct in our claim. The alternative hypothesis
would be H,: p <500 where i isthe population mean of the net weight of the company’s 500g cereal packets. All
calculations are carried out assuming that the null hypothesisis true, so the null hypothesisis alwaysin the form‘=".
Thus the hypotheses are

H,: p=500 vs. H,;: p<500.

To test the hypothesis, we take a ssimple random sample and cal cul ate the sample mean. We now want to know
whether the sample value provides enough evidence to suggest 1 <500. Evenif p isindeed 500, we expect some
random fluctuations about 500, but how far from 500 does the sample mean need to be before we can say it is
unlikely that the sample came from a population with mean 5007

X—m,

Jn
the direction of the alternative hypothesis. If this probability, called p-value, is small, then we say that we have
enough evidence to reject the null hypothesis (ie. thereis only asmall chance of thisevent if H, is correct, so we
are willing to back the aternative hypothesis).
In the above problem of cereal boxes, suppose a sample size of 30 gives a sample mean of 498g. Given
that the population standard deviation is 5, is there enough evidence to suggest that the packages are underweight?
Here,

Wefirst calculate the test statistic Z = and then the probability of obtaining such an extreme valuein

H,: p=500 vs H,: p<500.

We calculate P(X < 498) assuming that H, istrue, that is, N(soo,ij.

V30
P(X <498)=P|Z s@ = P(Z <-2.19) = 0.0143
/30

Soif m isindeed 500, the probability of obtaining a sample mean less than 498 is 0.0143. Isthis a small enough

probability to say that we think the null hypothesisis wrong? (It is a value that would occur 1.43% of the time by
chance alone when in fact H, is true). If the p-value is smaller than the significance level, we regject the null

hypothesis. If we are to use 5% level of significance, we will reject the null hypothesis that p =500 and conclude
that the population mean is less than 500. We will not reject H,, if we are using 1% significance level.

Note: If the alternative hypothesis is two-sided, then we need to add the two tail probabilities (or double the right-tail
probability) to get the p-value.

Statistical significance:
If the p-valueisassmall or smaller than a , we say the data are statistically significant at level a and we

reject the null hypothesis.

The method of testing hypotheses using p-valuesis equivalent to the previous method we learned using critical
values.
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There isarelation between confidence interval s and hypothesis tests with two-sided alternatives. The hypothesis
would be rejected at significancelevel a if and only if the hypothesized value |, falls outside the

100(1-a)% confidence interval. If the test is one-sided, we cannot make a decision based on the confidence
Intervals.

Example 2.2.4 A manufacturer of small appliances employs a market research firm to estimate retail sales of its
products by gathering information from a sample of retail stores. This month an SRS (simple random sample) of 75
stores in the Midwest sales region finds that these stores sold an average of 24 of the manufacturer’s hand mixers,
with standard deviation 11.

(a) Give a95% confidence interval for the mean number of mixers sold by all storesin the region.

(b) The distribution of sales is strongly right skewed, because there are many smaller stores and a few very large
stores. Theuseof t in(a) isreasonably safe despite this violation of the normality assumption. Why?

(c) Would you reject the null hypothesis H,: p=22 against the alternative H,: p= 22 at significance level
0.05? What about at 0.01?

(d) What isthe approximate p-value for thetestin (c)?

Solution:

(@ As d.f.=n-1=74 isnot availablein the t table, take the closest available, which is 70. The confidence interval
given by

s 11
X+t | — =24+1.994——
1% J/n J75

=24+253
— (21.47,26.53)

(b) Assample size is large, the sample mean will be approximately normal even though the parent population is not.
Thusit is safe to use t -distribution.

(c) Since 22 isinside the 95% confidence interval, we will accept H, against atwo-sided alternative at 0.05 level. If
we accept at 0.05 level, we certainly will accept at 0.01 level. Another way of looking at thisisthat if 22 isin the
95% confidence interval, then it is certainly inside the bigger 99% interval. If the question is about level 0.1, then
we cannot answer it based on the fact that it is inside the 95% interval. We will then need to recalculate.

24-22

11

J75

(d) First wecalculate thetest statistict =

=1575. P(t,, >1.575) ~ P(Z > 1.575) =0.0576. Thus p-value

is 2x0.0576 = 0.1152

2.3 Selection of Sample Size

Consider the formula for the confidence interval for the population mean for the case of known population standard
deviation. Note how the margin of error changes as n increases. To obtain higher confidence from the same data
you have to accept a higher margin of error. To obtain higher confidence without increasing the margin of error we
need more observations. But sometimes we may want to select a sample size that will guarantee a desired
confidence level for afixed margin of error m. A formulafor the sasmple sizeis derived as follows:

.S z,s z,s g

a
2 2 2

m= =n= =n=
Jn m
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Here we select the confidence level and the error margin that you are willing to tolerate and find the sample size we
need. As the formula will not usually give a whole number, we need to round it to an integer. Always round up
because rounding down will give you a sample size that would not guarantee the required precision.

Example 2.3.1 Suppose we need to construct a 98% confidence interval for p with amargin of error no more than
.0001. Itisknown that s = 0.0002. The required sample size is calculated as follows:

2
zs
n=

_ [ 2.326(.0002)

2
=21.64
.0001 j

2
m
So we choose n to be 22.

In many situations, we would not know the value of the population standard deviation. In such cases, we may
use an estimated value from past experience, possibly a prior survey. If no such information is available, one can
conduct a pilot study with a smaller sample to estimate the standard deviation.

2.4 Inference for variance and standard deviation

241 Confidenceintervals

Given arandom sample of size n from anormal population, we can get a 100(1-a)% confidence interval for the

population variance s asfollows:

(n-1s* (n-1s°
CZ ! 2

n12 n11-2
2 2

Y ou need to look up the Chi-square distribution table for the critical values. Confidence intervals for the standard
deviation can be found by taking square-roots.

Example 2.4.1 A food inspector examined 12 jars of a certain brand of peanut butter and determined the
percentages of impurities. The result is given below:

23,19, 21 28, 23, 36,14, 18, 21, 32, 20,19

Construct a 90% confidence interval for the standard deviation.
Solution: From the data, we get s=0.625 . From the table, the 11 d.f. ¢ valuesfor 0.05 and 0.95 are

19.675 and 4.575. So the confidence interval for the variance is given by

11x0.625% 11x0.625%
19.675 4575

, J ~(0.2184,0.939).

Thus the confidence interval for the standard deviation is (.47, .97).

24.2 Hypothesis Testing

Testing the hypothesis H,: s?=s? (whichusthesameas H,: s =s,) isdone asfollows. First we calculate
the test statistic
o (n-1)s?
R
SO
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We reject the null hypothesisif

2 2 . 2 2
C“<C/ 114 When H,iss”<s,
2 2 . 2 2
€ 2C,,, when H,iss” >s,

2 2 2 2 . 2 2
c°<c” ,orc°z2c _a When H iss” #s,.

n-11-% n- %
Example 2.4.2 An experiment was conducted to determine the specific heat of iron and a random sample of size 9
resulted in a standard deviation of 0.0086. Assuming normality of the underlying population, test the hypothesis that
s =0.01 against the alternative hypothesisthat s < 0.01. Use the 0.05 level of significance.
Solution: H,: s =001 vs. H,: s <0.01. n=9, s=0.0086, a =0.05. We regject the null hypothesisif
, _(n-1)s*> 8(.0086)

C2<Clg=2733. c?=— oF =5.92> 2.733, so do not reject H, .
" S? :

Example 2.4.3 From past experience, it is assumed that standard deviation of measurements on sheet metal
stampingsis 0.41. A new set of 30 stampings are used to test the accuracy of this assumption, and a sample standard
deviation of 0.49 was obtained. Test the hypothesis that s = 0.41 against the aternative hypothesis that s > 0.41.
Use the 0.05 level of significance.

Solution: H,: s =041 vs. H,: s>041. n=30,s=049, a=0.05. We regect the null hypothesis if

_(n-Ds®  29(.49)°
sd 47

C?2Ch s =42557. c? =41.42 < 42,557, so do not reject H,,.

Example 2.4.4 Based on a sample of size 10 that gave s=1.5, test the hypothesis at the 0.05 level of significance
that s =1 against the alternative hypothesisthat s #1.

Solution: Hy:s =1 vs. H,:s #1.n= 1C, s=1.5, a =0.05. Wergject the null hypothesisif c?<cly, =27
_(n-Ds®  9(1.5)?
= =

12

or c?>cf s =19.023. c? =20.25. This exceeds 19.023, so we reject H,.

0
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Chapter 3

Two-Sample Inference

3.1 Confidence Intervals For Difference of Means

Suppose we have two populations from which we draw samples based on which we want to make inferences about
the underlying parameters. Specifically, we are interested in constructing confidence intervals for the difference
between their population means.

Assume that the two populations are normal, the first with mean m, and standard deviation s,, and the second
with mean m, and standard deviation s, . We draw independent samples of size n, and n, respectively from these

populations. Based on these, we construct our confidence interval for p, —p, .

3.1.1 Casel: the standard deviations are known

If s, and s, are known, then a 100(1-a)% confidenceinterval for p, —p, isgiven by

s? s?

1 2

XXtz |—+—.
2 nl r-]2

If the sample sizes are large, say both at least 30, then the assumption of normality can be dropped. The method
will usually work well for non-normal populations too when the sample sizes are large.

Example 3.1.1 Independent random samples of size 16 and 25 are taken from two normal populations with standard
deviations 4.8 and 3.5. The sample means obtained were 18.2 and 23.4. Construct a 90% confidence interval for
the difference of the population means.

Solution: Here n, =16, n,=25, X, =182, X,=234,s,=48 ands,=35. s,=48.a =01, z, =1.645.
2

Therefore the 90% C.I. isgiven by
2 2 2 2
¥ -%tz [L+iz =18.2—23.411.645,/ﬁ+£ = -5.2+2.285
s\ 16 25

3.1.2 Case?2: the standard deviations are unknown:

If the two normal populations have unknown standard deviations an approximate 100(1-a)% confidence interval
is given below:;

where the approximate degrees of freedomisgivenby m = min(n, -1, n, - 1).

Example 3.1.2 Two independent samples of size 40 and 50 from a normal population yielded sample means 13.5
and 9.3. The corresponding sample variances were 14.4 and 112.5. Find an approximate 99% confidence interval

for the difference between the means. »



135-9.3+ 1ty o /%+% = 4.2+ 2.704(1.6155) = 4.2+ 4.368

3.1.3 Case3: thestandard deviations are equal and unknown:

If the variances of two normal populations are unknown but known to be equal, then we estimate the common

variance from the individual sample variances by taking a weighted average. Thisis called the pooled estimator.
2

,_ (A DS+,

S
P n+n,-2
The 100(1-a)% confidenceinterval for p, —p, isthen given by
X —X, +t i+i
TR 2% n n

Example 3.1.3 Twelve randomly selected mature citrus trees of one variety have a mean height of 13.8 feet with a
standard deviation of 1.2 feet. Fifteen randomly selected mature citrus trees of another variety have a mean height of
12.9 feet with a standard deviation of 1.5 feet. Assuming that the samples were taken from normal populations with
equal variances, construct a 95% confidence interval for the difference between the true average heights of the two
varieties of citrus trees.

(12-1)1.2° +(15-1)1.5°
12+15-2

138-12.9+t,, ,.+/1.8936 /1—12+% — .9+ 2.060(1.376)(.3873) =.9+1.098.

So we can be 95% certain that the difference between meansis between -0.198 and 1.998 feet.

Solution: s} = =1.8936, so the 95% confidence interval for p, —p, isgiven by

3.2 Hypothesistesting for difference of means
Here we work with the same framework as in the case of confidence intervals. We want to test the hypothesis
Hy: I —H, =d against one of these alternatives:

H:p—p,<d

H,: -y, >d

Ho:op—p, =d.
The alternative hypothesis is chosen depending on the situation. In most commonly occurring situations,
d=0.

3.21 Casel: the standard deviations are known

We calculate the test statistics

nl I’]2
We regject the null hypothesisin favor of the alternative hypothesis at significance level a if
Z>z for H: y—H,<d
Zz2z for H: p—n,>d
|Z|>z, for H, @ —p, #d
2

Example 3.2.1 For the datain Example 3.1.1, test the hypothesis that the difference of meansis-7 against a two-
sided alternative at 10% level of significance.
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Solution: The null and the alternative hypothesesare H,: W, — 1, =—7 against H,: W, — W, = —7. Wergect the

null hypothesisif |Z| > 7,4 =1.645.

X-X,—-d 182-234-(-7) 1.8
B \/4.82 JECREE

16 25

Asthisfallsin the acceptance region, we do not reject the null hypothesis. We have no reason to suspect that the

differenceisnot -7.

Z= =1.296

3.2.2 Case2: the standard deviations are unknown:

If the two normal populations have unknown standard deviations, we reject the null hypothesisin favor of the
alternative hypothesis at significance level a if

t<-t, ., for H:p—p,<d

t<-t., for H:p—-p,>d

t|=t , for H:p—p, =d
S

where

o

t:K_YZ_
2

S

=4

n

and m=min(n,-1n, -1).

Example 3.2.2 Consider the situation given in Example 3.1.2. Test, at .01 level of significance, the hypothesis that
the means of these populations are same against the alternative hypothesis that the first population has alarger mean.

Solution: The null and the aternative hypothesesare H, : i, —, =0 against H, : p, —, > 0. Wergect the null
hypothesisif t >t,, ,, ~ 2.423.
fo xlz— x22 __185-93 42 _ 2599,
\/sl e 144 1125 1616
N T 40 50
Asthe computed t -valueislarger than the critical value ty, , = 2.423, we reject the null hypothesis and conclude
that the first population has a larger mean.

3.2.3 Case3: the standard deviations are equal and unknown:

As before, we calculate the test statistics
t=2 X =
+

N
neon,
We rgject the null hypothesisin favor of the alternative hypothesis at significance level a if
t<—t ., »o for H:p—p, <d

t>t

D‘H o

for H: g, —p, >d

n+n,-2a

It| >t . for Hy:p —p, =d

nl+n2—2,5

Example 3.2.3 Two independent random samples of size six each from two normal populations with equal variance
yielded sample means 77.4 and 72.2. The corresponding standard deviations were 3.3 and 2.1. At the significance
level 0.01, test whether the two population means are the same.
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Solution: The null and the aternative hypotheses are H,: p, — |, =0 against H,: p, —p, # 0. Wereject the null

hypothesisif [t| > t,, o5 = 3.169.
2 2
s, = I5><3.3 +5x2.1 2 766.
10

= %% _ 52 355

S, i+i 2.766\/1+1
n n, 6 6

Asthisisin the rejection region, we reject the null hypothesis. There is a significant difference between the means.

3.3 Confidenceintervasfor ratio of variances

Suppose we have two independent samples of size n, and n, from normal populations. Then a 100(1-a )%

2
confidence interval for the ratio of the variances S—lz isgiven by
S 2

s 1 sg
2 'R nina?
SZ Fnl—l,nz—l,ﬁ S2 Lm-L 2

2

Y ou need to look up the F -distribution table for the critical values. Confidence intervalsfor ratio of the
standard deviations can be found by taking square-roots.

Example 3.3.1 Find a 98% confidence intervals for the ratio of variances and the ratio of standard deviations for the
datain Example 3.1.3.

Solution: 98% confidence interval is given by

2 2
(1-2 _1 M ]:[%,.64><4.29J=(.166,2.746).

Py v -2 ' 1114,01
15° Fiua 1.5

Taking square-roots, we get the confidence intervals for the ratio of standard deviationsto be

(V16,2746 = (407,1.657).

3.4 Hypothesis Testing for equality of two variances
Suppose we want to test the hypothesis H, : s, =s, against a one-sided or two-sided alternative. We reject the
null hypothesis if

2F, 1. fOr Hi s, >s,,

\Y

Fointa for H,: s, <s,.

For the two-sided alternative H, : s, #s,, wereject the null hypothesis if

>F if s>5,

a
-1,n,-1,<
m-1n 2

NN RN7 S

>F if 5<s,.

Y n-Lny -1%
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Example 3.4.1 In the comparison of two kinds of paint, it was found that four 1-gallon cans of one brand cover 546
square feet on the average with a standard deviation of 31 sguare feet, while four 1-gallon cans of another brand
cover 492 square feet on the average with a standard deviation of 26 square feet. Test the hypothesis that the
variances are the same against the alternative that the variance of the first population islarger.

Solution: Here n,=n, =4, s =31, s, =26. The hypothesisis H,: s, =s, and the aternative hypothesisis

2 2 2
H,: s,>s,. Wergect H,if izz Fis0s=9.28.As %zz—ézzlAZ, do not reject the null hypothesis.
S S

Example 3.4.2 To compare two kinds of bumper guards, six of each kind were mounted on a certain make of car
and each car was run into a concrete wall at 5 miles per hour. Costs of repair are given below: Isit

Bumper Guard 1 127 168 143 | 165 | 122 139
Bumper Guard 2 154 | 135 | 132 171 153 149

reasonable to assume that the two popul ations have the same variance?

Solution: Here n, =n, =6, s =19.06, s, =14.21. We are testing the hypothesis H, : s, =s, against the

. . . s s 19.06°
dternative hypothesis H, : s, #s,.As § >s,, wergect H, if = >F, =10.As —2=m=1.8, do not
S S -

reject the null hypothesis. It is reasonable to assume that the two populations have the same variance.
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Chapter 4

Analysis of Variance
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Statistical Tables

Table 4.1: Normal Distribution

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

00| 05000| 05040 | 05080 | 05120| 05160 | 05199 | 05239 | 05279 | 0.5319 0.5359
01| 05398 | 05438 | 05478 | 05517 | 05557 | 05596 | 0.5636 | 0.5675| 0.5714 0.5753
02| 05793 | 05832| 05871 | 05910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 0.6141
03| 06179 | 06217 | 0.6255| 0.6293 | 0.6331| 0.6368 | 0.6406 | 0.6443 | 0.6480 0.6517
04| 0.6554 | 0.6591| 0.6628 | 0.6664 | 0.6700 | 0.6736 | 06772 | 0.6808 | 0.6844 0.6879
05| 0.6915| 0.6950 | 0.6985| 0.7019| 0.7054| 0.7088 | 0.7123 | 0.7157 | 0.7190 0.7224
06| 07257 | 07291 | 0.7324| 0.7357| 0.7389| 0.7422 | 0.7454 | 0.7486 | 0.7517 0.7549
07| 07580 | 0.7611 | 0.7642 | 0.7673| 0.7704| 0.7734| 0.7764 | 0.7794| 0.7823 0.7852
08| 0.7881| 0.7910| 0.7939 | 0.7967 | 0.7995| 0.8023 | 0.8051 | 0.8078 | 0.8106 0.8133
09| 08159 | 0818 | 0.8212| 0.8238| 0.8264 | 0.8289 | 0.8315| 0.8340 | 0.8365 0.8389
10| 08413| 0.8438| 0.8461 | 0.8485| 0.8508 | 0.8531| 0.8554 | 0.8577 | 0.8599 0.8621
11| 08643| 0.8665| 0.8686 | 0.8708 | 0.8729 | 08749 | 0.877/0| 0.8790| 0.8810 0.8830
12| 08849 | 0.8869| 0.8888| 0.8907 | 0.8925| 0.8944 | 0.8962 | 0.8980 | 0.8997 0.9015
13| 09032 | 09049 | 0.9066 | 0.9082| 09099 | 0.9115| 09131 | 0.9147 | 0.9162 0.9177
14| 09192 | 09207 | 09222 | 09236 | 09251 | 0.9265| 0.9279 | 0.9292 | 0.9306 0.9319
15| 09332 09345| 09357 | 09370 | 09382 | 09394 | 09406 | 0.9418 | 0.9429 0.9441
16| 09452 | 09463 | 09474 | 09484 | 09495 | 09505 | 09515| 0.9525| 0.9535 0.9545
17| 09554 | 09564 | 0.9573| 09582 | 09591 | 0.9599 | 09608 | 0.9616 | 0.9625 0.9633
18| 09641 | 09649 | 0.9656 | 0.9664 | 0.9671| 0.9678 | 0.9686 | 0.9693 | 0.9699 0.9706
19| 09713| 09719 | 09726 | 09732 | 09738 | 09744 | 09750| 0.9756 | 0.9761 0.9767
20| 09772 | 09778 | 09783 | 09788 | 09793 | 0.9798| 0.9803 | 0.9808 | 0.9812 0.9817
21| 09821 | 09826 | 09830 | 09834 | 09838| 0.9842 | 0.9846 | 0.9850 | 0.9854 0.9857
22| 09861 | 09864 | 09868 | 09871 | 09875| 09878 | 09881 | 0.9884 | 0.9887 0.9890
23] 09893 | 09896 | 09898 | 0.9901| 0.9904 | 09906 | 0.9909 | 0.9911 | 0.9913 0.9916
24| 09918 | 09920 | 09922 | 09925 | 09927 | 0.9929 | 0.9931| 0.9932 | 0.9934 0.9936
25| 09938 | 09940 | 09941 | 09943 | 09945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 0.9952
26| 09953 | 09955 | 09956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 0.9964
27| 09965 | 0996 | 09967 | 09968 | 0.9969 | 09970 | 09971 | 0.9972 | 0.9973 0.9974
28| 09974 | 09975 | 09976 | 09977 | 09977 | 09978 | 09979 | 0.9979 | 0.9980 0.9981
29| 09981 | 09982 | 09982 | 09983 | 09984 | 0.9984 | 0.9985 | 0.9985| 0.9986 0.9986
30| 09987 | 09987 | 09987 | 09988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 0.9990
31| 09990 | 09991 | 09991 | 09991 | 0.9992 | 09992 | 09992 | 0.9992 | 0.9993 0.9993
32| 09993 | 09993 | 09994 | 0.9994 | 0.9994 | 09994 | 09994 | 0.9995 | 0.9995 0.9995
33| 09995 | 09995 | 09995 | 09996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 0.9997
34| 09997 | 09997 | 09997 | 09997 | 09997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 0.9998
35| 09998 | 09998 | 09998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 0.9998
36| 09998 | 09998 | 09999 | 0.9999 | 0.9999 | 0.9999 | 09999 | 0.9999 | 0.9999 0.9999
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Table4.2: tdistribution

a
d.f. 0.200 | 0.100 | 0.050 0.025 0.010 0.005 0.001
1 1376 | 3078 | 6314 | 12706 | 31.821 | 63.656 | 318.289
2 1061 | 1.886| 2920 4.303 6.965 9.925 22.328
3 0978 | 1638 | 2353 3.182 4541 5.841 10.214
4 0941 | 1533 | 2132 2.776 3.747 4.604 7.173
5 0920 | 1476 | 2015 2571 3.365 4.032 5.894
6 0.906 | 1.440 | 1.943 2.447 3.143 3.707 5.208
7 0.896 | 1415 | 1.895 2.365 2.998 3.499 4.785
8 0889 | 1397 | 1.860 2.306 2.896 3.355 4.501
9 0883 | 1383 | 1.833 2.262 2.821 3.250 4.297
10 0879 | 1372 | 1812 2.228 2.764 3.169 4.144
11 0876 | 1363 | 1.796 2.201 2.718 3.106 4.025
12 0873 | 135 | 1.782 2.179 2.681 3.055 3.930
13 0870 | 1350 | 1771 2.160 2.650 3.012 3.852
14 0868 | 1345| 1761 2.145 2.624 2.977 3.787
15 0866 | 1.341 | 1.753 2131 2.602 2.947 3.733
16 0865 | 1.337 | 1.746 2.120 2.583 2.921 3.686
17 0863 | 1.333| 1.740 2.110 2.567 2.898 3.646
18 0862 | 1330 1734 2101 2.552 2.878 3.610
19 0861 | 1328 | 1.729 2.093 2.539 2.861 3.579
20 0860 | 1.325 | 1.725 2.086 2.528 2.845 3.552
21 0859 | 1323 | 1721 2.080 2.518 2.831 3.527
22 0858 | 1321 | 1717 2.074 2.508 2.819 3.505
23 0858 | 1319 | 1714 2.069 2.500 2.807 3.485
24 0857 | 1318 | 1711 2.064 2.492 2.797 3.467
25 0.856 | 1316 | 1.708 2.060 2.485 2.787 3.450
26 0.856 | 1.315| 1.706 2.056 2.479 2779 3.435
27 0855 | 1314 | 1.703 2.052 2.473 2771 3421
28 0855 | 1313 | 1701 2.048 2.467 2.763 3.408
29 0.854 | 1311 | 1.699 2.045 2.462 2.756 3.396
30 0854 | 1310 | 1.697 2.042 2.457 2.750 3.385
31 0.853 | 1.309 | 1.696 2.040 2.453 2.744 3.375
32 0853 | 1309 | 1.694 2.037 2.449 2.738 3.365
33 0.853 | 1308 | 1.692 2.035 2.445 2.733 3.356
34 0.852 | 1.307 | 1.691 2.032 2.441 2.728 3.348
35 0.852 | 1.306 | 1.690 2.030 2.438 2.724 3.340
40 0851 | 1303 | 1.684 2.021 2.423 2.704 3.307
50 0849 | 1299 | 1.676 2.009 2.403 2.678 3.261
60 0848 | 1296 | 1671 2.000 2.390 2.660 3.232
70 0.847 | 1294 | 1.667 1.994 2.381 2.648 3211
80 0846 | 1292 | 1.664 1.990 2.374 2.639 3.195
0 0841 | 1282 | 1645 1.960 2.326 2.576 3.091
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Table 4.3: Chi-squar e distribution

a
. 0.995 0.990 0.975 0.950 0.050 0.025 0.010 0.005
1 3.9E-05 0.00016 | 0.00098 | 0.00393 3.841 5.024 6.635 7.879
2 0.0100 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 11.070 12.832 15.086 16.750
6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278
8 1.344 1.647 2.180 2.733 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757
12 3.074 3571 4.404 5.226 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45,558
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290
27 11.808 12.878 14.573 16.151 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.994
29 13.121 14.256 16.047 17.708 42.557 45,722 49.588 52.335
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 55.758 50.342 63.691 66.766
50 27.991 29.707 32.357 34.764 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 90.531 95.023 100.425 | 104.215
80 51.172 53.540 57.153 60.391 101.879 | 106.629 | 112.329 | 116.321
100 67.328 70.065 74.222 77.929 124.342 | 129.561 | 135.807 | 140.170
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Tabled.4: F

distribution witt a =0.05
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161
185
10.1
7.71
6.61
5.99
5.59
5.32
512
4.96
4.84
4.75
4.67
4.60
454

199
19.0
9.55
6.94
5.79
514
4.74
4.46
4.26
4.10
3.98
3.89
381
3.74
3.68

216
19.2
9.28
6.59
541
4.76
4.35
4.07
3.86 | 3.63
3.71
359 | 3.36
349 | 3.26
341
334|311
3.29 | 3.06

225
19.2
9.12
6.39
5.19
4.53
4.12
3.84

348

3.18

230
19.3
9.01
6.26
5.05
4.39
3.97
3.69
3.48
3.33
3.20
311
3.03
2.96
2.90

234
19.3
8.94
6.16
4.95
4.28
3.87
3.58
3.37
3.22
3.09
3.00
2.92
2.85

2.79

237
19.4
8.89
6.09
4.88
4.21
3.79
3.50
3.29
3.14
3.01
291
2.83
2.76
2.71

239
19.4
8.85
6.04
4.82
4.15
3.73
344
3.23
3.07
2.95
2.85
277
2.70
2.64

241
194
8.81
6.00
477
4.10
3.68
3.39
3.18
3.02
2.90
2.80
271
2.65
2.59

242
194
8.79
5.96
474
4.06
3.64
3.35
3.14
2.98
2.85
2.75
2.67
2.60
2.54

243
194
8.76
5.94
4.70
4.03
3.60
331
3.10
2.94
2.82
272
2.63
2.57
2.51

244

245
194 | 194
8.74 | 8.73
591 | 5.89
4.68 | 4.66
4.00 | 3.98
3.57 | 3.55
3.28 | 3.26
3.07 | 3.05
291 | 2.89
2.79 | 2.76
2.69 | 2.66
2.60 | 2.58
253 | 251
2.48 | 2.45

245
194
8.71
5.87
4.64
3.96
3.53
3.24
3.03
2.86
2.74
2.64
2.55
2.48
2.42

246
19.4
8.70
5.86
4.62
3.94
351
3.22
3.01
2.85
2.72
2.62
2.53
2.23
2.40

Table4.5: F distribution witt a =0.01

10

11

12

13

14

15

PP
KEBoow~vwounrwnrk

e
g s w

4052
98.5
34.1
21.2
16.3
13.7
12.2
11.3
10.6
10.0
9.65
9.33
9.07
8.86
8.68

4999
99.0
30.8
18.0
133
10.9
9.55
8.65
8.02
7.56
7.21
6.93
6.70
6.51
6.36

5403
99.2
295
16.7
121
9.78
8.45
7.59
6.99
6.55
6.22
5.95
5.74
7.56
7.42

5625
99.2
28.7
16.0
114
9.15
7.85
7.01
6.42
5.99
5.67
4.41
521
5.04
4.89

5764
99.3
28.2
155
11.0
8.75
7.46
6.63
6.06
5.64
532
5.06
4.86
4.69
4.56

5859
99.3
27.9
15.2
10.7
8.47
7.19
6.37
5.80
5.39
5.07
4.82
4.62
4.46
4.32

5928
99.4
27.7
15.0
105
8.26
6.99
6.18
5.61
5.20
4.89
4.64
4.44
4.28
4.14

5981
99.4
275
14.8
10.3
8.10
6.84
6.03
5.47
5.06
474
4.50
4.30
4.14
4.00

6022
99.4
27.3
14.7
10.2
7.98
6.72
591
5.35
4.94
4.63
4.39
4.19
4.03
3.89

6056
99.4
27.2
145
10.1
7.87
6.62
581
5.26
4.85
454
4.30
4.10
3.94
3.80

6083
99.4
27.1
145
9.96
7.79
6.54
5.73
5.18
477
4.46
4.22
4.02
3.86
3.73

6106
99.4
27.1
14.4
9.89
7.72
6.47
5.67
511
4.71
4.40
4.16
3.96
3.80
3.67

6126
99.4
27.0
14.3
9.82
7.66
6.41
5.61
5.05
4.65
4.34
4.10
391
3.75
3.61

6143
99.4
26.9
14.2
9.77
7.60
6.36
5.56
5.01
4.60
4.29
4.05
3.86
3.70
3.56

6157
99.4
26.9
14.2
9.72
7.56
6.31
5.52
4.96
4.56
4.25
4.01
3.82
3.66
3.52
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