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STATISTICAL REVIEW

1.1 RANDOM VARIABLES AND DISTRIBUTIONS

Unlike the deterministic functions that mathematicians usually deal with, statisticians and probabilists
need to be able to handle quantities that vary randomly. These are referred to as random variables.
Random variables are described through their probability distributions. Probability distributions tell us
the probabilities with which the variable takes various values.

This chapter introduces a few probability distributions that play an important role in understanding
and analyzing healthcare data.   While theoretical in nature, these distributions model real life if
appropriately chosen. Probability distributions are mathematical representations of how statistical data
behave.

Random variables and their distributions can be broadly classified as discrete or continuous.   If the
variable under study takes a finite or countably infinite number of values (countably infinite means that
the values the variable takes can be put in one-to-one correspondence with positive integers), then the
distribution is discrete. Any variable that involves counting the number of occurrences of an event will
automatically be a discrete variable. The number of insurance policies where at least one claim is made,
the number of days elapsed before the first claim is made for a particular policyholder or the total
numbers of claims made by all policyholders in a year are examples of discrete random variables.

On the other hand, if the variable takes all values in an interval or union of intervals, then the
distribution is continuous. Time between occurrences of accidents on a highway, the amount of rainfall in
Santa Barbara County, the height and weight of people or the amount of carbon dioxide emissions are
all examples of continuous random variables.  One of the important distinctions of continuous
distributions from the discrete is that the probability of a continuous random variable taking a specific
value is infinitesimally small.  In other words while ( )P X x can be defined for a discrete random

variable X , this probability will always be zero for a continuous random variable. So for a continuous
random variable X , we talk about ( )P X x , ( )P X x or ( )P x X y  .

1.1.1 Discrete Random Variables

Definition 1.1.1 The probability distribution of a discrete random variable is a listing of all values the r.v.
takes, along with the corresponding probabilities.
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Definition 1.1.2 The function ( )  ( )xp x P X x  , or simply ( )p x , is called the probability mass

function of X .

Note that

• X denotes the random variable whereas x denotes a possible value for X .

• ( )p x is always non-negative.

• P(X = x) = 1
x

∑ , where the summation is over all possible values of x .

Definition 1.1.3 The distribution function or the cumulative distribution function (CDF) XF or just F of

a random variable X is a function given by ( ) P( )XF x X x  . If X is discrete, then

( ) ( )X xx y
F x p y


 .

Example 1.1.4 Toss a pair of coins. The sample space is given by ,{ }, ,S HH HT TH TT . Let X denote

the number of heads obtained. Then        2, 1, 1,  and 0.X HH X HT X TH X TT    If the coins

are fair, you associate a probability of 0.25 with each sample point.  Then  0 0.25P X   ,

   1 0.5 and 2 0.25.P X P X   

So the distribution of X defined in this example can be written as

X 0 1 2
p 1

4

1

2

1

4

Example 1.1.5 For the earlier example the distribution function of X is given by

  0         if  0F x x 

1
                         if  0 1

4
x  

3
                         if  1 2

4
x  

                           if  21 x 

1.1.2     Expectation of Discrete Random Variables

Definition 1.2.1 Let X be a discrete random variable with probability mass function p . Then the expec-

tation (or the expected value or mean) of X is given by

  ( )x
x

µ E X xp x 
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where the summation is taken  over  all  possible  values x of X . If g is a real-valued function, then the

expectation of  Xg is given by      ( .)
x

E g X g x p x

Example 1.2.2 Suppose Y is a random variable with the following distribution:

y 0 1 2 3
p 0.1 0.2 0.4 0.3

Then        0 0.1 1 0.2 2 0.4( 3 0.3 1.9)E Y     

Example 1.2.3 Let Y be as in Example 1.2.2.   Then            
3

2 2 2 2

0

0 0.1 1 0.2
y

E Y y p y


   

     2 22 0.4 3 0.3 4.5. 

Definition 1.2.4 If X is a random variable then the variance of X is defined by

 2 2 2( ) ( ( ))
X

V X E X E X   

and the standard deviation of X is defined by

   X SD X V X  

Example 1.2.5 Let Y be as in Example 1.2.2.
2 2( ) ( )4.5. Thus  4.5 1.9 0.89E Y V Y    and hence

( ) 0.89 0.94SD Y  

Properties of Expectation and Variance: Let X be any random variable, continuous or discrete.  For
any two real numbers a and b ,

1. ( ) ( )E aX b aE X b  

2.   2 ( ) V aX b a V X 

3. ( ) ( )SD aX b SD Xa 

1.1.3     Important Discrete Distributions

Some commonly occurring distributions have special names.  Some famous names are given below.
They are all discrete distributions.

1.  Discrete Uniform

2.  Bernoulli
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3.  Binomial

4.  Hypergeometric

5. Geometric

6.  Negative Binomial

7.  Poisson

1.1.3.1     Discrete Uniform

If a random variable X takes n possible values, 1 2, , ..., na a a , all with probability
1

n
then X is said to

have a discrete uniform distribution on 1 2{ , ,..., }.na a a

Example 1.3.1 Roll a die and let X be the number that comes up.  If the die is well balanced, then X
has discrete uniform distribution on {1, 2, 3, 4, 5, 6}.Then:

   

   
2

 
2

1
   

12

( 1)

a b
a E X

b V X
b a






 

1. Let 		X Discrete	Uniform{1,2,...n} so that 		p(x)= 1n for 		x =1,2,...n .  Then:

   

   
2

1
 

2

1
   

12

n
a E X

n
b V X







2. Let X ∼ Discrete Uniform {0,1,2,...n} so that
1

( )
( 1)

p x
n




for 		x =1,2,...n .  Then:

   

   

 
2
( 2)

   
12

n
a E X

n n
b V X






Example 1.3.2 Let X be the number that comes up when a die is rolled once. Here X has a uniform

distribution over the set {1,2,3,4,5,6}. Hence   6 1
3.5

2
E X


  and

 
26 1

  35 /12 2.92.
12

V X


  
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1.1.3.2     Bernoulli

A Bernoulli random variable is one that takes values 1 and 0 with probabilities  and 1p p .

Example 1.3.3 Toss a coin whose probability of heads is p . Let X be the number of heads obtained. Then

X is distributed as Bernoulli( p) .

If ~ Bernoulli( )X p , then

1. ( )E X p

2. ( ) (1 )V X p p 

Example 1.3.4 Let X be the number of sixes that come up when a die is rolled once. Here X has

Bernoulli distribution with parameter 1

6
.  Hence

1 1 5 5
( )  and ( )

6 6 6 36
E X V X    

 
 

.

1.1.3.3     Binomial

The Binomial distribution occurs in the following way.  Suppose an experiment consists of n
independent identical trials, each having two possible outcomes: success or failure.  For a given trial the
probability of success is p . (Such trials are called Bernoulli trials). Then X the total number of

successes in n trials, has binomial distribution with parameters n and p . Note that when 1n  ,

Binomial( , )n p reduces to Bernoulli( )p .

If ( , )Bin n pX  that is, X is distributed as Binomial( , )n p , then for 0,1,2,..., ,k n

( ) (1 ) ( )k n k k n kn n
P X k p p p q

k k
    

      
   

where 1 .q p 

Example 1.3.5 Take a coin whose probability of heads is
3
1

and toss it 10 times.  If X is the number of

heads in 10 tosses then X is distributed as
1

3
Bin 10, 
 
 

.

Example 1.3.6 A coin has
4
1

probability of heads.  If this coin is tossed 20 times, find the probability that

you get

1. No heads

2. Exactly two heads

3. At least one head

4. Less than or equal to 18 heads

5. Between 3 and 5 heads, both inclusive.
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Solution:

Let X be the number of heads obtained. Then X is a random variable distributed as .
1

Bin 20,
4

 
 
 

 
0 2020 1 3

1. 0 0.003171
0 4 4

P X   
    

        

 
2 1820 1 3

2. 2 0.06695
2 4 4

P X   
    

        
 ( ) 0.996823.   91 1 0P X P X    

    
19 1 20 0

11( ) 1
20 201 3 1 3

4. 18 1   19   20
19 204 4 4 4

1 5.548 10P X P X P X         
       
 
 

   
                    

3 17 4 16 5 1520 20
5. (3 5) 0.52

201 3 1 3 1 3

3
59.

4 44 4 4 4 4 4
P X   

                
                     

 
 

           

Example 1.3.7 Suppose a box has 6 balls where two are white and four are black.   We choose 10 balls
from it with replacement. Let X be the number of white balls.  The fact that the sampling is done with

replacement makes this experiment conformable to the binomial model. Thus
1

Bin 10,
3

X
 
 
 

 .

If ~ Bin( , )X n p , then

1. ( )E X np

2. ( ) (1 )V x np p 

If you toss a coin 100 times, and if the probability of heads is 0.4, on average you can expect 40 heads.
Similarly, if the number of tosses is n and the probability of heads is 	p , you expect np heads, so the

expectation formula makes sense. You may also think of 		Binomial(n,p)as a sum of n independent

Bernoulli( )p random variables. Therefore the expectation and variance of binomial are n times the

expectation and variance of Bernoulli.

Example 1.3.8 Let X be the number of sixes that came up when a die is rolled 30 times. Here X has

binomial distribution with parameters 		n=30 and 		p= 16 . Hence 		E(X )=30 16





=5 and ( )V X 

1 5 25
.

6 6 6
30     
  

1.3.4 Hypergeometric

If, in an example similar to the above, the sampling were done without replacement, one can easily see
that the resulting random variable will not be binomial. Let us consider a case where 2 balls are chosen
from the six balls. As there are only two white balls, the number of white balls can only be 0, 1, or 2.  The
probability that it is 1, for instance, is given by
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21 


41 

62 


.

Now let us consider the general situation. Assume there are 	N balls, of which d are white and the
rest black. We choose n balls from these without replacement and let 	X be the number of white balls in
the sample. Note that both d and n are integers between 0 and 	N . This 	X is then distributed as

( , , )hypergeometric N d n .

In this case the probability that there are exactly 	k white balls is calculated as follows:

		
P(X = k)= dk 


N −d
n−k







N
n







.

For what values of 	k is this value non-zero? The necessary conditions are 		0≤k ≤d and .
This implies that 	k must be between 		max(0,n+d −N) and 		min(n,d).
Example 1.3.9 A box has 25 bolts, of which 10 are defective. A sample of size 5 is chosen without
replacement and is the number of defective bolts in the sample.  Find the distribution of .

Here 	X is hypergeometric with 		N =25 , 		d =10, and 		n=5. Thus

for 	k = 0, 1, 2, 3, 4 and 5. In particular,

		
P(X =2)= 102 


153 

255 


= .3854
For problems where a sample of size n is chosen from a population of 	N objects of which d are of a

special type and 	X is the number of objects in the sample that are of that special type, the rule is the
following: If the sampling is without replacement what we have is 		hypergeometric(N ,d ,n); if the sampling

is with replacement, then it is Bin ,
d

n
n

 
 
 

.

If 		X ∼Hypergeometric(N ,d ,n), then

1. 		E(X )= n dN





2. 		V(X )= n dN




1− d
N






N −n
N −1





		0≤n−k ≤N −d

	X 	X

		
P(X = k)= 10k 


155−k





255 


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Similar to binomial, the expectation is np where
d

p
N
 is the proportion of special items.  The formula for

the variance is 	npq where 		 = N −n
N −1 is called the finite population correction. If N is very large compared

to is very close to 1, and can be ignored.

Example 1.3.10 A box contains 7 white balls, 3 black balls, and 2 red balls. A sample of 4 balls is drawn
from the box without replacement. Let 	X represent the number of white balls in the sample.  Here 	X has

hypergeometric distribution with parameters 12N  , 7d  , and 4n  . Hence
7 7

( ) 4
12 3

E X
 
 
 

  and

7 5 8 77
( ) 4

12 12 11 99
V X

   
   
   

  .

1.3.5     Geometric

Suppose we perform Bernoulli trials until the first success is obtained. Let 	X be the number of failures.

	X then is said to have geometric distribution.

Note that the sample space is given by 		{S ,FS ,FFS ,FFFS ,FFFFS ,...} , where 	S indicates success and

	F indicates failure.  Note that the sample space is infinite in this case.  Thus 	X takes values 0, 1, 2, 3, . .
. with probabilities given by

		P X 	=0( )			 = 	P S( ) = p		P X 	=1( )			 = 		P FS( ) = p(1− p)= pq		P X 	=2( )			 = 		P FFS( ) = p(1− p)2 	= pq2		P X 	= k( )			 = 		P FF ...FS( ) = pqk 	,k =0,1,2,3,...
Thus we have a formula to compute the probabilities for geometric distribution.

Example 1.3.11 Roll a die until a six is obtained. Find the probability that the first six occurs

1.  at the fourth trial.

2.  at or before the third trial.

3. after the fourth trial.

Solution: Let 	X be the number of failures.

1. 		P(X =3)= pq3 = 16




56





3
= 1251296

2. 		P(X ≤2)= P(X =0)+P(X =1)+P(X =2)= 16 + 16 ⋅56 + 16 56





2
= 91216

3. 		P(X ≥4)=1−P(X ≤3)=1− 1251296 + 91216







 = 6251296

		n,
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Note:  There is a faster way of computing (3) and hence (2).  You will see how in the next
result.

Properties of Geometric Distribution: Let X have Geometric( )p distribution. Then for nonnegative

integer 	k ,

1. 		P(X 	≥ k)= qk
2. 		P X 	< k( ) =1−qk

3. 		P X 	> k( ) = qk+1
4. 		P(X 	≤ k)=1−qk+1
If ~ Geometric( )X p , then

1. 		E(X )= pq
2. 		V(X )= qp2

Unsurprisingly, the average waiting time, as seen in the expression for expectation, increases as the
probability p of occurrence decreases.

Example 1.3.12 An experiment whose success probability is 0.25 is repeated until a success is obtained.
Let 	X represent the number of failures and 	Y represent the number of trials. Find the mean and variance
for 	X and 	Y .

Here 	X has geometric distribution with 		p= .25 and 		Y = X +1 . So 		E(X )= qp = .75.25 =3 and

		E(Y )=3+1= 4. 		V(X )= qp2 = .75.0625 =12. It is one of the properties of variance that adding a constant

does not change the variance. Thus    ( ) ( 1) ( ) 12V Y V X V X .



12

1.3.6     Negative Binomial

Suppose we perform Bernoulli trials until r successes are obtained. Let X be the number of failures.
Then X is said to have negative binomial distribution with parameters r and p , where p is the

probability of success for the Bernoulli trials.
Geometric distribution is a special case of negative binomial distribution; negative binomial with
1r  is geometric.
The probability distribution of X is computed as follows. For X to be equal to k , S should be the

last link in a chain of S and F of length k r such that exactly 1r  of the first 1k r  is S .  This

way we make sure that before the thr success there are k failures. As there are 		 k + r −1
r −1





ways of

selecting such chains and each has probability  1 krp p , we get

 
 

  


 
 
 

1( ) 11 krk r
P X k p p

r

for  0,1,2....k
If X has negative binomial distribution with parameters r and p and we need to compute the

probability that the total number of trials is n , then the formula is given by

  





 
 
 

1 11 n rrn
p p

r

Example 1.3.13 A coin has probability
23 of heads. It is tossed until 5 heads are obtained. Find the

probability that exactly 8 tosses are required.

Solution: Let X is the number of tails. Then X has negative binomial distribution with parameters

 5r and 
23p . Exactly 8 tosses are required if and only if  3X .

 
  



    
        

5 33 5 1 2 1 1120( 3) 5 1 3 3 6561P X
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In general, for  5,6,7...n , the probability that the number of tosses is n is given by
    

        

5 51 2 14 3 3 nn

If Negative Binomial ,( )X r p , then

1. ( )
rq

E X
p



2.
2

( )
rq

V X
p



Example 1.3.14 A die is rolled until 3 sixes are obtained. Let X represent the number of non-sixes and Y
represent the number of rolls.  Find the mean and variance for X and Y .

Here X has negative binomial distribution with  3r and 
16p , and Y is 3X . So

5
3

6
( ) 15

1

6

rq
E X

p
  

 
 
  and ( ) 15 3 18E Y    .

22

5
3

6
( ) 90

1

6

q
V X

p
  

 
 
 
 
 
 

.

( ) ( 3) ( ) 90V Y V X V X    .

1.3.7     Poisson

Poisson distribution is used when we count the number of occurrences of an event in a specified time
interval. Some examples are the number of traffic accidents on a highway per month, the number of
phone calls that go through a telephone switchboard in an hour and the number of customers arriving at a
bank in a day. The probability mass function of a Poisson random variable X with parameter  is given
by

( ) ,
!

ke
P X k

k


 

for 0,1, 2,3,...k  . Here the parameter  indicates the average number of occurrences of the event.

Example 1.3.15 Assume that X , the number of calls that go through a telephone switchboard in an hour,
follows Poisson distribution with parameter   5 . Find

1. ( )  1P X 
2.  the probability that at least one call comes through between 10:00 and 10:30.

Solution:

1. .

5 0 5 15 5 5( 1) ( 0) ( 1) 6
0! 1!

e e
P X P X P X e

 
       

2.  If Y is the number of calls in the half-hour then Y is distributed as  Poisson 2.5 . 1  ) (P Y  
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2.5( )1    0 1 .P Y e   

If ~ Poiss )on(X  , then

1. ( )E X 

2.  V X 

Example 1.3.16 Assume that the number of typing errors in a page of a book is distributed as Poisson(9) .

1.  Find the mean and standard deviation of the number of errors in a randomly chosen page of the book.

2.  Find the mean and standard deviation of the total number of errors in four randomly chosen pages of the
book.

If X denotes the number of errors in one randomly chosen page, ( ) ( ) 9E X V X  and the standard deviation of

X is 3.  If Y denotes the number of errors in five randomly chosen pages,      9 4 36E X V X   and the

standard deviation of Y is 6.

1.4 Continuous Random Variables

As explained previously, a random variable is said to be continuous if   )( ()XF x P X x  is a continuous function of

x .
Note: All continuous random variables take infinitely many values. Also, for a continuous random variable X ,

   0P X x  for all x , and consequently, ( ) ( ) ( ) ( )P a X b P a X b P a X b P a X b           .

Definition 1.4.1 A function f is said  to  be  the probability  density  function  (pdf ) (or  just  the density function)

of a continuous random variable X if  ( )
x

P X x f t dt


  

Proposition 1.4.2 If f is the probability density function of a continuous random variable X , then

1.   0f x  for all x

2.     1f x dx






3.      ( )b

a

f x dx P a X b

1.5 Expectation and Variance of Continuous Random Variables
Definition 1.5.1 let X be a continuous random variable with density function f .  Then the expectation

(or the expected value) of X is given by

(( ) )xf x dxE X




 

2 22 2( ) ( ) ( ( )) ( ( ))( )V X E X E X x f x dx E X




   
( ) ( )SD X V X
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Example 1.5.2 Let X be a random variable with density function f given by   3 2 if 0 1f x x x   and zero

otherwise. Find ( )E X and  2E X .

( )E X ( )xf x dx




 
1

3

0

3x dx 
14

0

3

4

x 
  
 
3

4


 2E X 2 ( )x f x dx




 
1

4

0

3x dx 
15

0

3

5

x 
  
 
3

5


1.6     Important Continuous Distributions

The following are some of the commonly occurring continuous distributions.

1.  Continuous Uniform

2. Exponential

3.  Gamma

4.  Beta

5.  Normal

6.  Weibull

7. t

8.  Chi-square

9. F

1.6.1     Continuous Uniform

A random variable X has ( , )uniform a b distribution if its pdf is given by

1
( )f x

b a


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for a x b  . That the above function integrates to 1 is easy to verify by a simple integration, or by the fact that the

area of a rectangle with length b a and height
1

b a
is 1.

The following are examples of uniform distribution:

Example 1.6.1 Let X be a random real number chosen from the interval (3, 5).  Find the probability that X is less
than or equal 4.5.

Solution: The X has  uniform 3,5 distribution.
4.5

3

1 1.5
( 4.5) 0.75

2 2
P X dx   

Proposition 1.6.2 Let X be a random variable with ( , )uniform a b distribution. Then

1. ( )
2

a b
E X




2.
2( )

( )
12

b a
V X




Example 1.6.3 Let X be the random variable in Example 1.6.1. Then
3 5

( )
2

E X


 and
22 1

( )
12 3

V X  

1.6.2     Exponential

A random variable X has  exponential  distribution if its pdf is given by

( ) xef x  

for 0x  .  Exponential distribution is the simplest distribution that can be used to model survival time waiting time
for occurrences of events. Here,  is called the rate parameter, measuring the rate at which events occur.

Example 1.6.4 The life time in years of a light bulb is represented by a random variable X with exponential(.5)

distribution. Find the probability that the bulb will last for less than 18 months.
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( 1.5)P X  
1.5 .50 .5 xe dx

   
1.5.5 0xe

  .751 e
 0.5276

Proposition 1.6.5 Let X be a random variable with exponential( ) distribution. Then

1.
1

( )E X



2.
2

1
( )V X




Note that the expression for the expectation tells us that the average waiting time is inversely related to the rate of
occurrence of the event, which makes intuitive sense.  If on the average, 10 events occur per unit time, the average

waiting time or the next occurrence is
1

10
units of time.

The exponential distribution has the memoryless property: if at a particular time point, we know that no
event has occurred, the waiting time for the next event is unchanged. Mathematically

   ( | ) ( )P X s t X s P X t     . In other words, if we are told that until time s no event has occurred, the

probability that we need to wait at least t more units of time is exactly equal to the probability that we need to wait
at least t units in the first place.

Example 1.6.6 Let X be the random variable in Example 1.6.4. Then
1

( ) 2
.5

E X   and
2

1
( ) 4

.5
V X   .

1.6.3     Gamma

The Gamma Function, represented by ( )X , is an extension of the factorial function.  If {1,2,... }a n then

( ) ( 1)!.a a   A random variable X has ( , )gamma   distribution if its pdf is given by

1( )
( )

xf x x e


 


  




for 0.x  is the rate parameter, and  is called the shape parameter.

Example 1.6.7 The time in years a transplanted heart lasts is given by a (gamma 2, .5)   random variable X .

Find the probability that the heart will last for more than 3 years.
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The density function of X is given by
2

.5 .5.5 1
( )

(2) 4
x xf x xe xe  



for 0x  .

( 3)P X  .5

3

1

4
xxe dx


 


      .5 .53 3

1 12 24 4x xxe e dx

1.5 .5

3
1.5 xe e

     
1.5 1.51.5e e  
1.52.5e

0.5578

Proposition 1.6.8 Let X be a random variable with (gamma ),  distribution. Then

1. ( )E X




2.
2

( )V X




Example 1.6.9 Let X be the random variable in Example 1.6.7. Then
2

( ) 4
.5

E X   and
2

2
( ) 8

.5
V X  

Note that some books use the notations exponential( ) and (gamma ),  in place of exponential( ) and

(gamma ),  where
1



 . Then the expectation and variance of exponential will change to  and  2

respectively, and the expectation and variance of gamma will change to  and  2 respectively.   The parameter
 is referred to as the rate parameter whereas the parameter  , in the case of exponential, is referred to as the
mean parameter.

Example 1.6.10 Let X be exponentially distributed with mean 0.2.  Find the probability that X is less than 0.3.

Here the mean is 0.2, so   0.2 .  , the rate, is


1 5 . Now  .3P X  is easily seen to be 1.51 e .

1.6.4     Beta

A random variable X has  beta   distribution if its pdf is given by

1 1( )
( ) ( )

( ) (
1

)
x xf x   

 
  


 


for 0 1x  .

The following are examples of beta distribution:
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Example 1.6.11 The proportion of car owners who service their car by the due date is given by a beta(  2, 3) 
random variable X . Find the probability that this proportion is less than or equal to 0.7.
The density function of X is given by

 
     


 

 


2 25 1  ( 12 1(2 3) )x x x xf x

for 0 1x  .

( 0.7)P X 
.7

2

0

12 (1 )x x dx 
.7

2

0

12 (1 2 )x x x dx  
.7

2 3

0

12 2x x x dx  
.72 3 4

0

2
12

2 3 4

x x x 
   
 

2 3 4.7 .7 .7
12 2

2 3 4

  
    

  
0.9163

Proposition 1.6.12 Let X be a random variable with (beta ),  distribution. Then

1. ( )E X


 



2.
   

( )V X


   
  
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Example 1.6.13 Let X be the random variable in Example 1.6.11. Find the mean and standard deviation of X .
2

( )
5

E X  and
 

6 1
( )

25 6 25
V X   . So

1
( )

5
SD X  .

1.6.5     Weibull

A random variable X has  Weibull ,   distribution if its pdf is given by

  (1 )( )   xf x x e
    

for 0x  . Note that when 1  ,  Weibull ,   reduces to exponent al(i ) .
Weibull distribution is often used to model the size of reinsurance claims. It is also used in survival analysis,

reliability, failure analysis, in industrial engineering to represent manufacturing and delivery times, in weather
forecasting to describe wind speed distributions, and the cumulative development of asbestosis losses, among many
others.

Proposition 1.6.14 Let X be a random variable with Weibull ( ),  distribution. Then

1. ( )E X
 
     
 

2. ( )V X
 





                  
      

1.6.6     Normal

A random variable X has normal distribution or Gaussian distribution with parameters  and  if its pdf is

given by
x

e






     


.

Proposition 1.6.15 Let X be a normal random variable with parameters  and  . Then ( )E X µ and
2( )V X 

Normal distribution is by far the most important distribution. It is widely used in many practical applications.
We get a very special case of normal called standard normal when the mean µ is zero and the standard deviation

 is 1. A standard normal random variable is usually denoted by Z and has density function given by
21

2
1 x

e





.

For computation of probabilities for normal distribution, we have to use tables.  Tables are available only for
standard normal, but we can convert non-standard normal to standard normal by a procedure called standardization,
which is, subtracting the mean and dividing by the standard deviation.
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Example 1.6.16 Let  0,1Z N . Find

1. .( 2)1P Z 

2. 1.5( . )2 3P Z 

3. ( )2P Z 

4. a such that ( ) .9251P Z a 

5. b such that ( ) .1230P Z b 

Solution:
1. ( )1.2 .8849P Z  

2. (1.5 2.3) .9893 .9332 .0561P Z    

3. ( ) ( )2 1 2 1 .9772 .0228P Z P Z      

4.  From the body of the table, we see that 1.44a  .

5. ( ) .1230 ( .8770)P Z b P Z b     . So 1.16b  .

Example 1.6.17 Let (2.3,1.5)X N .  Find

1. ( )  1.2P X 

2. 3.8( . )5 3P X 

3. ( )  2P X 

4. a such that ( )  .9251P X a 

5. b such that    .1230P X b 

Solution:

1.  1.2 2.3
  1.2     .73 .73 1 .7673 .2327

1
( )

.
( )

5
P X P Z P Z P Z

            
 

2.
3.8 2.3 5.3 2.3 

3.8 5.3       1 2 .9772 .8413 .1359
1

( (
.

) )
.5 1 5

P X P Z P Z
             

 

3.
2 2.3

  2   .2 .2 .579( ) ( ) ( ) 3
1.5

P X P Z P Z P Z
          

 

4.
2.3  2.3

  .9251   .9251     1.44 4.46.( )
1.5 1.5

a a
P X a P Z a

           
 

5.
2.3 2.3

( ) .1230   .8770     .8770       1.16 4.04.
1.5 1.

( )
5

b b
P X b P X b P Z b

              
 

Note: The remaining continuous distributions, t , 2 , and F are important for statistical estimation and

inference, but it is not necessary for us to learn their density functions, expected values etc.  In the subsequent
chapters we will learn how these distributions are used to construct confidence intervals and perform tests of
statistical hypotheses.

1.7     Jointly Distributed Random Variables

Let X and Y be two random variables defined on the same sample space (that is, both are numerical outcomes of
the same random experiment). Knowing the probability distributions of X and Y separately is not sufficient to
know their behaviour completely.  For instance, from knowing ( )  1P X  and ( )  2P Y  , we will not normally be
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able to compute   1, 2( ) P X Y  . We need to know their joint distribution.  Study of joint distributions can be

complicated, particularly if it involves many random variables that that are interdependent.
On the other hand, if the random variables are known to behave independent of each other, then the joint

probabilities can be calculated from the respective individual probabilities by multiplying them together. In the
previous example,   1,   2   1   2( ) ( ) ( )P X Y P X P Y     if X and Y are independent. If you decide that it is

reasonable to assume that the numbers of car insurance claims in  California X and Pennsylvania( )Y are

independent of each other, then the probability that there are at least 200 claims in California and at least 100 claims
in Pennsylvania in a given year can be calculated by multiplying the two individual probabilities. In other words,

  200,   10( )0   200   10( ) ( )0P X Y P X P Y     .

Definition 1.7.1 The Covariance between X and Y is given by

    ( ) ( ),Cov X Y E XY E X E Y 

The Correlation between X and Y is given by

,
,

( )
( )

( ) ( )

Cov X Y
Corr X Y

SD X SD Y


1.8     Properties of Covariance and Correlation

Theorem 1.8.1

1.    1 1 1 1
, ,

m n m n

i i j j i j i ji j i j
Cov a X b Y a b Cov X Y

   
   

2.      2

1 1
,

m m

i i i i i j i ji i i j
V a X a V X a a Cov X Y

  
   

3.   (, )Cov X X V X

4.   ,( ),Cov aX b cY d acCov X Y  

5.    2 2 ( ) )  2 ,(V aX bY a V X b V Y abCov X Y   

6.     ( ) ),(2V X Y V X V Y Cov X Y   

7. 2 2( ) ( ( ))   2 ,( ( )) ( )SD X Y SD X SD Y Cov X Y   
8.   1 1),(Corr X Y  

9. , ,( ) ( )Corr aX b cY d Corr X Y   if 0ac  , ( ),Corr X Y  if 0ac  , 0 if 0ac  .

10.  If X and Y are independent,

(a)  , 0Cov X Y 

(b) ( ), 0Corr X Y 

(c)     ( )V X Y V X V Y  

(d) 2 2( ) ( ( )   ) )) ( (SD X Y SD X SD Y  

Note: The converses of (10a) and (10b) above are false. Even though independence implies that covariance and
correlation are zero, two dependent random variables can have zero covariance, and hence zero correlation.

Example 1.8.2 Let X and Y be independent with 4( )SD X  , 5( )SD Y  . Find

1. ( )V X Y

2. ,( )Cov X Y X Y 

3. ,( )Corr X Y X Y 



23

Solution:

1.     16 25( 41)V X Y V X V Y      , so 41( )SD X Y 

2.      ( ) ( ), , ( ) 9), , (,Cov X Y X Y Cov X X Cov Y X Cov X Y Cov Y Y V X V Y         

3.  ( ) ( ) 16 25 41V X Y V X V Y      , so

, 9
,

( ) ( ) 41

( )
( )

Cov X Y X Y
Corr X Y X Y

SD X Y SD X Y

  
   

 
.

Example 1.8.3 Let X and Y be two random variables with   4V X  , ( ) 9V Y  ,  , 2Cov X Y   .  Find

1. 2 3,( 2)4Cov X Y  

2. 2 1,( 4 )Cov X X 

3. ( )2V X Y

4. ( , )Corr X Y

5. 3 1, 2( 2)Corr X Y  

Solution:

1.  ( ) ( )2 3, 4 2 2 4 , 2 4 2 1) 6( )(Cov X Y Cov X Y        

2.    2 1,4 2 1( ) ( ) ( ), 2 8Cov X X Cov X X V X       

3.    2 4 4 , 16 9 8( ) ( 3) 3V X Y V X V Y Cov X Y       

4.
( , ) 2 1

,
(

(
) (

)
) (2)(3) 3

Cov X Y
Corr X Y

SD X SD Y

 
  

5. 3 1, 2
1 1

( ) (2
3

1)
3

Corr X Y  

 

1.9     Central Limit Theorem

Theorem 1.9.1 Let 1 2, ,..., nX X X be independent identically distributed random variables with mean 

and standard deviation  . Let 1 2     n
n

X X X
X

n

  



. Then

 nE X  and  nSD X
n


 .

Theorem 1.9.2 Central Limit Theorem
Le t 1 2, ,..., nX X X be independent identically distributed random variables with mean  and standard deviation  .

Let 1 2     n
n

X X X
X

n

  



. Then

(0,1)
n dX m

N

n





where d indicates distributional convergence.
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Example 1.9.3 The content of 500ml bottles of Coca-Cola has normal distribution mean 503ml and stan-dard
deviation 5ml.

1.  Find the probability that a randomly chosen bottle has less than 500ml cola in it.

2.  Find the probability that a randomly chosen 6-pack of bottles has an average of less than 500ml.

Solution:

1.   500 503
500 0.6 0.2743

5
( )P X P Z P Z

        
 

.

2.   500 503
500 ( 1.47) 0.0708

5

6

P X P Z P Z

 
        
 
 
 

.

Example 1.9.4 The waiting time for a particular service for a person is exponentially distributed with mean 5
minutes.  Find the probability that a total service time for hundred people is no more than 8 hours.

Solution: For exponential distribution the mean is the same as the standard deviation, so 5  . From the
CLT we know that the sample mean is approximately normal.  Let T be the total service time in minutes.

 480 4.8
4.8 5

( ) ( 0.4) 0.3446
5

100

P ZP PP X ZT

 
       
 
 
 

   .
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Chapter 2

Confidence Intervals and Hypothesis
Testing

2.1     Confidence Intervals

As mentioned before, if we specify a range or an interval around the point estimator within which the parameter
being estimated is expected to lie, then that is called an interval estimator. Usually it will be an interval such that the
point estimator is in the center, but not always. First we decide on what is called a confidence coefficient  , often
chosen to be 0.05. Then the interval around the point estimator is so chosen that the probability that this random
interval actually contains the unknown parameter is 1  .  Such an interval is called a 100 1( %) confidence

interval.  If  is 0.05, then we get a 95% confidence interval. In general, a 100 1( %) confidence interval for a

parameter  based on a sample X is a random interval of the form ,( ( ) ( ))L X R X such that

[ ( ( ) ( ))], 1P L X R X   

For the mean  of a normal population whose standard deviation is known to be  , a 100 1( %)
confidence interval  is given by

2

x z
n






where z is the value found in the standard normal table (also known as the Z -table) so that the probability of Z

exceeding it is (that is, ( )P Z z   ).

When  is unknown, as is the case in most situations, we need to use its estimator s in its place.  In this case,
you substitute s in place of  and t in place of z to get

1,
2

n

s
x t

n





where
1,

2
n

t 


is from the t -distribution with 1n  degrees of freedom. We no longer use the values from the Z -

table in this case unless n is very large. If the sample is large, then the requirement that the underlying population is
normal is not necessary.  All we need is finiteness of the variance.

The following table summarizes the methods for different cases.
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Table 2.1: Confidence Intervals

Distribution Pop. St. Deviation Sample Size Conf. Interval
Normal Known Small/Large

2

x z
n






Normal Unknown Small/Large

1,

2

n

s
x t

n






Non-normal Known Large

2

x z
n






Non-normal Unknown Large

1,

2

n

s
x t

n






Non-normal Small No formula

Example 2.1.1 A sample of size 100 taken from a population with   12  yielded a sample mean of
31.6x  . Construct a 99% confidence interval for the population mean.

Solution: Here the population standard deviation is known, so we use the z confidence interval. As

0.01  , we use the formula .005x z
n


 . Substituting, we get

12
31.6 2.576 31.6 3.091 28.509,34.691

10
( )

     
 

.

Example 2.1.2 A sample of size 16 was taken from a normal population with 3  . The sample mean and the
sample standard deviation were 17.6x  and 3.7s  . Construct a 95% confidence interval for the population mean.

Solution: Here the population standard deviation is known, so we use the z confidence interval.   As 0.05  , we

use the formula .025x z
n


 . Substituting, we get

3
17.6 1.96 17.6 1.47 (16.13,19.07)

4
     
 

Note that here we ignored the value of s because when we know the value of  , we don’t need s .
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Example 2.1.3 A sample of size 36 was taken from a population and the sample mean and the sample variance
obtained were 19.9x  and 2 32.8329s  . Construct a 90% confidence interval for the population mean.

Solution: Here the population standard deviation is unknown, so we use the t confidence interval. As

0.1  and the . . 35d f  , we use the formula 35,.05

s
x t

n
 .

Substituting, we get:

5.73
19.9 1.690 (18.286,21.514)

6
   
 

.

2.2     Testing Statistical Hypotheses

2.2.1     The Null and Alternative Hypotheses

A statistical hypothesis is an assertion or conjecture about one or more population parameters or the nature of the
population. The idea is first to formulate a hypothesis, which we shall call null hypothesis, then to check if there is
enough statistical evidence to refute it. The null hypothesis is usually denoted by 0H .

The hypothesis which we use as an alternative to null hypothesis, which we accept if null hypothesis is rejected,
is called the alternative hypothesis.  The alternative hypothesis is usually denoted by 1H or AH or aH . It covers all

or part of the situations not covered by the null hypothesis. For example, we may have

0H : 0µ µ vs. 1H : 0µ µ

or

0H : 0µ µ vs. 1H : 0µ µ

or

0H : 0µ µ vs. 1H : 0µ µ

The first two alternatives are called one-sided alternatives and the third alternative is called a two-sided alternative.

Whether we reject a null hypothesis or not depends on the value of the statistic we use for the test.  This is called
a test statistic. If the test statistic falls in a specific region, we reject 0H and accept it otherwise. This region is called

the critical region or the rejection region. Its complement is called the acceptance region.
It is possible that we make an error in deciding whether the null hypothesis is true or not. If 0H is true and you

decided that it is not, you made what is known as the type I error. On the other hand, if you made the wrong
decision that 0H is true when it really is not, then you are making type II error. Obviously when you try to reduce

one of them, the other will increase. The type I error is deemed more serious of the two. Because of this, the
statistician tries to keep the probability of making that type of error no more than a specified value  , known also
as the level of significance, and make decision that would minimize the type II error.  Most of the times  is taken
to be 0.05. The probability of type II error is usually denoted by  , and 1  is called the power. Naturally, the

higher the power of the test is, the better.

Table 2.2: Hypothesis Testing

Accept 0H Reject 0H

0H is true Correct(1 ) Type I error( )

0H is false Type II error( ) Correct(1 )
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The alternative hypotheses are usually composite hypotheses  (hypotheses that cover more than possibil-ities) as
opposed to the null hypotheses which are usually simple hypotheses (covering only one possibility). So when we
talk about the probability of type II error, it will strongly depend on the value of the parameter. Thus  , and hence

the power, are functions of the parameter. The latter is called the power function.
Suppose we want to test a hypothesis with a two-sided alternative about the population mean.  Formally, we are

testing

0 1:   vs. :H µ H    

where we reject the null hypothesis if the value of the test statistic is too large or too small.  If  is known, then the
test statistic is

0x
Z

n







and we reject the null hypothesis 0H if Z z


 or Z z


  (in other  words, we reject 0H if
2

Z z ).  If

2 2

z Z z    , we do not reject  the null hypothesis.

In case of a one-sided  alternative of
1H : 0µ µ , we reject

0H if Z z and  in case of a one-sided

alternative of 1H : 0µ µ , we reject  if Z z  . These  cut-off values  beyond  which we reject  the  null hypothesis

are called critical values.
If  is unknown, use s in the  place of  and t instead of z . The  test  statistic used in this  case is thus

0x
t

s

n


 . The critical value would then be 1,nt  or

1,
2

n
t 


depending on whether we have a one-sided or a two-

sided alternative. To use either the Z -procedure or the t -procedure for small samples, the underlying population
distribution has to be normal.

Example 2.2.1 The manufacturer of a certain brand of cigarettes claim that the average nicotine content does not
exceed 2.5 milligrams. Suppose that when a sample of size 100 was taken, it was found that the sample mean and
the sample standard deviation are 2.55 and 0.5 respectively. Decide whether there is enough statistical evidence to
reject the manufacturer’s claim based on a 0.05 level test.

The manufacturer’s claim is to be rejected only if µ is greater than 2.5 milligrams and accepted if it is less than

or equal to 2.5 milligrams.  As we will always specify the null hypothesis as a single number, this is how we will
formulate the null and alternative hypotheses:

0H : 2.5µ  vs. 1H : 2.5µ 

The t -statistic is equal to
2.55 2.5

1
0.5

100


 which is to be compared to 99,.05 100,.05 1.66t t  . As the t value is smaller

than 1.66, we do not reject the null hypothesis.

Note: The right terminology is to say that we not reject 0H rather than accept 0H . Failing to reject the null

hypothesis does not mean that we have concluded it to be true. It is just that we do not have sufficient evidence to
reject it.
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Table 2.3: Rejection Regions for Z - and t -Tests

 Distribution Sample Size Alternative Rejection Region

Known

Normal Small/large
  Z z

  Z z 

  Z z

Non-normal Large
  Z z

  Z z 

  Z z

Non-normal Small No formula

Unknown

Normal Small/large

  1,nt t 

  1,nt t  

 
1,nt t 

Non-normal Large
  1,nt t 

  1,nt t  

 
1,nt t 

Non-normal Small No formula

Example 2.2.2 An economist wants to test whether the average annual household income of a small town is below
$25000. Assume that the population is normal with a known population standard deviation 2000. A sample of size
25 was taken and the mean of this sample was 24000. Formulate the hypotheses and test the null hypothesis at 5%
level of significance.

0H : 25000µ  vs. 1H : 25000µ 

24000 25000
2.5

2000

25

Z


  

As the calculated value of z is smaller than .05 1.645z   , we reject the null hypothesis in favor of the alternative

that 25000µ  .

Example 2.2.3 A sample of size 20 was taken from a normal population. The sample mean and sample variance are
12.1 and 12.25 respectively. Test the null hypothesis 10µ  against a two-sided alternative. Use 1% level of

significance.

0H : 10µ  vs. 1H : 10µ 

12.1
2.683

12.25
20

t  
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As the calculated value of t is smaller than 19,.005 2.861t  , we do not reject the null hypothesis.

2.2.2     P-Values

There is another way of looking at the hypothesis-testing problem – through so-called p -values.  We now discuss

how this is done.
Suppose we suspect that a certain cereal company’s 500g packets of cereal are being under filled. We cannot

accuse the company unless we feel quite confident that we are correct in our claim.  The alternative hypothesis
would be 1H : 500µ  where µ is the population mean of the net weight of the company’s 500g cereal packets. All

calculations are carried out assuming that the null hypothesis is true, so the null hypothesis is always in the form ‘ ’ .
Thus the hypotheses are

0 :H 500µ  vs. 1H : 500µ  .

To test the hypothesis, we take a simple random sample and calculate the sample mean. We now want to know
whether the sample value provides enough evidence to suggest 500µ  . Even if µ is indeed 500, we expect some

random fluctuations about 500, but how far from 500 does the sample mean need to be before we can say it is
unlikely that the sample came from a population with mean 500?

We first calculate the test statistic
x

Z

n




 and then the probability of obtaining such an extreme value in

the direction of the alternative hypothesis. If this probability, called p-value, is small, then we say that we have
enough evidence to reject the null hypothesis  (ie. there is only a small chance of this event if 0H is correct, so we

are willing to back the alternative hypothesis).
In the above problem of cereal boxes, suppose a sample size of 30 gives a sample mean of 498g.  Given

that the population standard deviation is 5, is there enough evidence to suggest that the packages are underweight?
Here,

0 :H 500µ  vs. 1H : 500µ  .

We calculate  498P X  assuming that 0H is true, that is,
5

500,
30

N
 
 
 

.

  498 500
498 2.19 0.0143

5
(

0

)

3

P X P Z P Z

 
        
 
 
 

So if  is indeed 500, the probability of obtaining a sample mean less than 498 is 0.0143. Is this a small enough

probability to say that we think the null hypothesis is wrong?  (It is a value that would occur 1.43% of the time by
chance alone when in fact 0H is true). If the p -value is smaller than the significance level, we reject the null

hypothesis. If we are to use 5% level of significance, we will reject the null hypothesis that 500µ  and conclude

that the population mean is less than 500. We will not reject 0H if we are using 1% significance level.

Note: If the alternative hypothesis is two-sided, then we need to add the two tail probabilities (or double the right-tail
probability) to get the p -value.

The method of testing hypotheses using p -values is equivalent to the previous method we learned using critical

values.

Statistical significance:
If the p -value is as small or smaller than  , we say the data are statistically significant at level  and we

reject the null hypothesis.
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There is a relation between confidence intervals and hypothesis tests with two-sided alternatives. The hypothesis
would be rejected at significance level  if and only if the hypothesized value 0µ falls outside the

100(1 )% confidence interval. If the test is one-sided, we cannot  make a decision based on the confidence

Intervals.

Example 2.2.4 A manufacturer of small appliances employs a market research firm to estimate retail sales of its
products by gathering information from a sample of retail stores. This month an SRS (simple random sample) of 75
stores in the Midwest sales region finds that these stores sold an average of 24 of the manufacturer’s hand mixers,
with standard deviation 11.

(a) Give a 95% confidence interval for the mean number of mixers sold by all stores in the region.

(b) The distribution of sales is strongly right skewed, because there are many smaller stores and a few very large
stores. The use of t in (a) is reasonably safe despite this violation of the normality assumption. Why?

(c) Would you reject the null hypothesis 0 :H 22µ  against the alternative 1 :H 22µ  at significance level

0.05? What about at 0.01?

(d) What is the approximate p -value for the test in (c)?

Solution:

(a) As . . 1 74d f n   is not available in the t table, take the closest available, which is 70. The confidence interval

given by

1,
2

n

s
x t

n





11
24 1.994

75
 

24 2.53 

 21.47,26.53

(b) As sample size is large, the sample mean will be approximately normal even though the parent population is not.
Thus it is safe to use t -distribution.

(c) Since 22 is inside the 95% confidence interval, we will accept 0H against a two-sided alternative at 0.05 level. If

we accept at 0.05 level, we certainly will accept at 0.01 level. Another way of looking at this is that if 22 is in the
95% confidence interval, then it is certainly inside the bigger 99% interval. If the question is about level 0.1, then
we cannot answer it based on the fact that it is inside the 95% interval. We will then need to recalculate.

(d) First  we calculate  the test  statistic
24 22

1.575
11

75

t


  .  74( )1.575 1.575 0.0576P t P Z   . Thus p -value

is 2 0.0576 0.1152 

2.3     Selection of Sample Size

Consider the formula for the confidence interval for the population mean for the case of known population standard
deviation. Note how the margin of error changes as n increases. To obtain higher confidence from the same data
you have to accept a higher margin of error. To obtain higher confidence without increasing the margin of error we
need more observations. But sometimes we may want to select a sample size that will guarantee a desired
confidence level for a fixed margin of error m . A formula for the sample size is derived as follows:

2

2 2 2

z z z

m n
mn

n
m

     
       
 
 
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Here we select the confidence level and the error margin that you are willing to tolerate and find the sample size we
need.   As the formula will not usually give a whole number, we need to round it to an integer. Always round up
because rounding down will give you a sample size that would not guarantee the required precision.

Example 2.3.1 Suppose we need to construct a 98% confidence interval for µ with a margin of error no more than

.0001.  It is known that 0.0002. The required sample size is calculated as follows: 
2

2
2.326(.0002)

21.64
.0001

z

n
m




 
         

 
So we choose n to be 22.

In many situations, we would not know the value of the population standard deviation. In such cases, we may
use an estimated value from past experience, possibly a prior survey. If no such information is available, one can
conduct a pilot study with a smaller sample to estimate the standard deviation.

2.4     Inference for variance and standard deviation

2.4.1 Confidence intervals

Given a random sample of size n from a normal population, we can get a 100 1( %) confidence interval for the

population variance 2 as follows:

2 2

2 2

1, 1,1
2 2

( 1) ( 1)
,

n n

n s n s

  
  

 
  

 
 
 

You need to look up the Chi-square distribution table for the critical values.  Confidence intervals for the standard
deviation can be found by taking square-roots.

Example 2.4.1 A food inspector examined 12 jars of a certain brand of peanut butter and determined the
percentages of impurities. The result is given below:

2.3,  1.9,  2.1,  2.8,  2.3,  3.6,  1.4,  1.8, 2.1,  3.2,  2.0,  1.9

Construct a 90% confidence interval for the standard deviation.

Solution: From the data, we get 0.625s  . From the table, the 11 d.f. 2 values for 0.05 and 0.95 are

19.675 and 4.575. So the confidence interval for the variance is given by

 
2 211 0.625 11 0.625

, 0.2184,0.939
19.675 4.575

  
 

 
.

Thus the confidence interval for the standard deviation is (.47, .97).

2.4.2     Hypothesis Testing

Testing the hypothesis 0 :H 2 2
0  (which us the same as 0 :H 0  ) is done as follows. First we calculate

the test statistic

  2
2

2
0

1n s





 .
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We reject the null hypothesis if

2 2
1,1n     when 1H is   



2 2
1,n    when 1H is   



2 2

1,1
2

n
 

 
 or 2 2

1,
2

n
 


 when 1H is   

 .

Example 2.4.2 An experiment was conducted to determine the specific heat of iron and a random sample of size 9
resulted in a standard deviation of 0.0086. Assuming normality of the underlying population, test the hypothesis that

0.01  against the alternative hypothesis that 0.01  . Use the 0.05 level of significance.
Solution: 0 :  0.01H   vs. 1 :  0.01H   . 9n  , 0.0086s  , 0.05  . We reject the null hypothesis if

2 2
8,.95 2.733   .

2 2
2

2 2
0

( 1) 8(.0086)
5.92 2.733

.01

n s





    , so do not reject 0H .

Example 2.4.3 From past experience, it is assumed that standard deviation of measurements on sheet metal
stampings is 0.41. A new set of 30 stampings are used to test the accuracy of this assumption, and a sample standard
deviation of 0.49 was obtained. Test the hypothesis that 0.41  against the alternative hypothesis that 0.41  .
Use the 0.05 level of significance.
Solution: 0 :  0.41H   vs. 1 :  0.41H   . 30,  0.49,  0.05n s    . We reject the null hypothesis if

2 2
29,.05 42.557   .

2 2
2

2 2
0

( 1) 29(.49)
41.42 42.557

.41

n s





    , so do not reject 0H .

Example 2.4.4 Based on a sample of size 10 that gave .5s  , test the hypothesis at the 0.05 level of significance
that   against the alternative hypothesis that   .

Solution: 0 : H   vs. 1 : H    .    10n , .5s  , 0.05  .  We reject the null hypothesis if 2 2
9,.975 2.7  

or 2 2
9,.025 19.023   .

2 2
2

2 2
0

( 1) 9(1.5)
20.25

1

n s





   . This exceeds 19.023, so we reject 0H .
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Chapter 3

Two-Sample Inference

3.1     Confidence Intervals For Difference of Means

Suppose we have two populations from which we draw samples based on which we want to make inferences about
the underlying parameters. Specifically, we are interested in constructing confidence intervals for the difference
between their population means.

Assume that the two populations are normal, the first with mean 1 and standard deviation 1 , and the second

with mean  and standard deviation 2 . We draw independent samples of size 1n and 2n respectively from these

populations. Based on these, we construct our confidence interval for 1 2µ µ .

3.1.1     Case 1:  the standard deviations are known

If 1 and 2 are known, then a 100 1( %) confidence interval for 1 2µ µ is given by

1 2
1 22

.ax x z
n n

  
   

If the sample sizes are large, say both at least 30, then the assumption of normality can be dropped. The method
will usually work well for non-normal populations too when the sample sizes are large.

Example 3.1.1 Independent random samples of size 16 and 25 are taken from two normal populations with standard
deviations 4.8 and 3.5. The sample means obtained were 18.2 and 23.4.  Construct a 90% confidence interval for
the difference of the population means.

Solution: Here 1 16n  , 2 25n  , 1 18.2x  , 2 23.4x  , 1 4.8  and 2 3.5  . 1 4.8  . 0.1  , so
2

1.645z  .

Therefore the 90% C.I. is given by

x
1
− x

2
± za

2

1
2

n
1

+ 2
2

n
2

= 18.2 − 23.4 ±1.645
4.82

16
+ 3.52

25
= −5.2 ± 2.285

3.1.2     Case 2:  the standard deviations are unknown:

If the two normal populations have unknown standard deviations an approximate 100 1( %) confidence interval

is given below:

1 2
,

1 22
m

s s
x x t

n n

 
   

where the approximate degrees of freedom is given by 1 2  1,    1)(m min n n   .

Example 3.1.2 Two independent samples of size 40 and 50 from a normal population yielded sample means 13.5
and 9.3. The corresponding sample variances were 14.4 and 112.5. Find an approximate 99% confidence interval
for the difference between the means.
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 39,.005

14.4 112.5
13.5 9.3 4.2 2.704 1.6155 4.2 4.368

40 50
t      

3.1.3     Case 3:  the standard deviations are equal and unknown:

If the variances of two normal populations are unknown but known to be equal, then we estimate   the common
variance from the individual sample variances by taking a weighted average. This is called the pooled estimator.

   2 2
1 1 2 22

1 2

1 1
.

2p

n s n s
s

n n

  


 
The 100 1( %) confidence interval  for 1 2µ µ is then  given by

1 2
1 2

2,
1 22

1 1
.p

n n
x x t s

n n
 

  

Example 3.1.3 Twelve randomly selected mature citrus trees of one variety have a mean height of 13.8 feet with a
standard deviation of 1.2 feet. Fifteen randomly selected mature citrus trees of another variety have a mean height of
12.9 feet with a standard deviation of 1.5 feet. Assuming that the samples were taken from normal populations with
equal variances, construct a 95% confidence interval for the difference between the true average heights of the two
varieties of citrus trees.

Solution:
   2 2

2 12 1 1.2 15 1 1.5
1.8936

12 15 2ps
  

 
 

, so the 95% confidence interval for 1 2µ µ is given by

  25,.025

1 1
13.8 12.9 1.8936 .9 2.060 1.376 .3873 .9 1.098.

12 15
t      

So we can be 95% certain that the difference between means is between -0.198 and 1.998 feet.

3.2     Hypothesis testing for difference of means

Here we work with the same framework as in the case of confidence intervals. We want to test the hypothesis

0 1 2:H µ µ   against  one of these alternatives:

1 1 2:H µ µ  

1 1 2:H µ µ  

1 1 2:  .H µ µ  
The alternative hypothesis is chosen depending on the situation.  In most commonly occurring situations,

0  .

3.2.1     Case 1:  the standard deviations are known

We calculate the test statistics

1 2

2 2
1 2

1 2

.
x x

Z

n n



 

 




We reject the null hypothesis in favor of the alternative hypothesis at significance level  if

Z z for 1 1 2:H µ µ  

Z z for 1 1 2:H µ µ  

2

Z z for 1 1 2:H µ µ  

Example 3.2.1 For the data in Example 3.1.1, test the hypothesis that the difference of means is -7 against a two-
sided alternative at 10% level of significance.
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Solution: The null and the alternative hypotheses are 0 1 2:  7H µ µ   against 1 1 2:  7H µ µ   .  We reject the

null hypothesis if 0.05 1.645Z z  .

1 2

2 2 2 2
1 2

1 2

18.2 23.4 ( 7) 1.8
1.296

1.934.8 3.5
16 25

x x
Z

n n



 

    
   



As this falls in the acceptance region, we do not reject the null hypothesis.  We have no reason to suspect that the
difference is not -7.

3.2.2     Case 2:  the standard deviations are unknown:

If the two normal populations have unknown standard deviations, we reject the null hypothesis in favor of the
alternative hypothesis at significance level  if

,mt t   for 1 1 2:H µ µ  

,mt t   for 1 1 2:H µ µ  

,
2

m
t t  for 1 1 2:H µ µ  

where

1 2

2 2
1 2

1 2

x x
t

s s

n n

 




and 1 21 1 .( , )m min n n  

Example 3.2.2 Consider the situation given in Example 3.1.2.  Test, at .01 level of significance, the hypothesis that
the means of these populations are same against the alternative hypothesis that the first population has a larger mean.

Solution: The null and the alternative hypotheses are 0 1 2:  0H µ µ  against 1 1 2:  0H µ µ  .  We reject the null

hypothesis if 39,.01 2.423.t t 

1 2

2 2
1 2

1 2

13.5 9.3 4.2
2.599.

1.61614.4 112.5
40 50

x x
t

s s

n n

 
   



As the computed t -value is larger than the critical value 39,.01 2.423t  , we reject the null hypothesis and conclude

that the first population has a larger mean.

3.2.3     Case 3:  the standard deviations are equal and unknown:

As before, we calculate the test statistics

1 2

1 2

.
1 1

p

x x
t

s
n n

 




We reject the null hypothesis in favor of the alternative hypothesis at significance level  if

1 2 2,n nt t    for 1 1 2:H µ µ  

1 2 2,n nt t   for 1 1 2:H µ µ  

1 2 2,
2

n n
t t 

 
 for 1 1 2:H µ µ  

Example 3.2.3 Two independent random samples of size six each from two normal populations with equal variance
yielded sample means 77.4 and 72.2. The corresponding standard deviations were 3.3 and 2.1. At the significance
level 0.01, test whether the two population means are the same.
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Solution: The null and the alternative hypotheses are 0 1 2:  0H µ µ  against 1 1 2:  0.H µ µ  We reject the null

hypothesis if 10,.005 3.169.t t 

2 25 3.3 5 2.1
2.766.

10ps
  



1 2

1 2

5.2
3.256

1 1 1 1
2.766

6 6p

x x
t

s
n n


  

 

As this is in the rejection region, we reject the null hypothesis. There is a significant difference between the means.

3.3     Confidence intervals for ratio of variances

Suppose we have two independent samples of size 1n and 2n from normal populations. Then  a  100 1 %

confidence interval for the ratio of the variances








is given by

2 1

1 2

2 2
1 1
2 2 1, 1,
2 2 2

1, 1,
2

1
,

n n
n n

s s
F

Fs s 


 
 

 
 
 
 
 

You need to look up the F -distribution table for the critical values.  Confidence intervals for ratio of the
standard deviations can be found by taking square-roots.

Example 3.3.1 Find a 98% confidence intervals for the ratio of variances and the ratio of standard deviations for the
data in Example 3.1.3.

Solution: 98% confidence interval is given by

 
2 2

11,14,.012 2
11,14,.01

1.2 1 1.2 .64
, ,.64 4.29 .166, 2.746 .

3.861.5 1.5
F

F

            

Taking square-roots, we get the confidence intervals for the ratio of standard deviations to be

   .. 416 076, 2. ,1.7 6 .4 657

3.4     Hypothesis Testing for equality of two variances

Suppose we want to test the hypothesis 0 1 2:H   against a one-sided or two-sided alternative. We reject the

null hypothesis if

1 2

2
1

1, 1,2
2

n n

s
F

s   for 1 1 2:  ,H  

2 1

2
2

1, 1,2
1

n n

s
F

s   for 1 1 2:  .H  

For the two-sided alternative 1 1 2:H   , we reject the null hypothesis if

1 2

2
1
2 1, 1,
2 2

n n

s
F

s 
 

 if 1 2s s

2 1

2
2
2 1, 1,
1 2

n n

s
F

s 
 

 if 1 2 .s s
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Example 3.4.1 In the comparison of two kinds of paint, it was found that four 1-gallon cans of one brand cover 546
square feet on the average with a standard deviation of 31 square feet, while four 1-gallon cans of another brand
cover 492 square feet on the average with a standard deviation of 26 square feet. Test the hypothesis that the
variances are the same against the alternative that the variance of the first population is larger.

Solution: Here 1 2 4n n  , 1 31s  , 2 26s  . The hypothesis is 0 1 2:H   and the alternative hypothesis is

1 1 2:H   . We reject 0H if
2
1

3,3,.052
2

9.28
s

F
s
  . As

2 2
1
2 2
2

31
1.42

26

s

s
  , do not reject the null hypothesis.

Example 3.4.2 To compare two kinds of bumper guards, six of each kind were mounted on a certain make of car
and each car was run into a concrete wall at 5 miles per hour. Costs of repair are given below: Is it

Bumper Guard 1 127 168 143 165 122 139
Bumper Guard 2 154 135 132 171 153 149

reasonable to assume that the two populations have the same variance?

Solution: Here 1 2 6n n  , 1 19.06s  , 2 14.21s  . We are testing the hypothesis 0 1 2:H   against the

alternative hypothesis 1 1 2:H   . As 1 2s s , we reject 0H if
2
1

5,5,.012
2

1.0
s

F
s
  . As

2 2
1
2 2
2

19.06
1.8

14.21

s

s
  , do not

reject the null hypothesis. It is reasonable to assume that the two populations have the same variance.
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Chapter 4

Analysis of Variance
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Statistical Tables

Table 4.1: Normal Distribution

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6

0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.8159
0.8413
0.8643
0.8849
0.9032
0.9192
0.9332
0.9452
0.9554
0.9641
0.9713
0.9772
0.9821
0.9861
0.9893
0.9918
0.9938
0.9953
0.9965
0.9974
0.9981
0.9987
0.9990
0.9993
0.9995
0.9997
0.9998
0.9998

0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.7291
0.7611
0.7910
0.8186
0.8438
0.8665
0.8869
0.9049
0.9207
0.9345
0.9463
0.9564
0.9649
0.9719
0.9778
0.9826
0.9864
0.9896
0.9920
0.9940
0.9955
0.9966
0.9975
0.9982
0.9987
0.9991
0.9993
0.9995
0.9997
0.9998
0.9998

0.5080
0.5478
0.5871
0.6255
0.6628
0.6985
0.7324
0.7642
0.7939
0.8212
0.8461
0.8686
0.8888
0.9066
0.9222
0.9357
0.9474
0.9573
0.9656
0.9726
0.9783
0.9830
0.9868
0.9898
0.9922
0.9941
0.9956
0.9967
0.9976
0.9982
0.9987
0.9991
0.9994
0.9995
0.9997
0.9998
0.9999

0.5120
0.5517
0.5910
0.6293
0.6664
0.7019
0.7357
0.7673
0.7967
0.8238
0.8485
0.8708
0.8907
0.9082
0.9236
0.9370
0.9484
0.9582
0.9664
0.9732
0.9788
0.9834
0.9871
0.9901
0.9925
0.9943
0.9957
0.9968
0.9977
0.9983
0.9988
0.9991
0.9994
0.9996
0.9997
0.9998
0.9999

0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7704
0.7995
0.8264
0.8508
0.8729
0.8925
0.9099
0.9251
0.9382
0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9875
0.9904
0.9927
0.9945
0.9959
0.9969
0.9977
0.9984
0.9988
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8944
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999

0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406
0.9515
0.9608
0.9686
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999

0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7794
0.8078
0.8340
0.8577
0.8790
0.8980
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.9756
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9989
0.9992
0.9995
0.9996
0.9997
0.9998
0.9999

0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8365
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429
0.9535
0.9625
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9951
0.9963
0.9973
0.9980
0.9986
0.9990
0.9993
0.9995
0.9996
0.9997
0.9998
0.9999

0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
0.9993
0.9995
0.9997
0.9998
0.9998
0.9999
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Table 4.2:  distributiont


d.f.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
40
50
60
70
80


0.200
1.376
1.061
0.978
0.941
0.920
0.906
0.896
0.889
0.883
0.879
0.876
0.873
0.870
0.868
0.866
0.865
0.863
0.862
0.861
0.860
0.859
0.858
0.858
0.857
0.856
0.856
0.855
0.855
0.854
0.854
0.853
0.853
0.853
0.852
0.852
0.851
0.849
0.848
0.847
0.846
0.841

0.100
3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372
1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
1.315
1.314
1.313
1.311
1.310
1.309
1.309
1.308
1.307
1.306
1.303
1.299
1.296
1.294
1.292
1.282

0.050
6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
1.696
1.694
1.692
1.691
1.690
1.684
1.676
1.671
1.667
1.664
1.645

0.025
12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.040
2.037
2.035
2.032
2.030
2.021
2.009
2.000
1.994
1.990
1.960

0.010
31.821
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764
2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
2.453
2.449
2.445
2.441
2.438
2.423
2.403
2.390
2.381
2.374
2.326

0.005
63.656
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
2.744
2.738
2.733
2.728
2.724
2.704
2.678
2.660
2.648
2.639
2.576

0.001
318.289
22.328
10.214
7.173
5.894
5.208
4.785
4.501
4.297
4.144
4.025
3.930
3.852
3.787
3.733
3.686
3.646
3.610
3.579
3.552
3.527
3.505
3.485
3.467
3.450
3.435
3.421
3.408
3.396
3.385
3.375
3.365
3.356
3.348
3.340
3.307
3.261
3.232
3.211
3.195
3.091
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Table 4.3: Chi-square distribution


. .d f 0.995 0.990 0.975 0.950 0.050 0.025 0.010 0.005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
50
60
70
80

100

3.9E-05
0.0100
0.072
0.207
0.412
0.676
0.989
1.344
1.735
2.156
2.603
3.074
3.565
4.075
4.601
5.142
5.697
6.265
6.844
7.434
8.034
8.643
9.260
9.886
10.520
11.160
11.808
12.461
13.121
13.787
20.707
27.991
35.534
43.275
51.172
67.328

0.00016
0.0201
0.115
0.297
0.554
0.872
1.239
1.647
2.088
2.558
3.053
3.571
4.107
4.660
5.229
5.812
6.408
7.015
7.633
8.260
8.897
9.542

10.196
10.856
11.524
12.198
12.878
13.565
14.256
14.953
22.164
29.707
37.485
45.442
53.540
70.065

0.00098
0.0506
0.216
0.484
0.831
1.237
1.690
2.180
2.700
3.247
3.816
4.404
5.009
5.629
6.262
6.908
7.564
8.231
8.907
9.591

10.283
10.982
11.689
12.401
13.120
13.844
14.573
15.308
16.047
16.791
24.433
32.357
40.482
48.758
57.153
74.222

0.00393
0.103
0.352
0.711
1.145
1.635
2.167
2.733
3.325
3.940
4.575
5.226
5.892
6.571
7.261
7.962
8.672
9.390

10.117
10.851
11.591
12.338
13.091
13.848
14.611
15.379
16.151
16.928
17.708
18.493
26.509
34.764
43.188
51.739
60.391
77.929

3.841
5.991
7.815
9.488

11.070
12.592
14.067
15.507
16.919
18.307
19.675
21.026
22.362
23.685
24.996
26.296
27.587
28.869
30.144
31.410
32.671
33.924
35.172
36.415
37.652
38.885
40.113
41.337
42.557
43.773
55.758
67.505
79.082
90.531
101.879
124.342

5.024
7.378
9.348

11.143
12.832
14.449
16.013
17.535
19.023
20.483
21.920
23.337
24.736
26.119
27.488
28.845
30.191
31.526
32.852
34.170
35.479
36.781
38.076
39.364
40.646
41.923
43.195
44.461
45.722
46.979
59.342
71.420
83.298
95.023
106.629
129.561

6.635
9.210

11.345
13.277
15.086
16.812
18.475
20.090
21.666
23.209
24.725
26.217
27.688
29.141
30.578
32.000
33.409
34.805
36.191
37.566
38.932
40.289
41.638
42.980
44.314
45.642
46.963
48.278
49.588
50.892
63.691
76.154
88.379
100.425
112.329
135.807

7.879
10.597
12.838
14.860
16.750
18.548
20.278
21.955
23.589
25.188
26.757
28.300
29.819
31.319
32.801
34.267
35.718
37.156
38.582
39.997
41.401
42.796
44.181
45.558
46.928
48.290
49.645
50.994
52.335
53.672
66.766
79.490
91.952
104.215
116.321
140.170
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Table 4.4:   distribution  withF 0.05 

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

161
18.5
10.1
7.71
6.61
5.99
5.59
5.32
5.12
4.96
4.84
4.75
4.67
4.60
4.54

199
19.0
9.55
6.94
5.79
5.14
4.74
4.46
4.26
4.10
3.98
3.89
3.81
3.74
3.68

216
19.2
9.28
6.59
5.41
4.76
4.35
4.07
3.86
3.71
3.59
3.49
3.41
3.34
3.29

225
19.2
9.12
6.39
5.19
4.53
4.12
3.84
3.63
3.48
3.36
3.26
3.18
3.11
3.06

230
19.3
9.01
6.26
5.05
4.39
3.97
3.69
3.48
3.33
3.20
3.11
3.03
2.96
2.90

234
19.3
8.94
6.16
4.95
4.28
3.87
3.58
3.37
3.22
3.09
3.00
2.92
2.85
2.79

237
19.4
8.89
6.09
4.88
4.21
3.79
3.50
3.29
3.14
3.01
2.91
2.83
2.76
2.71

239
19.4
8.85
6.04
4.82
4.15
3.73
3.44
3.23
3.07
2.95
2.85
2.77
2.70
2.64

241
19.4
8.81
6.00
4.77
4.10
3.68
3.39
3.18
3.02
2.90
2.80
2.71
2.65
2.59

242
19.4
8.79
5.96
4.74
4.06
3.64
3.35
3.14
2.98
2.85
2.75
2.67
2.60
2.54

243
19.4
8.76
5.94
4.70
4.03
3.60
3.31
3.10
2.94
2.82
2.72
2.63
2.57
2.51

244
19.4
8.74
5.91
4.68
4.00
3.57
3.28
3.07
2.91
2.79
2.69
2.60
2.53
2.48

245
19.4
8.73
5.89
4.66
3.98
3.55
3.26
3.05
2.89
2.76
2.66
2.58
2.51
2.45

245
19.4
8.71
5.87
4.64
3.96
3.53
3.24
3.03
2.86
2.74
2.64
2.55
2.48
2.42

246
19.4
8.70
5.86
4.62
3.94
3.51
3.22
3.01
2.85
2.72
2.62
2.53
2.23
2.40

Table 4.5:   distribution  withF 0.01 

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4052
98.5
34.1
21.2
16.3
13.7
12.2
11.3
10.6
10.0
9.65
9.33
9.07
8.86
8.68

4999
99.0
30.8
18.0
13.3
10.9
9.55
8.65
8.02
7.56
7.21
6.93
6.70
6.51
6.36

5403
99.2
29.5
16.7
12.1
9.78
8.45
7.59
6.99
6.55
6.22
5.95
5.74
7.56
7.42

5625
99.2
28.7
16.0
11.4
9.15
7.85
7.01
6.42
5.99
5.67
4.41
5.21
5.04
4.89

5764
99.3
28.2
15.5
11.0
8.75
7.46
6.63
6.06
5.64
5.32
5.06
4.86
4.69
4.56

5859
99.3
27.9
15.2
10.7
8.47
7.19
6.37
5.80
5.39
5.07
4.82
4.62
4.46
4.32

5928
99.4
27.7
15.0
10.5
8.26
6.99
6.18
5.61
5.20
4.89
4.64
4.44
4.28
4.14

5981
99.4
27.5
14.8
10.3
8.10
6.84
6.03
5.47
5.06
4.74
4.50
4.30
4.14
4.00

6022
99.4
27.3
14.7
10.2
7.98
6.72
5.91
5.35
4.94
4.63
4.39
4.19
4.03
3.89

6056
99.4
27.2
14.5
10.1
7.87
6.62
5.81
5.26
4.85
4.54
4.30
4.10
3.94
3.80

6083
99.4
27.1
14.5
9.96
7.79
6.54
5.73
5.18
4.77
4.46
4.22
4.02
3.86
3.73

6106
99.4
27.1
14.4
9.89
7.72
6.47
5.67
5.11
4.71
4.40
4.16
3.96
3.80
3.67

6126
99.4
27.0
14.3
9.82
7.66
6.41
5.61
5.05
4.65
4.34
4.10
3.91
3.75
3.61

6143
99.4
26.9
14.2
9.77
7.60
6.36
5.56
5.01
4.60
4.29
4.05
3.86
3.70
3.56

6157
99.4
26.9
14.2
9.72
7.56
6.31
5.52
4.96
4.56
4.25
4.01
3.82
3.66
3.52


