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PREDICTINGHOSPITALREADMISSIONS

20.1 WHY ARE HOSPITAL READMISSIONS IMPORTANT?

Many hospitals have decided to prioritize reducing readmission rates across the United States
due to the Hospital Readmissions Reduction Program (HRRP), which was established in
2012 by the Centers for Medicare & Medicaid Services (CMS) [1]. CMS provides
considerable information about the program on its website, [2]. Hospital readmissions are
disruptive for both patients and hospital administration. Readmissions can lead to longer
stays, and put patients at additional risk of hospital-acquired infections and complications.
Meanwhile, hospital readmissions are often costly to the nation’s healthcare system. An
analysis of 2005 Medicare claims by the Medicare Payment Advisory Commission
(MedPAC) concluded that avoidable readmissions within 30 days of discharge resulted in an
estimated $12 billion in Medicare spending [3]. According to the Agency for Healthcare
Research and Quality between January and November 2011 (before HRRP became affective),
hospitals spent $41.3 billion to treat patients readmitted within 30 days of discharge [4].
Thus, in order to promote better quality of care, increase hospital efficiency and to reduce
healthcare costs, HRRP was put into effect in November 2012. Section 3025 of the
Affordable Care Act added section 1886(q) to the Social Security Act establishing the
Hospital Readmissions Reduction Program, which required CMS to reduce payments to IPPS
hospitals with excess readmissions, effective for discharges beginning on October 1, 2012.

HRRP places penalties on hospitals with high readmission rates. Hospitals with readmission
rates exceeding the national average for certain conditions (initially heart failure, pneumonia,
and acute myocardial infarction) will have their total Medicare reimbursement (all
discharges, not just the target conditions) reduced. Initially the reduction in funding was
capped at 1% of the reimbursement, but this has risen to 3% as of 2015. Under this financial
pressure, hospitals are making significant progress with different strategies to reduce their
readmission rates. According to CMS, the national readmission rate fell to 17.5 percent in
2013, whereas for many years before HRRP the readmission rate was steady at 19.5 percent
[2].

In the FY 2012 Inpatient Prospective Payment System (IPPS) final rule, CMS finalized the
following policies with regard to the readmission measures under the Hospital Readmissions
Reduction Program:

 Defined readmission as an admission to a subsection (d) hospital within 30 days of a
discharge from the same or another subsection (d) hospital;

 Adopted readmission measures for the applicable conditions of acute myocardial
infarction (AMI), heart failure (HF), and pneumonia (PN);
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 Established a methodology to calculate the excess readmission ratio for each applicable
condition, which is used, in part, to calculate the readmission payment adjustment. A
hospital’s excess readmission ratio is a measure of a hospital’s readmission performance
compared to the national average for the hospital’s set of patients with that applicable
condition.

 Established a policy of using the risk adjustment methodology endorsed by the National
Quality Forum (NQF) for the readmissions measures to calculate the excess readmission
ratios, which includes adjustment for factors that are clinically relevant including certain
patient demographic characteristics, comorbidities, and patient frailty.

 Established an applicable period of three years of discharge data and the use of a
minimum of 25 cases to calculate a hospital’s excess readmission ratio for each applicable
condition.

CMS has been updating the definitions of target conditions since the program was introduced.
In the FY 2014 IPPS final rule, CMS finalized the expansion of the applicable conditions
beginning with the FY 2015 program to include: (1) patients admitted for an acute
exacerbation of chronic obstructive pulmonary disease (COPD); and (2) patients admitted for
elective total hip arthroplasty (THA) and total knee arthroplasty (TKA). In the FY 2015 IPPS
final rule, CMS finalized the expansion of the applicable conditions beginning with the
FY2017 program to include patients admitted for coronary artery bypass graft (CABG)
surgery in the calculation of a hospital’s readmission payment adjustment factor.
In the FY 2016 IPPS final rule, CMS finalized an update to the pneumonia readmission
measure by expanding the measure cohort to include additional pneumonia diagnoses: (i)
patients with aspiration pneumonia; and (ii) sepsis patients coded with pneumonia present on
admission (but not including severe sepsis).

This chapter focuses on creating practical models that aid in the prediction of the risk of
readmission to a specific hospital within 30 days of discharge for Medicare patients, to aid in
the identification and stratification of at-risk patients for hospitals considering building an
intervention program in a cost-effective manner.

For readers who wish to develop their own predictive model, a dataset is provided on the
Actexmadriver.com website, and R code is provided in the appendix to this chapter.

20.2 READMISSION ADJUSTMENT PENALTY CALCULATION

Calculating the Readmission Adjustment Factor

Excess readmission ratio =
risk-adjusted predicted readmissions

risk-adjusted expected readmissions
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Aggregate payments for excess readmissions = [sum of base operating DRG payments for
AMI x (excess readmission ratio for AMI-1)] + [sum of base operating DRG payments for
HF x (excess readmission ratio for HF-1)] + [sum of base operating DRG payments for PN x
(excess readmission ratio for PN-1)] + [sum of base operating DRG payments for COPD x
(excess readmission ratio for COPD-1)] + [sum of base operating payments for THA/TKA x
(excess readmission ratio for THA/TKA -1)]

Note: if a hospital’s excess readmission ratio for a condition is less than/equal to 1, then there
are no aggregate payments for excess readmissions for that condition included in this
calculation.

Aggregate payments for all discharges = sum of base operating DRG payments for all
discharges

Ratio = 1 - (Aggregate payments for excess readmissions/ Aggregate payments for all
discharges)

Readmissions Adjustment Factor = the higher of the Ratio or 0.97 (3% reduction).
(During the phase-in years these penalties were higher: for FY 2013, the higher of the Ratio
or 0.99% (1% reduction), and for FY 2014, the higher of the Ratio or 0.98% (2% reduction).)

Formulas to Compute the Readmission Payment Adjustment Amount

Wage-adjusted DRG operating amount = DRG weight x [(labor share x wage index) +
(non-labor share x cola, if applicable)]

Base Operating DRG Payment Amount = Wage-adjusted DRG operating amount + new
technology payment, if applicable.

Readmissions Payment Adjustment Amount = [Base operating DRG payment amount x
readmissions adjustment factor] - base operating DRG payment amount.

The readmissions adjustment factor is always less than 1.0000.  Therefore, the readmissions
payment adjustment amount will always be a negative amount (i.e., a payment reduction).

Example of Penalty Calculation

Assume:

• 125-bed hospital.  For simplicity, assume all admissions are Medicare.

• Average length of stay for a Medicare admission: 5.5 days.

• 85% occupancy.

• Admissions = Discharges.
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• Total discharges = 7,000 per year. (Discharges are calculated as: 125*0.85*365/5.5).

• Revenue (Base DRG payment):  7,000 * $10,000 = $70,000,000 per year.

• Hospital has only one admission type (of the penalty admissions): Heart Failure
(CHF).

• Heart Failure admissions: 3.66 % of all admissions = 256.0 per year.

• Average reimbursement per CHF admission: $8,651.

• CHF Revenue: $8,651 * 256.0 = $2,216,000 per year.

• CHF Readmissions expected: 25% * 256.0 = 64.0 per year.

• Actual CHF Readmissions: 110% of expected = 70.4.

• Excess Revenue: (110% -100%) * $2,216,000 = $221,600.

• Ratio of Excess Readmission Payments:  1- (221,600/70,000,000) = (1-0.0032) =
0.9968.

0.9968 is higher than the 0.99 floor so adjustment factor is 0.9968.   Hospital DRG payment
is reduced by 0.32% in FY 2013 ($221,000).

Maximum Hospital payment reduction going forward is 3% from FY 2015. In the case of the
example, however, the penalty is limited to the hospital’s own ratio, which is lower than the
maximum penalty.

20.3 EXISTING READMISSION PREDICTIVE MODELS

The LACE index is a widely used readmission model in the United States, due to its
simplicity and moderate predictive power. The acronym LACE is taken from the initial letters
of the four components on which the model is based:

 Length of stay
 Acuity of admission
 Comorbidity
 Emergency department visits in the previous 6 months. [5]

LACE scores every patient on the risk of readmission upon discharge based on the four
parameters. LACE scores range from 0-19. If a score is between 0-4, the patient is at low risk
of readmission. If a LACE score is between 5 and 9, the patient is at moderate risk of
readmission. LACE scores above 10 are considered high risk of readmission to the hospital.
In order to achieve better outcomes for patients, a simple and practical predictive tool such as
the LACE index can prove helpful. An article published by the first hospital to use the LACE
index in the U.S. suggested that the LACE index should be combined with additional patient-
level risk factors (age, living situation, discharge status, etc.) to increase the discrimination
and accuracy level of prediction [6]. Results were shown to be slightly better than those of
the LACE index alone. Developing a more specific readmission risk prediction model could
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further explain causes of readmissions, as well as more accurately identify and stratify a
population at risk of re-admission for intervention. A study comparing an institution-specific
model to the generic LACE model on three conditions: heart failure (HF), acute myocardial
infarction (AMI), and pneumonia (PN) (as well as a combined model), for three institutions
found the c-statistic for the area under the curve (AUC) to be higher for the specific models
compared to LACE [6].

As lowering readmission rates is in part a monetary issue, a complete evaluation of a model
to predict re-admissions would take into the account the cost of intervening on a patient
identified with higher risk of readmission, together with the effectiveness of the intervention.
In addition the “competing” financial forces (a reduction in the hospital’s revenue as a result
of the avoided readmission, and the offsetting effect of the reduction in any penalties applied
by CMS) need to be considered.  CMS’s penalty formula makes this a particularly difficult
calculation, and one that is hospital-specific.  The “business case” of a model has proven to
be an important factor in judging its effectiveness [7].

20.4 DATA

The data for this study focuses on Medicare patients from around the United States. The
dataset was developed specifically for this study from the Medicare Synthetic Public Use
Files, a sample file of Medicare data made available for research by CMS. These files may
be found at https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-
Public-Use-Files/SynPUFs/DE_Syn_PUF.html.  The data are more limited than those
available in other Medicare files (lacking all the fields discussed, for example, in Chapter 3).
The database available for modeling consisted of admission, re-admission, and emergency
room visits for 66,782 patients collected from 2007 to 2010. The number of emergency visits
represents only the number of visits within the same year as admission to the hospital. The
following are explanatory variables that were provided in the data: admission and discharge
date, birthday, race, sex, state and county codes, diagnosis related group (DRG), and
emergency room visits. (Other variables were calculated as necessary.)

From the original dataset we have derived the following additional variables: age, length of
stay, DRG classification into Medical or Surgical (see Appendix to Chapter 3), and HCC
Risk Score.

 Age was calculated from the patients’ birthdates and the year of admission.
 Length of stay was calculated as the difference between the discharge and admission

dates.
 Diagnosis-Related Group (DRG) is a statistical system of classifying inpatient into

groups for the purposes of payment using the following information: diagnoses, age
and sex of the patients and the presence of co-morbidities and complications (see
Chapter 6). Additionally, DRG classification is divided into subcategories based on
whether or not the patient experienced major complications. For example, the
diagnostic group for Chronic Obstructive Pulmonary Disease (COPD) admissions
(medical) consists of three different DRG codes: 190: Chronic obstructive pulmonary
disease with mcc; 191: COPD with cc and 192: Chronic obstructive pulmonary
disease without cc/mcc. (“With mcc” means “with major complications and
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comorbidities” (most expensive case); “with cc” means “complications and
comorbidities” (moderately expensive case) and “without cc/mcc” means “no
complications and comorbidities” (least expensive case).

 Hierarchical Condition Category (HCC) Risk Score is the relative risk score based
on the enrollee health status and their demographic characteristics (age, and gender).
Raw HCC Risk Score = Demographic score + Health Status scores.  The system of
risk scores measures the disease burden that includes 189 HCC categories, which are
determined based on ICD-9 Codes. In this study, we used the 2011 CMS-HCC
preliminary community factors. Each patient could have more than one HCC
category assigned to them; the final HCC risk score represents the cumulative risk of
all the diseases. Higher HCC Risk Scores indicate a riskier patient.  For an example,
assume we have a male patient who is 50 years old. He was diagnosed with diabetes
with acute complications (HCC17) and dementia without complication (HCC52).
The HCC risk score for this patient is: HCC risk score =demographic score + health
status scores= 0.165+ 0.344 +0.343 =0.852. A SAS program is available from CMS
to generate binary HCC flags (1/0 depending on whether the patient has a diagnosis
within the particular HCC). In the Appendix to this chapter we provide R code that
allows analysts without access to SAS to run HCCs and risk scores.

Table 20.1 summarizes the available data.
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Table 20.1 Summary of Available Data

20.5 THE MODEL

The response variable for our model is readmissions. In total the data contain 8,409
readmissions, while 58,373 patients have not experienced a readmission, implying a
readmission rate of 12.59%. Because we are dealing with a binary response of either
readmission or non-readmission, we chose to fit a logistic regression model for the purpose of
this study.
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20.5.1 METHODOLOGY

Notation
 
Let P be the probability that the patient is readmitted within 30 days after discharge, and
(1-P) the probability that the patient is not readmitted within 30 days after discharge.
Log is the natural logarithm.
Odds: the ratio of the number of ways something can occur to the number of ways it cannot
occur (i.e. P/(1-P)).
logit: denotes the log of the odds (i.e. log (P/(1-P))); and
Y is the response variable (readmission); Y=1 implies readmission; Y=0 implies no
readmission.

Logistic regression

Logistic regression (logit model/logit regression) is a regression model that applies where the
data set has a binary or a multinomial response and several predictors. In our case we have a
binary response (re-admitted/not re-admitted), and a number of possible predictors.

 The response variable (Y|X) follows a Bernoulli distribution with (Y=1|X) occurring
with unknown probability P, and (Y=0|X) occurring with unknown probability (1-P).

 The predicted value for the response variable must be either 0 or 1, according to the
logistic distribution function. The model is a special case of a generalized linear
model, in which the link function component is the logit function.  In the context of
our research, we are interested in predicting the probability that a patient is
readmitted to the hospital within 30 days after discharge based on characteristics such
as: age, gender, race, length of stay during admission, diagnoses, number of
emergency visits, etc.  Logistic regression links the binary outcome (readmission
status) with a combination of the linear predictors. The statistical model of logistic
regression may be simplified as follows:  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Alpha and Beta are estimated using maximum likelihood based on iterative methods such as
Fisher Scoring.  

20.5.2 MODEL BUILDING

We built a logistic regression model using 70% (46,747 observations) of the data set. The
remaining 30% (20,035) of the data set is used for internal validation.
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Table 20.2: Results from training data
(Bolded variables indicate those that are significant at an alpha value of .05)

Variable Coefficient
Odds
Ratio Confidence Interval

Intercept -2.8720 0.0566 (0.047  0.068)
Age -0.0044 0.9956 (0.994  0.998)
Male (vs. Female) -0.0010 0.9990 (0.944  1.061)
Length of Stay 0.0070 1.0070 (1.010 1.019)
HCC Risk Score 0.4118 1.5095 (1.487  1.532)
Number of previous ER visits 0.0235 1.0238 (0.989   1.059)
White (vs Black) 0.0052 1.0052 (0.916  1.105)
Others (vs Black) 0.0056 1.0056 (0.839  1.201)
Hispanic (vs Black) 0.0861 1.0899 (0.871  1.354)
DRG Class Ungroupable (vs. Medical) -0.0070 0.9930 (0.774  1.384)
DRG Class Surgical (vs. Medical) 0.0422 1.0431 (0.937  1.052)

The predictive power of the model can be assessed using the Receiver Operating Curve
(ROC; see chapter 7).  Figure 20.1 shows the ROC curve for this model.

Figure 20.1: ROC Curve for Readmission Model
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The ROC value for the model is 0.73, which indicates a moderate predictive value. The
moderate predictive value is in part due to the limitations of the dataset.  In a test of the
model on actual hospital data the model performed better, and outperformed the LACE
model.

20.5.3 MODEL SELECTION

The full model includes 7 variables.   Only 3 of these variables (age, HCC risk- score, and
length of stay) were significant. We want to test whether the reduced model (with only 3
significant variables) performs better than the full model by using deviance analysis. In GLM,
we cannot use residual sums of squares; instead deviance is a measure of “badness of fit.” A
large value of deviance indicates that the logistic model does not fit the data well. The
residual deviance shows how well the response variable is predicted by the current model. In
this data set, the response variable follows a Bernoulli distribution.  Therefore, deviance
analysis is performed using the chi-square test. From our R output, we have the following
deviance summary:

Table 20.3: Deviance Summary, Full and Reduced Models

Model
Residual Degrees of

Freedom Residual Deviance

Reduced Model (3
significant variables) 46743 32023

Full Model (7 variables) 46736 32021

In the case of a model with more variables, we would expect the model to explain more of the
variance, and therefore to have less residual deviance than a model with fewer variables. We
apply a test to determine whether the addition of further variables has a significant effect on
the accuracy of the model.

We test the hypothesis 0H that the reduced (3 variable) model is preferred over the full

model (7 variables) H .  If 0H is correct, the difference in deviance between the two models:

2
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(When the response variable follows a Bernoulli distribution, the

over-dispersion variable, 1  .)

2
7 . .; 0.052;  < 2.167obs d fW   

Conclusion: we cannot reject the null hypothesis 0H that the reduced model is preferred over

the full model.

We also considered interaction terms, but did not find any that improved the fit of the model.

20.5.4 INTERPRETING COEFFICIENTS

A problem with the logistic regression model is that (unlike in the case of linear regression)
coefficients cannot be directly interpreted, and require exponentiation and comparison with a
baseline case.

Age is a significant variable: the odds ratio for age is close to 1.00, which implies that an
increase of 1 year in age is unlikely to have much effect on readmission.  However, a more
significant difference in age will have an effect on the likelihood of readmission (although the
effect of increased age is counter-intuitive: our result suggests that odds decrease with
increased age).
Gender: interestingly, gender is not a significant predictor of readmission: males and females
have about the same likelihood of being readmitted.
Length of stay: an increase of a day in length of stay increases the likelihood of a
readmission by slightly less than 1%.
HCC Risk Score: Risk Scores (as a measure of disease burden) have a significant effect on
the probability of readmission.  With a value of 1.51, an increase of 1 point in the patient’s
risk score increases the likelihood of a readmission by 50%.

Other variables: are not significant.
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20.5.5 THE CUT-OFF VALUE

The output of the model is probabilities of being readmitted. There are different ways for
determining whether a patient is likely to be readmitted or not.   One method is to determine a
priori a “cutoff value.” This cutoff value is a probability such that it represents a threshold
value for the likelihood of being readmitted; if the patient is more likely to be readmitted than
the cutoff value, the patient will be classified likely to be readmitted. We will use 50%
probability as the baseline cutoff value. At a 50% cutoff value, the sensitivity of the model is
very low, meaning that we misclassify most readmissions as non-readmissions. In order to
increase sensitivity, we pick the point where specificity is equal to sensitivity. We find that
this occurs at a cutoff value of 11%. If a patient has a probability in excess of 11% of being
readmitted, we will classify that patient as likely to be readmitted.

Figure 20.2 illustrates the selection of a cut-off value.

Figure 20.2: Sensitivity/Specificity Trade-off

At a cut-off value (probability of readmission) of 0.5 the sensitivity line has a very low value,
implying that few patients will be identified.  At this value the specificity of the model is very
high, implying that, although few patients are identified, those that are identified have a very
high likelihood of readmission.   At the intersection of Sensitivity and Specificity (11%) we
identify more patients than at 0.5, but at the cost of more false positives (lower specificity).
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The false positive (incorrectly identifying a patient who does not have a readmission) and
false negative rates (incorrectly missing a patient who does have an admission) are related to
Type 1 and Type 2 errors:

The false positive (incorrectly identifying a patient who does not have a readmission) and
false negative rates (incorrectly missing a patient who does have an admission) are related to
Type 1 and Type 2 errors:

 Sensitivity = 1 - Type II Error = true positive rate à the ability to correctly
detect re- admissions.

 Specificity = 1- Type I Error = true negative rate à the ability to correctly detect
non re- admissions.

The Sensitivity and Specificity for cut-off values of 0.5 and 0.11 can be seen in Table 20.3.

Table 20.3   Sensitivity and Specificity for two cut-off values

20.6 PRACTICAL APPLICATION

If this type of model is to be useful in healthcare, it must have practical application. The
discussion above (cut-off values; model selection) is important but the ultimate test of a
model is whether it can be implemented in practical situations, and helps a healthcare
organization to distinguish those patients likely to be re-admitted from those that are not.  For
this purpose, an evaluation of quantile outcomes is very useful.

Table 20.4 shows an application of this method to the hold-back population.  We first “score”
the population by applying the model and calculating each patient’s risk score.  We then
segment the population according to their predicted risk of readmission.  Thus the 10% of the
population with the lowest predicted risk score is mapped to the lowest decile, etc.  We then
test these patients’ outcomes in the hold-back data, looking to see how many of the patients
had the predicted outcome (readmission). Essentially we are looking to test model
performance in terms of predicting high and low risk.  Overall (2,528 predicted; 2,549 actual)
the model is reasonably good at predicting readmissions in total. But is it good at
discriminating between those patients that require additional resources to prevent the
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readmission? Operationally we could apply additional resources to those patients with a
cut-off value of 0.11 (as discussed above).  This cut-off value implies xxx patients to manage.
Our alternative is to manage the highest risk-score deciles. The issue becomes one of
finances: what is the return on managing the highest decile patients, given the ability of the
model to discriminate between high and low opportunity patients?

Decile Count
Mean%

Readmission
Predicted

Readmissions
Actual

Readmissions
Error
Rate

0-9 2,004 0.0513 103 32 222%
10-19 2,003 0.0588 118 62 90%
20-29 2,004 0.0655 131 104 26%
30-39 2,003 0.0729 146 136 7%
40-49 2,004 0.0825 165 189 -13%
50-59 2,003 0.0956 192 228 -16%
60-69 2,004 0.1148 230 348 -34%
70-79 2,003 0.1458 292 335 -13%
80-89 2,004 0.2025 406 466 -13%
90-99 2,003 0.3699 745 649 15%
TOTAL 20,035 2,528 2,549 -1%

Table 20.4:  Predictive Accuracy by Decile

Table 20.4 shows that the model is relatively inaccurate at the extremes (something that is
true of most models).  In the highest decile (most risky patients) the model “over-predicts”
the readmissions by 15%.  In the next decile, the model under-predicts by a similar
percentage, so perhaps if we intervened on all 4,007 patients we would be rather accurate in
our predictions? If we add these 2 deciles, the over-prediction amounts to only 3%, which is
good for business purposes. The overall frequency in these two deciles is 29%, implying that
we expect slightly fewer than one in three of the patients assigned to the top two deciles to
experience the predicted event (readmissions).  Overall, the model appears to be good at
discriminating between those patients likely to experience a readmission, compared with
those that are not likely.

20.7 AN ECONOMIC MODEL FOR READMISSION INTERVENTION

To see how the model is implemented in practice, we assume that we are developing a case
management program in the hospital to reduce readmissions.  We wish to apply the
intervention to all 2,003 patients in the highest-risk decile, and that these patients are assigned
to nurse case-managers. In Table 20.5, the nurse case manager is assumed to follow the
patient in the hospital and for 10 days following discharge. Given that the average Medicare
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length of stay is 5.5 days, in total patients are managed by the nurses for 15.5 days, implying
that these patients represent 31,047 days of care.

We need to estimate how many nurses are required to manage the 2,003 patients who
generate 31,047 days of care.  We assume that a nurse case-load is 50 patients and that the
nurse works a 200-day work year.  Given this level of productivity, 3.10 nurses are required
to manage the highest-risk decile in the course of the year. We assume a loaded nurse cost of
$150,000 annually (here, the load includes incidental expenses such as IT, reporting,
management, etc.) and an average per admission reimbursement of $10,000.  Hence,
management of the top decile of the population is expected to cost $465,698. We assume that
the program is able to engage 40% of all targeted patients in the top decile, and to change the
outcome (reduce the re-admissions) on 50% of the engaged patients.  Assuming a cost of
$10,000 per admission, the reduction in revenue from reduced readmissions is $1.5 million.
Continuing the estimation for other deciles we see a positive return in the two top deciles
(80% and above), a marginal return in the third decile and negative returns below 70%.

Focusing for the moment just on the top decile, we see that the hospital experiences a revenue
reduction of $1.5 million, and a cost in terms of nurse and other resources of $465,698.   This
revenue reduction has to be compared with the reduction in penalty that the hospital
experiences from CMS as a result of its performance on readmissions.  This penalty will
depend on the specific circumstances of the hospital and its performance in terms of
readmissions; however, if we assume that it has performed poorly and is experiencing the
maximum penalty (3% of Medicare revenue) we can calculate the hospital’s penalty by
estimating Medicare revenue.  In Table 20.4 we reported 20,035 admissions annually; at an
average reimbursement of $10,000, Medicare revenue would amount to $200 million
annually.  The penalty would therefore be $6 million.  If we assume that the hospital
experiences 10% excess readmissions, this implies an excess of 230 (2,528-2,298).
Intervening on the top 3 deciles in Table 20.5 is expected to reduce readmissions by 287, or
sufficient reduction to eliminate the 10% excess that has led to the penalty. However, this
reduction comes at the cost of reduced revenue of $2.87 million.  Overall, intervening on the
top 3 deciles costs $4.3 million.   By intervening on the top 3 deciles, the hospital has avoided
a penalty of $6 million, but at a cost (in terms of resources and lost revenue) of $4.3 million.
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Table 20.5   Economic Model for Interventions and Savings from Readmission Reduction

Decile Count
Mean%

Readmission
Predicted

Readmissions
Managed

Days

Mgd.
Days/case-

load
No.

Nurses
Nurse Cost

(+overhead)

Engage
ment
(0.4)

Behavior
change

(0.5)
Avoided

Admissions
Cost

Avoided
Savings/
Patient ROI

0-9 2,004 0.0513 103 31,062 621 3.11 465,930$ 802 401 21 205,610$ (130)$ 0.44
10-19 2,003 0.0588 118 31,047 621 3.10 465,698$ 801 401 24 235,553$ (115)$ 0.51
20-29 2,004 0.0655 131 31,062 621 3.11 465,930$ 802 401 26 262,524$ (102)$ 0.56
30-39 2,003 0.0729 146 31,047 621 3.10 465,698$ 801 401 29 292,037$ (87)$ 0.63
40-49 2,004 0.0825 165 31,062 621 3.11 465,930$ 802 401 33 330,660$ (68)$ 0.71
50-59 2,003 0.0956 192 31,047 621 3.10 465,698$ 801 401 38 382,974$ (41)$ 0.82
60-69 2,004 0.1148 230 31,062 621 3.11 465,930$ 802 401 46 460,118$ (3)$ 0.99
70-79 2,003 0.1458 292 31,047 621 3.10 465,698$ 801 401 58 584,075$ 59$ 1.25
80-89 2,004 0.2025 406 31,062 621 3.11 465,930$ 802 401 81 811,620$ 173$ 1.74
90-99 2,003 0.3699 745 31,047 621 3.10 465,698$ 801 401 148 1,481,819$ 507$ 3.18
TOTAL 20,035 2,528



17

Whether this intervention program results in an overall net gain or loss to the hospital
depends on other factors:

 The hospital experiences a reduction of 1.4% in its overall admission volume.  How
it addresses this reduction will be a factor in determining whether, in total, the
readmission reduction program is financially successful.  Although admission
volume has only been reduced by 1.4% the hospital will need to make decisions
about staffing and possibly closing beds.

 The decision will depend in part on whether there is excess demand for hospital
services. With excess demand the empty beds are likely to be filled, and the lost
revenue replaced.

 The reduction in admissions comes from Medicare patients.  Are Medicare patients a
source of gains for the hospital?  Some hospitals experience losses on their Medicare
business implying that a reduction in Medicare patients can be negative to the top
line but positive to the bottom line.

The economic viability of the program in this model depended, among other things, on the
assumption that the hospital pays the maximum penalty. With a lesser penalty, for example
1%, readmission reductions will avoid only $2 million in penalties.  In this case the cost of
intervening on the top 3 deciles ($1.4 million) together with the reduction in revenue from
avoided readmissions ($2.87 million) is significantly greater than the avoided penalty.

In planning a readmission reduction program, there may be other factors relevant to a specific
hospital.  However, as this model shows, in some circumstances a readmission reduction
program may be economically viable for a hospital, in which case a predictive model, such as
that developed here can be helpful in identifying patients for intervention.
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APPENDIX 20.1:  R code for running the model

# import the data set
setwd("~/Dropbox/196 package")
library("data.table")
data<- as.data.table(read.csv("Dataset196.csv",header=T))

# 1.DRG Classification ------------------------------------------------------
# Classify DRG into 2 groups: DRG medical/surgical.Link of classification is below:
# Https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/MedicareFeeforSvcPartsAB/downloads/DRGdesc08.pdf

# valid codes for DRG surgical
surgicalG<-
c(1:42,113:117,129:139,163:168,215:264,326:358,405:425,453:517,573:585,614:630,652:67
5,707:718,734:750,765:770,799:804,820:830,853:858,876,901:909,927:929,939:941,955:959
,969:970,981:989)
# valid codes for DRG medical
medicalG<-
c(52:103,121:125,146:159,175:208,280:316,368:395,432:446,533:566,592:607,637:645,682:
700,722:730,754:761,774:795,808:816,834:849,862:872,880:897,913:923,933:935,945:951,9
63:965,974:977)
# create DRG.Class variable
data[DRG %in% surgicalG,DRG.Class:=as.factor("SURG")]
data[DRG %in% medicalG,DRG.Class:=as.factor("MED")]
data[is.na(DRG.Class),DRG.Class:=as.factor("UNGROUP")]

# 2.Determine length of stay ------------------------------------------------
data[,LOS:=as.Date(as.character(Discharge.Date),'%m/%d/%Y')-
as.Date(as.character(Admit.Date),"%m/%d/%Y") +1]

# 3.Determine age (up to the date of admission) ----------------------------------------
data[,Age:=year(as.Date(as.character(Admit.Date),"%m/%d/%y"))-
year(as.Date(as.character(Birthday),'%Y%m%d'))]

# 4.Changing labels for Gender ----------------------------------------------------------
data[,Gender:=as.factor(Gender)]
levels(data$Gender)<- c("M","F")

# 5. Changing labels for Race ---------------------------------------------
data[,Race:=as.factor(Race)]
levels(data$Race)<- c("White","Black","Others","Hispanic")

# 6.Calculate HCC riskscore -------------------------------------------------
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# A. Calculate demographic riskscore
# a) Subset important information to calculate riskscore: need age,gender,and HCCs
demo.get<- data[,.(ID.Codes,Age,Gender)]
# b) create a data table that contains risk-score for each demographic group
Age<-rep(seq(0,120),2)
Gender<- c(rep("F",121),rep("M",121))
demo.score<-
c(rep(0.198,35),rep(0.212,10),rep(.274,10),rep(.359,5),rep(.416,5),rep(.283,5),rep(.346,5),rep
(.428,5),rep(.517,5),rep(.632,5),rep(.755,5),rep(.775,26),rep(.079,35),rep(.119,10),rep(.165,1
0),rep(.292,5),rep(.332,5),rep(.309,5),rep(.378,5),rep(.464,5),rep(.565,5),rep(.647,5),rep(.776,
5),rep(.963,26))
demo<- as.data.table(cbind(Age,Gender,demo.score))
# convert age and demo.score into numerics:
cols<- c("Age","demo.score")
demo[,(cols):=lapply(.SD,as.numeric),.SDcols=cols]
# convert Gender into categorical:
demo[,Gender:=as.factor(Gender)]
# c) Merge demo into demo.get, using Age and Gender columns to merge:
demo.get<- merge(demo.get,demo,by=c("Age","Gender"))
demo.get<- demo.get[order(ID.Codes)]
rm(demo)
# B. Calculate disease riskscore:
# a) Subset important information to calculate riskscore:
hcc.get<- data[,c(22:100),with=FALSE]
hcc.get<- matrix(sapply(hcc.get,as.numeric),nrow=66782,ncol=79)

# b) Input Disease Coefficients (Community Factor):
# Use data in Table 1:Preliminary Community and Institutional Relative Factors for the
CMS-HCC Risk Adjustment Model
# this data set doesn't have HCC51, HCC52, HCC138, HCC139, HCC140, HCC141,
HCC159, HCC160
diseaseC<-
as.matrix(c(.492,.520,.557,2.425,1.006,0.695,.330,.180,0.334,.334,.124,.653,.342,.240,1.003,.
425,.313,.337,.257,.279,.423,.376,1.078,.306,.258,.358,.358,.471,.318,1.075,.868,.441,1.016,.
036,.281,.460,.482,.555,.252,.533,1.732,.769,.326,.361,.283,.283,.210,.276,.371,.333,.481,.21
2,1.313,.417,.288,.388,.388,.294,.691,.212,.223,.248,.617,.617,.227,.277,1.071,1.071,.473,.45
8,.533,.141,.441,.363,.379,.555,1.032,.609,0.804),nrow=79,ncol=1)
# c) the riskscore vector is the multiplication between hcc.get and diseaseC:
hcc.get<- as.data.table(hcc.get %*% diseaseC)
hcc.get<- cbind(data$ID.Codes,hcc.get)
names(hcc.get)<- c("ID.Codes","hcc.score")
hcc.get<- hcc.get[order(ID.Codes)]
# C. Calculate the total HCC riskscore and add it into the big data set:
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data<- data[order(ID.Codes)]
data$HCC.Riskscore<- demo.get$demo.score+hcc.get$hcc.score

# 7. Mapping DRG Complication ---------------------------------------------
SurgMCC.CC<-
c(1,5,11,20,23,25,28,31,34,37,40,163,166,216,219,222,224,226,228,231,233,235,237,239,24
2,246,248,250,252,255,258,260,326,329,332,335,338,341,347,420,423,453,456,459,461,463,
466,469,471,474,477,480,485,492,495,500,503,510,515,573,576,579,616,619,622,625,628,6
53,656,659,662,665,668,673,736,739,799,802,820,
823,826,856,901,907,939,957,969,981,984,987,12,21,26,29,32,35,38,41,113,116,129,131,13
3,135,137,164,167,217,220,229,240,243,253,256,261,327,330,333,336,339,342,345,348,351,
354,357,464,467,472,475,478,481,483,486,488,490,493,496,498,501,504,507,511,513,516,5
74,577,580,582,584,614,617,620,623,626,629,654,657,660,663,666,669,671,674,707,709,71
1,713,715,717,734,737,740,742,744,746,749,800,803,821,824,827,829,854,857,902,908,928,
940,958,982,985,988)

SurgNoC<-
c(2,6,13,22,24,27,30,33,36,39,42,114,117,130,132,134,136,138,165,168,218,219,220,221,22
3,224,225,226,227,230,232,234:236,238,241,244,247,249,250,251,254,257,259,262,328,331,
334,337,340:343,349,352,355,358,407:410,413:419,422,425,455,459,460,462,465,468,470,4
73,476,479,482,484,487,489,491,494,497,499,502,505,508,512,514,517,575,578,581,583,66
1,664,667,670,672,675,708,710,712,714,716,718,735,738,741,743,745,747,750,766,801,804,
822,825,828,830,855,858,903,905,909,929,941,959,970,983,986,989)

MedicalMCC.CC<-
c(54,56,58,61,64,67,70,73,77,80,82,85,88,91,94,97,100,102,124,146,150,152,154,157,175,17
7,180,183,186,190,193,196,199,205,280,283,286,288,291,296,299,302,304,306,308,314,368,
371,374,377,380,383,385,388,391,393,432,435,438,441,444,533,535,539,542,545,548,551,5
53,555,557,559,562,564,592,595,597,602,604,606,637,640,643,682,686,689,693,698,722,72
5,727,754,757,808,811,814,834,837,840,843,846,862,865,867,871,896,913,915,917,922,947,
963,974,52,59,62,65,71,75,78,83,86,89,92,95,98,121,147,155,158,178,181,184,187,191,194,
197,200,202,281,284,289,292,294,297,300,309,315,369,372,375,378,381,386,389,394,433,4
36,439,442,537,540,543,546,549,560,565,593,598,600,638,644,687,691,699,723,729,755,75
8,760,765,809,815,835,838,841,844,847,868,920,945,949,964,975)

MedicalNoC<-
c(53,55,60,63,66,67,68,72,74,76,79,81,84,87,90,96,99,101,103,122,125,148,151,156,159,176
,179,182,185,188,192,195,198,201,203,206,282,285,287,290,293,295,298,301,303,305,307,3
10,316,370,373,376,379,382,384,387,390,392,395,434,437,440,443,446,534,536,538,541,54
4,547,550,552,554,556,558,561,563,566,594,596,599,601,603,605,607,639,641,645,684,688,
690,692,693,694,696,700,724,728,730,756,759,761,775,810,812,816,834,835,836,839,842,8
45:848,866,869,871,872,897,914,916,918,921,923,933,946,948,950,965,976,977)

data[DRG %in% SurgMCC.CC, DRG.Complication:=as.factor("SurgMCC.CC")]
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data[DRG %in% SurgNoC, DRG.Complication:=as.factor("SurgNoC")]
data[DRG %in% MedicalMCC.CC, DRG.Complication:=as.factor("MedicalMCC.CC")]
data[DRG %in% MedicalNoC, DRG.Complication:=as.factor("MedicalNoC")]
data[is.na(DRG.Complication),DRG.Complication:=as.factor("Other")]

# 8. Budilding Logistic Regression -------------------------------------------
# subset important variables to build the model
final<- data[,c(1,4,7:8,101:106)]
# make sure the response variable is categorical
final$Readmission.Status<-as.factor(final$Readmission.Status)

# split data into training and test set, using training set to build model and test set to validate
the model
set.seed(1)
# 70% of data as training set
train <- sample(1:nrow(final),46747)
final.train<-final[train,]
final.test<- final[-train,]

# proportional binomial/logit model:
fit.train<-glm(Readmission.Status~ Age + Gender + LOS + HCC.Riskscore + Race +
DRG.Class + ER,family="binomial",data=final.train)
summary(fit.train)
# this model is built on the training set

# Variable selection and model selection:

# stepwise regression using backward elimination method (without any interaction terms)
fit2<- step(fit.train,direction="backward")
# investigate interaction terms in the model
library("MASS")
fit3<- update(fit2,.~.^2)
summary(fit3)

# Using chi-square test to perform deviance analysis:
anova(fit2,fit3,test="Chi") #--> prefer the reduced model: fit2
anova(fit2,fit.train,test="Chi") #--> prefer the reduced model: fit3

# fit this model on the test set:
fitpreds = predict(fit2,newdata=final.test,type="response")

# 9. Cutoff value and related plots ---------------------------------------
# determine the optimal cutoff value (where sensitivity==specificity):
library("ROCR")
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fitpredsk<- prediction(fitpreds,final.test$Readmission.Status)
t<- performance(fitpredsk,"ppv")
k<-unlist(t@x.values)
k2<-unlist(t@y.values)

y<- as.numeric(final.test$Readmission)-1
perf = function(cut, fitpreds,y)
{

yhat = (fitpreds>cut) ## logical value: TRUE or FALSE if predicted prob. >cutoff
w = which(y==1) #index of true population of readmission cases
sensitivity = mean( yhat[w] == 1 ) # probability of readmission given that the patient is

readmitted
specificity = mean( yhat[-w] == 0 ) # probability of no readmission given that the patient is

not readmitted
c.rate = mean( y==yhat )
d = cbind(sensitivity,specificity)-c(1,1)
d = sqrt( d[1]^2 + d[2]^2 )
out = t(as.matrix(c(sensitivity, specificity, c.rate,d)))
colnames(out) = c("sensitivity", "specificity", "c.rate", "distance")
return(out)

}

s = seq(.001,.99,length=1000)
OUT = matrix(0,1000,4)
for(i in 1:1000) OUT[i,]=perf(s[i],fitpreds,y)
plot(s,OUT[,1],xlab="Cutoff",ylab="Value",cex.lab=1.5,cex.axis=1.5,ylim=c(0,1),type="l",l
wd=8,axes=FALSE,col=2,

main="Fit 2")
axis(1,seq(0,1,length=5),seq(0,1,length=5),cex.lab=2)
axis(2,seq(0,1,length=5),seq(0,1,length=5),cex.lab=2)
lines(s,OUT[,2],col="darkgreen",lwd=8)
# lines(k,k2,lwd=2,col="black")
box()
legend(.25,.8,col=c(2,"darkgreen"),cex=1,lwd=c(3,3,3,3),c("Sensitivity","Specificity"))
abline(v=0.11,lty=3,lwd=2)
abline(0,1,lty=2)
points(.11,0.6638,pch=19,lwd=10)
## The intersection between sensitivity and specificity curves is 0.11

# obtain ROC curve for this model:
plot(1-OUT[,2],OUT[,1],main="ROC Curve",

xlab=c("1-Specificity"), ylab="Sensitivity",
type="l",lwd=10,col="orange")

abline(0,1)
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# obtain c-statistic or area under the curve:
(c.stat<- performance(fitpredsk,measure="auc")@y.values)

# 10. Model performance by quantiles --------------------------------------
# Find the quantiles and the mean of prediction within each quantile:
quan<- quantile(fitpreds,c(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1))
# mean prediction within each quantile:
mean<- c()
for (i in 2:11){

mean[i-1]<- mean(fitpreds[(fitpreds>= quan[i-1])&(fitpreds<= quan[i])])
}

# actual cases of readmission within each quantiles:
actualOut<- c()
for (i in 2:11){

actualOut[i-1]<- length(which((fitpreds>= quan[i-1]) & (fitpreds<= quan[i]) & actual==1))
}

# number of observations in each quantile:
num<- c()
for (i in 2:11){

num[i-1]<- length(fitpreds[(fitpreds>= quan[i-1])&(fitpreds<= quan[i])])
}

# predicted outcomes:
predictedOut<- mean*num

## Model Performance by Quantiles Plot:
actual<- c(32,62,104,136,189,228,348,335,466,649)
predicted<- c(103,118,131,146,165,192,230,292,406,745)
plot(actual,type="l",lwd=6,col="orange",

xlim=c(0,10),xaxt = "n",xlab="Quantiles",
ylim=c(0,800),ylab="Number of outcomes",
cex.lab=1)

grid()
points(predicted,type="l",lwd=6,col="darkturquoise")
axis(1, at=1:10, labels=c(0.1,.2,.3,.4,.5,.6,.7,.8,.9,1),lwd=4)
axis(2,lwd=4)
title("Model Performance by Quantiles")
box()
legend(1,400,col=c("orange","darkturquoise"),cex=1,lwd=c(2,2,2,2),c("Actual","Predicted"))


