DIVIDED DIFFERENCES AND DETERMINANTS

Hans U. Gerber

In problem 24, Chapter 5, of Kellison's "Fundamentals of Numerical Analysis" it is indicated how a divided difference can be expressed as a ratio of two determinants. This method works well also in the case where some of the arguments of collocation coincide. Example:
$\underbrace{}_{x, x, x, y, y} f(z)=\left|\begin{array}{cccccc}1 & x & x^{2} & x^{3} & x^{4} & f(x) \\ 0 & 1 & 2 x & 3 x^{2} & 4 x^{3} & f^{\prime}(x) \\ 0 & 0 & 2 & 6 x & 12 x^{2} & f \prime(x) \\ 1 & y & y^{2} & y^{3} & y^{4} & f(y) \\ 0 & 1 & 2 y & 3 y^{2} & 4 y^{3} & f^{\prime}(y) \\ 1 & z & z^{2} & z^{3} & z^{4} & f(z) \\ 1 & x & x^{2} & x^{3} & x^{4} & x^{5} \\ 0 & 1 & 2 x & 3 x^{2} & 4 x^{3} & 5 x^{4} \\ 0 & 0 & 2 & 6 x & 12 x^{2} & 20 x^{3} \\ 1 & y & y^{2} & y^{3} & y^{4} & y^{5} \\ 0 & 1 & 2 y & 3 y^{2} & 4 y^{3} & 5 y^{4} \\ 1 & z & z^{2} & z^{3} & z^{4} & z^{5}\end{array}\right|$

Thus the rule is: If an argument occurs k times, the derivatives of the corresponding row up to order $k-1$ should be used in numerator and denominator. Déjà vu?

