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A Statistical Analysis of Banded Data, 
with Applications 

Robert R. Reitano 

ABSTRACT 

The purpose of this paper is to develop sharp estimates for the 
higher moments of a distribution of a positive bounded random 
variable, where these estimates are given as functions of the 
first moment. Upper and lower sharp estimates will first be 
developed for the second moment of a distribution of a discrete 
random variable. Applications will then be explored in detail 
concerning interval and point estimates for the variance of 
expected claims, and modified confidence intervals for this 
random variable. In addition , applications will be made to 
the problem of establishing an appropriate level for retention 
limits as well as analyzing the variance of decrement 
estimators. These upper and lower estimates will then be 
generalized to higher order moments. Finally, higher moments 
of a distribution of a continous random variable will be 
considered. 
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I. Introduction 

When analyzing the random variable S defined to represent the aggregate 

amount of expected claims in a given period of time, it is often necessary 

to calculate the sums of in-force policy amounts, sums of squares, etc. 

Although this will be formalized in Section III (Applications), these 

sums must be calculated for each homogeneous class of policyholders, where 

homogeneity is defined with respect to the expected probability of claim. 

For sizable portfolios, this summing process can be a formidable task. The 

purpose of this paper is to develop sharp estimates for the values of 

higher moments of a policy amount distribution, or any p.d.f. of a positive 

bounded random variable (r.v.) where these estimates are made using only 

the first moment. 

Here, the term 'estimate' is used in the sense of 'a priori estimates' 

of mathematical analysis and not in the sense of statistical estimation. 

That is, for a given p.d.f. defined on a positive bounded r.v., the value 

of all higher moments are constrained, a priori, once the first moment and 

domain interval are given. For brevity, the upper and lower bounds developed 

will be referred to as estimates rather than a priori estimates. As usual, 

the qualification of an estimate as 'sharp' means that it is the best possible. 

In Section II, this definition will be formalized and sharp estimates developed 

for the second moment of policy amounts or any finite collection of positive 

numbers. As can be expected, the relative accuracy of these estimates 

over an interval [a,b], a> O, depends on r=b/a and can be controlled by 

'banding' amount groups properly. In this section, it will also become 

clear which types of discrete distributions maximize the relative error 

for given values of rand fA where~ is the value of the first moment, and, 

which discrete distribution maximizes the error for a given r with no 

restriction on;u. As a corollary, these estimates will be translated into 

estimates of the variance. 
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In Section III, a number of applications will be explored in detail. 

Section IV generalizes II to the case of higher moments of an arbitrary 

discrete p.d.f., and in Section V, the higher moments of a continuous 

p.d.f. are considered. As a corollary, these estimates will be used to 

develop sharp estimates for the associated moment generating functions. 
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II. Second Moments - Discrete Case (Special) 

Let r x.l n be a collection of numbers 
( d i=1 

from the interval [a, b] , a> 0. 
/ 

developed forJU 2 and the ratio In this section, sharp estimates will be 

R
2 

(x), where, 

and f = ~Lxi. The 

and r, and that for 

I 
approximation forjU

2 
will be 

R
2

(x) a function of r alone. 

( 2 .1) 

( 2. 2) 

a linear function of;" 

If one conside-o:-s the distribution {il xi~ ~=1 from [A a, ,il b] , A.;> 0, 

it is clear that, 

j) (} x) =)f'(x), ( 2. 3) 

1 2 I 

f2(A x) = Xj)-2x), ( 2. 4) 

( 2. 5) 

Consequently, lettingA=1/a, it is possible to estimate (2.1) and (2.2) 

only for { xJ in [1,r) , then apply (2.3) - (2.5) to yield the analogous 

results for {xi~ in [a, b J . 
upper , 1 

AnVestimate s 2 (r,}J-) for/'
2 

is defined to be sharp Hj1
2

(x) .=: s
2

(r,JA 

for all{xi1 C. [1,r], but for any£>0, r>l, andjl, 1:)l!::r, 
there is3distribution r y i~ c [ 1 'r J such that t- (y) =t- and' 

(2.6) 

-1::;)-



upper 
AnVestimate s 2 (r) for R

2
(x) is defined to be sharp in an analogous way. 

That is, R
2 

(x) ~ s
2 
(r), but for any [ "?' 0, r :;>1, there is a distribution 

fyi) C {1,r] so that, 

Sharp lower estimates are defined analogously. 

Since it is certainly true that R2 (x) ~ r
2

, it is clear that s 2 (r) 

will satisfy s
2 

( r) ~ r
2 

and hence will have the property that for any 

c ;> 0, there is an r ;;> 1 such that s 2 (r )~ 1 + c. Consequently, 

L x~ ~ (1 + c)n/ 
2

, [xJ C [l,r]. 

Hence, the second moment of {xi1 can be approximated with the first 

moment to any given degree of accuracy by choosing amount bands[a,b] 

with r = b/a close enough to 1. 

As an application, it will be shown in Section III.2. that the standard 

deviation of [xi j can be approximated with the mean to within a 5'7. 

relative error by choosing c = .22. Using the observation that 

( ) < 2 . ) s
2 

r _ r , 1t is clear that s
2
(r ~ 1.22 if r~ 1.1045. If xi represents 

a life insurance policy amount, the standard deviation of expected claims, 

u(S~can therefore be approximated to within 5% by 'banding' amounts into 

[ arj, arj +1 j , j?, 0, with r=l.1045. Unfortunately, to analyze 

experience between $1,000 and $10,000,000 would require over 90 such 

bands and this greatly limits the potential usefulness of this approach. 

Fortunately, this conclusion is a result of the crudeness of the estimate 

s 2 (r)~r 2 , and not of the general weakness of this approach. It will be 

shown later, using the derived s 2(r), that c .22 can be obtained with 

r = 2.48, and this reduces the number of bands needed in this example 

from 93 to 11, an easily workable number. 

In order to make the problem more tractable it is possible to reduce the 
I 

analysis of }J- 2 lx) and R
2

(x) from the collection of all distributions 

[ xij :=lC [l,r J to a linearly parametrized collection of distributions, 
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D(t), one for each meanj)-, l.!!: ;t~ r. To see this, let fxi1 ~=1 C [1,r] 
be given and assume that 1~x{·x2 <. r. Let d satisfy, 0 < < min~ r-x2 ,x1-1), 

and define { Y i1 ~=1 by: 

x. 
1 

3 ~ i : n. 

I I 
Consequentlyf

2
<y) > f 2 (x) and this example illustrates that for a

1 
given mean, jA , the distribution from [1,r} that maximizes bot)ft 2 (x) 

and R2(x) has the property that all but at most one value, xj , equals 

1 or r. Because of this property, such distributions will be called 

polarized distributions, and can be parametrized over t € [ 0, nJ by D( t), 

where D(t) = r xi~ ~=1 is defined by: 

[ t] ) ( r - 1) + 1, 
r 

i ~ n - [ t] - 1, 
i n - [t] 
i _a n - lt] + l. 

Here, as usual, [t] represents the greatest integer less than or equal 

to t. If one envisions the distributions D(t) as the bead positions of 

an abacus with n rods and one bead per rod, the parametrization in (2.11) 

smoothly moves one bead at a time from one 'one-sided' bead position 

(2. 9) 

(2.10) 

(2.11) 

to another. Alternatively, if fxii is identified with a point inn­

dimensional space, ~n, D(t) can be thought of as apiecewise linear 

transformation from [ O,n] to a one dimension edge of the hypercube [1,r Jn 

extending from (1,1, ••. ,1) to (r,r, ••• r). 

Since, 

JAlD(t)) 1 +! (r- 1), O~t:!n, 
n 
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r 
it is clear that for any r xi] c [1 'r] ' the associated polarized 

distribution is defined in (2.11) with, 

t 

Theorem 1 

n( fl -1) 
r - 1 

n 
i=1 

f" =)Hx). 

c[1,r] Then, 

Further, the inequalities in (2.14) and (2.15) are sharp. 

proof Assume that (2.14) has been established. Then, 

1+(r+l) <P -U 
R2(x) := ?2 

As a function of~ on [1,r] , the right hand side of (2.16) is maximized 

when f =2r/(r+1). Consequently, (2.15) follows by substitution. 

In order to establish (2.14), it is sufficient to show that this inequality 

is satisfied for all polarized distributions D(t). Using (2.11), 

n- [t] -1 + [t] r
2 

+ ((t- [t] ) (r-1) +1)
2 
,O~t~n. 

n 

Let, 

t = m + s, m = 0,1, •. , n - 1; 

Then [t] m and (2.17) becomes, 
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n-m-1 + mr 2 + (s(r-1) +1)
2 

n 
m=o, •• , n-1~0~ s~ 1. 

The inequality for s was extended to s=1 as it is straightforward to 

verify that the right hand side of (2.19) achieves the same value for 

m=m' and s=O as it does for m=m~1 and s=1. For a given m, the right 

hand side of (2.19) is a quadratic function of s with positive second 

derivative. Consequently, it is maximized over [0,1] when s=O or 1. 

Hence, it is sufficient to consider (2.19) only for integral m=0,1 •• ,n 

and s=O. For the resulting values of t=m, 

~ (D(t)) = n-~+mr, m=0,1, •• ,n 

2 n-m+mr I 
~ 2(D(t)) m=0,1 •• n 

n 

and a calculation proves that (2.14) is satisfied with equality at these 

points. Hence, it follows in general for 0 ~s<l. 

To see that the inequality in (2.14) is sharp, it is necessary to provide 

examples of distributions {xi; fro~ {1,r], with a corrunon given mean)', 

such that the resultant values of ;u
2

(x) can be chosen arbitrarily close 

to the upper bound 1 + (r+l> (,P-1). Let r>1 andfl ,1S,P6r, be given 

and define.)'= (I" -1>/ (r-1). Since the inequality in (2.14) clearly 

provides sharp results when,P =1 or f' =r, only 1</'< r will be considered; 

hence_/>0. Let cj be a sequence of positive rational numbers, cj = mj/nj, 

that converge to~ and satisfy, 

c.- ./) 

ilj~O as j .-, M 

This can be accomplished since,./'>0. 

i=1, 2, ••• , n. , defined by: 
J 
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(2.19) 

(2. 20) 

(2.21) 

(2.22) 

(2.23) 

j 



[:- ,.1.<r-1) 
J 

n. -J 

1 ~ 

m. + 1~ 
J 

i = n. - m' J .... 
1- n. 

J 

Note that yi E [1,r] for all i due to (2.22). Also, a calculation shows 

that, 

1 + c. ( r 
2 
-U + c. il . ( _.1. ( r-U 

2 
- 2r ( r-1)). 

J J J J 

However, since)j-;O and cj~;O , the right hand side of (2.25) can 

be chosen arbitrarily close to its limit value of l +~ (r 2-1l which 

equals 1 + (p -ll (r+1). Hence, the inequality in (2.14) is sharp. Letting 

~ = 2r/(r+1), this example also shows the inequality in (2.15) to be 

sharp. / 

Corollary Then, 

a-2
Cx)_:= (r-1' ) '-)' -1) , )J=)'(x), 

Further
1 

the 

(r-1) 2 

4r 

inequalities in (2.26) and 2.27) are sharp. 

2 I 2 
Since a- (x) = ~2 (x) - )A , the results follow directly 

from Theorem 1. I 

Of course, the inequalities in Theorem 1 and the above Corollary can be 

modified to apply to the interval [ a,b] by use of (2.3) - (2.5), and, 

where [xi~ C: [ a,b] and ) 

with r =bl a. 

1 Consequently, 
a 
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It is clear from (2.26), since this inequality is sharp, that distributions 

of maximal variance must have a mean equal to (r+1)/2, the midpoint of 

[1 ,r] Also, the distributions with maximal ratio of variance to mean 

squared must have a mean given by: 

2r 
= r+1 • 

Consequently, the associated polarized distribution D(t) is given with t 

defined in (2.13), which due to (2.29) yields, 

n 
t = r+1 

That is, the proportion of points at the left endpoint 1, f(l), satisfies, 

f(l) - _r_ 
- r+1 

__[_s_ 
n ' 

O<Et~l. 

In other words, such distributions are always skewed to the left, with 

the tendency toward skewness increasing as r=b/a increases, 

f (l)"' 1, 

This is also evidenced by noting that due to (2.29), it is clear that;U 

is an increasing function of r with upper bound equal to 2. 

lower / 
AVbound for ~ 2 is fairly easy to develop by utilizing the Cauchy-Schwarz 

inequality [1] which states that for givenai' bi' i = l, ••• ,n, 

with equality if and only if there are real numbers o( •;d so that, 

o(a.+Ab. 
1 r 1 

0, l, .. ,n. 

l yields, 
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I 

with equality if and only if all xi are equa~due to (2.34). Consequently, 

JU 2 
is a sharp lower bound for ;i<~(x). Hence, 1 is a sharp lower bound 

for R2(x). Finally, although it also follows from above, it is quite 

obvious by definition , that 0 is a sharp lower bound for o- 2cx). 
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III. Applications 

1. Interval Estimation of the Variance of Expected Claims 

l;.th policy in a given class C 
j' Let A. . equal the exposure amount of the 

l:J 
homogeneous with respect to the probability of becoming a claim. Let X. 

be the binomial random variable defined so that, 

Prob (claim in Cj) 

Then S, defined by, 

1) =q .• 
J 

J 

(3.1) 

(3.2) 

is the random variable that represents the total amount of claims in the time 

interval during which (3.1) is valid. In the terminology of Risk Theory [ 1} , 

this is the Individual Risk Model for aggregate claims. In general, the 

Aij are also random variables and for a given class Cj' can be assumed 

to ~e independent and identically distributed with mean J! j, and variance 

a- j • Assuming the Xj to be independent, we have from [ 1 J that, 

f (S) = L njJA- jqj, (3.3) 

uz<s> =Lnjf ;qj(l-qj> +LnjOJzqj, (3.4) 

where nJ. is the number of policies in class CJ .• Now if A .. = a .. is 
l:J l:J 

known and fixed in advance, (3.2) is simply a linear combination of 

independent binomial variables, and one has directly, 

O.(S)='5"a q., r· LJ ij J 
(3.5) 

2 L. 2 U (S) = a .. q.(l-q,). 
l:J J J 

(3.6) 
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In this setting, if in-force policy data is already banded and sum-

marized into intervals, Ik = [ ak, a.+1J 0 
K , k ~ l where a1 ;> , let, 

rk = ak+l 
k~ l, --' ak 

cjk class of policies in c. with a .. € Ik' J 1J 

njk number of policies in Cjk' 

JVjk = average policy amount in Cjk" 

Then for each class Cj' the following is true according to (2.14) and 

( 2. 36): 

Consequently, 

When policy data is already banded, (3.8) provides the r~sultant interval 

estimate for o- 2Cs), which may or may not be acceptable. Consequently, 

the amount of relative error in the point estimate discussed in the next 

section will also be fixed. However, if it is possible to choose bands 

at will, the amount of error in the resultant estimates 

To see this, let [a, b) be an amount interval, a> o, 
for all i 'j. For a given value of r;:> 1, let N be the 

X 
r b/a, 

Define the bands Jk by, 

N 

[ 
k k+l7 

Jk = ar , ar j, 

[ x] + 1. 

k=O , 1 , ••• , N - 1 • 
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such that a . . e[a,b] 
1J 

solution of: 

(3. 7) 

(3.9) 

(3.10) 



Also, let Cjk' njk 

Jk rather than Ik. 

(2.15) and (2.36): 

Consequently, 

and J' j k be defined as above only with reference to 

Then for each class C., the following holds due to 
J 

:2. 2 (r+1) 2 
~ a.·~ 4r :L 1J 

Although the problem of choosing r will be discussed in detail in the 

next section, it is clear from (3.12) that any degree of accuracy can 

be achieved by choosing r close enough to 1. 

Finally, assume that the A .. are independent random variables which 
1J 2 

are identically distributed for each j with mean )Uj and variance o-j 
If these distributions are assumed given by mathematical formual, jU j 

2 2 
and o-J will often be straightforward to compute and cr-<s) given 

directly by (3.4). On the other hand, these distributions may be defined 

empirically with reference to actual claim data from a recent period of 

time. If this is the case, Theorem 1 can be utilized in the following 

way. Let [a, b) , a> 0, be an amount interval that contains all 

claims. For a given value of r> 1, let N be the solution of (3.9) 

and Jk be defined as in (3.10). Also, let Cjk denote the collection 

of claims from class C. with claim amount in the interval Jk' m.k 
J 2 J 

the number of such claims, JA jk their mean, and Jk their variance. 

Since o-. 2 
in (3.4) is defined as the variance of all claims from class 

J 2 
Cj, and o-jk the variance of such claims conditioned on their being in 

amount interval Jk' they are related by a general formula involving 

conditional expectations [1). 

Specifically, 
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Var (A. j) 

Hence, 

2 1 <> 2 n-. ~ - £.... m. k ()'. k - U . ) 
V J mj k J J I J 

+ 
1 
m. 

] 
z 

k 

where m. = Zm.k and J). is defined as in (3.4) as the mean claim 
] k ] ;- ] 

from class Cj' i.e. )Uj = E {jlljk] 
and the remarks following (2.36), 

Combining (3.13) with (2.27) 

By choosing r close enough to 1, it is clear that the accuracy of (3.14) 

can be made arbitrarily good. Utilizing (3.14) in (3.4) will then 

(3.13) 

(3.14) 

provide the required interval estimate for o-2<s). Also, (3.14) can be used when 

the Collective Risk Model for S is assumed if (3.4) is appropriately modified [1] • 

2. Point Estimation of the Standard Deviation of Expected Clai~s 

Although (3.8), (3.12) and (3.14) provide interval estimates for a-2<s), 
the following simple Lemma provides a point estimate with minimal relative 

error. 

Lemma 1 Let a,c be given positive real numbers and x and unknown real 
number satisfying: 

a~ x~(l+c)a. 
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Let Q (_A) denote the point estimate for x defined by: 

Then the absolute value of the error of the estimate ~ C4 ) relative to 

itself is minimized when .A =\. 

proof Utilizing (3.15), (3.16), and the fact that~ <ii )> 0, 

That is, 

I X;~ } 

1\ 
X - X c(1 - il ) 

1 + il c 

r(l-J)c 
~ max L I+"'J"'"c ' 1 +) c 

)c 

A straightforward analysis yields that f()) = c<l-,A) I (1+.-1 c) is 

a positive decreasing function over[0,1] that agrees with g(/1) ~ /lc/ 

(1+il c), a positive increasing function, at// =\. Consequently, the 

relative error defined in (3.18) is minimized when) =\. ~ 

To apply Lemma 1 in the context of (3.12), assume c>O is given and 

let r be chosen to satisfy: 

1 + c. 

Since h(r) = (r+U 2/4r is an increasing function of r for r;;l.l and 

g(1) = 1, it is clear that the solution of (3.19) must exist, be unique 

and greater than 1. Rewriting (3.12), 
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Let d !a (1+c) - 1 and define, 

"' (j(S) 

Then using (3.18), 

J {TCS) - ;. (S)L:: ~ r (S). 
v r- 2+d 

k 
) 2. 

Hence, in order for the point estimate in (3.21) to have an error 

relative to itself of 100€ %, 0 ~[. ~ 1, i.e., 

A A 
(1-£)(J(S) ~ Q(S)~ Cl+£) (J(S), 

the values d,c, and r must be chosen to satisfy: 

c 

r 

The value of r in (3.27) is the larger solution of (3.19) expressed as 

a quadratic equation in r, where this root is given by the quadratic 

formula. The following table provides some numerical results: 

E. 
d 

c 

r 

.5 

.2 

.8 

33.97 

.1 

.22 

.49 

3. 70 

.OS 

.11 

.22 

2.48 

Table 1 

.01 

.02 

.04 

1.49 
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.01 

.02 

l-32 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 



For example, to achieve a relative error of 5% in the point estimate of 

cr<s), the value r=2.48 will suffice. Once r is chosen, the number 

of amount bands N needed to analyze experience in the interval [ a,b], 

a> 0, is given in (3.9). For example, if a=1,000, b=10,000,000, the 

solution x of (3.9) is approximately 10.14. Consequently, N=11 as was 

stated in section II. To limit the relative error to 1% would require 

33 bands. Since h(r) (r+1) 2/4r has first derivative equal to 0 

when r=1, reductions in c can only be achieved by relatively large 

decreases in r and hence, large increases in N. 

When estimating Ci(S) based on (3.4) and (3.14), it is not possible to 

determine in advance what level of relative error will be produced by 

a given value of r. In contrast to (3.195, the analogous approach 

would produce the following equation in r: 

1 + c, 

2 
where or;ax(S) is defined as the right hand side of (3.4) withor. 2 set 

;:- 2(S) J 
equal to the upper bound in (3.14), andUmin is analogously defined 

but with the lower bound in (3.14). When this ratio was taken with 

the bounds in (3.12), the terms involving njk and~jk cancelled out, 

which was fortunate since these variables are really functions of r. 

The ratio in (3.27) remains a complicated function of r since it involves 

mjk and jA jk' both functions of r. 

In general, r is chosen equal to some convenient value, the resultant 

mjk and JU jk evaluated, and c determined by (3.27). The point estimate, 

" a-<s) ~ ( ~ax(S) + a-;in(S)), 

wi 11 then have a maximum re 1 at i ve error of 100 E %, where. 

-174-

(3.27) 

(3. 28) 

I 
[, 



d 
m· d 

~ O+c) - 1. 

If the resultant value of [is unacceptable, the process will need to be 

repeated with a smaller value of r. One method of obtaining a new trial 

value of r is as follows. Let E1 > 0 be the targeted value for the 
A 

desired level of relative error in the point estimate or (S). Let d' 

be defined as in (3.24) but relative to £', and let c' be the correspond­

ing value from (3.25). The new trial value of r,r', is then taken as 

the solution of (3.27) with c' used instead of c, and, where mjk and 

;Ujk are taken to be constant and equal to the respective values obtained 

with the prior value of r. By assumption, t:'<[.. Consequently, c' <: c 

and r' < r. Once r' has been determined, new values of mjk and jJ jk can 

be developed, the actual resultant relative error of the new estimate 
A 

o-<s) given in (3.28) evaluated using (3.27) and (3.29), and the 

process repeated if desired. 

The estimate given in (3.28) and resultant error in (3.29) are also valid 

(3. 29) 

in the context of (3.8) where ~ax(s) and f;in(S) are redefined with 

reference to the respective bounds in (3.8), and c chosen according to (3.27). 

3. Modified Confidence Limits 

/' 

Once (f( S) is estimated to the required degree of accuracy by <:r (S), 

it can be used in conjunction with the Central Limit Theorem [ 4] to 

produce confidence intervals for S, the aggregate claims during a given 

period of time. 

For example, let~~ correspond to the positive boundary value of the 

symmetric 100(1- ~ )% confidence interval for a normally distributed 

random variable~ • That is, 

Prob ( J~/ ~ ~a( 1 - o<. • 
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1hen according to the Central Limit Theorem, the 100(1- c(_ )"1. confidence 

interval for Sis approximately: 

jJ- (S) - ;!:o{ (J (S)~ S ~)A (S) + ;!:D( cr- (S). 

/' 
If (f""(S) is chosen to limit the relative error to 100 C. %, in the sense 

of (3.23), the corresponding modified confidence interval for S becomes: 

4. Retention Limits 

The appropriate level for retention limits for reinsurance purposes can 

also be studied with this approach. To see this, let R > 0 be given 

and define SR by: 

(3.31) 

(3. 32) 

SR =Z.min(Aij' R)Xj' (3.33) 

where Xj and Aij are defined in section III.l. Then SR is the random 

variable that represents the aggregate amount of claims payable if the 

retention limit is set at R. If one considers jUCSR) to be an appropriate 

value for the minimum reserve needed against the contingency insured, an 

appropriate 'surplus' level can be determined by considering the random 

variable, ~(', defined by: 

By the Central Limit Theorem, the 100 (1- o(}7. confidence interval for 

~ is approximately given by: 

which can be modified ~s in (3.32) to: 
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For the level of confidence desired, o< , existing surplus would limit 
,.. R I R the value of a-<s ) )A- (S ) that is acceptable. In general, this 

ratio would be expected to decrease as the value of R decreases. Of 
II course, once o-<s) has been estimated as in Section III.2., the value of 

"R/ R fh the ratio q-(s ) ~ (S ) can be readily determined for R equal to any o t e 

amount band boundary points. 

For example, ~ssume that~(S) has been determined as in (3.21). 

Then for R=ark. 

( -s- qj (1-qj) [ 2. n. 1 uji + R
2 L n. 1 4 1.0::k J I 1~k J 

\ 
) 

and these values are straightforward to calculate since the various 
k k+1 parameters are assumed known. For ar < R < ar , a similar formula 

2 
would be obtained except that R n.k and Rn.k would be replaced by 

R2 R J J R <JU jkJ njk and ~jknjk respectively, where ;t'jk is defined analogously 

to ~jk but with all amounts limited to R. For such intermediate values 

of R, the ratio in (3.37) could be estimated by utilizing an approximation 
R 

for f jk such as: 

R ark+1 - R Y k 

f jk = /Jjk- ( k+1 k) (,.k- ar ), R& Jk' r ar -ar J 

where v> 0 is chosen to reflect the magnitude and direction of 

skewness present in the distribution of amounts in Jk. For example, 

it is straightforward to check the v = 2 when this distribution is 

uniform. In general, V~ 2 reflects skewness to the left, v< 2 

skewness to the right. 

S. Variance of Decrement Estimators 

As a last application, consider the formulas presented in [ 5 ] for 

the moments of~ defined by (notation changed): 
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where Ai is the number of exposure units for individual i, i=1, ••• ,n, 

Xi(A) is a binomial random variable such that: 

A) q (A). 

If it is assumed that Ai and X. are mutually independent for all i 
] A ] and j, and that q(Ai) = q, the variance of q as derived in [s is: 

Var (~) 

Of course, when Ai=ai is fixed and known in advance, the presence of 

the expectation E in (3.41) is only notational and this formula is 

clearly equivalent to (3.6) restricted to one homogeneous class C .• 
J 

In addition, although it is less apparent, if the method utilized to 

produce (3.41) is applied to S defined in (3.2), the general formula 

(3.4) is produced. 

Let [a, b] , a> 0 be given where this interval contains the range of Ai. 

For r ;> 1, let Jk be a par.tition of [ a,b) as defined in (3.10) 

" and define qk as the restriction of q in (3.39) to Jk. That is, 

Since q(Ai) = q, it is clear that E(qk ) = E(q) =q, and, 

Var (~) 

To estimate (3.43), let Nk be defined as the random variable representing 

the number of claims of amount Ai € Jk. Note that Nk is a random variable 

even when Ai=ai for all i. Applying (2.15) and (2.36), we have that: 

1 
~-
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I 
I 
I 
l 

If expectations are taken in (3.44) with respect to Nk' the following 

estimate for Var(qk) is produced: 

For a given value of r, E [ + J will usually increase as k increases. In 

particular, both bounds in (3~44) as well as the size of the bounded 

interval will tend to increase as k increases, implying a general increase 

in experience volatility as policy amounts increase. As noted before, 

the estimates in (3.45) are sharp and can usually be utilized to 

estimate Var(qk) to any given degree of accuracy by choosing r close 
.1\ -'2" enough to 1. Also, Var (qk) can be approximated by a- (qk)' using Lemma 1, 

where: 

and the relative error of this approximation is no greater than 

C = c/ (2+c). 

Although (3.45) can also be utilized to estimate Var(q) with r=b/a and 

N=~Nk' the result may be considered quite crude for realistic values 

of b/a. For example, if a=1,000 and b=10,000,000, (3.45) becomes: 

q(l-q) E [ ~] :S Var (~l)~ 2501q(l-q) Effi] 1 

and the resultant value of rT 2 cc!J will have a maximum relative error 

of almost 100%. However, for n large, the absolute error will usually be 

quite small and the estimates of practical value. 

If it is assumed that q(Ai) is not constant in general, but is constant 

over each Jk where q(Ai) = qk' (3.45) and (3.46) can still be utilized 

but with q=qk. 
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6. Practical Considerations 

Throughout this section, qj has denoted the probability of a claim in 

class cj where this probability is defined on a policyholder basis. 

Also, class Cj was assumed homogeneous with respect to the value of this 

probability and consequently, would be defined in terms of the various 

underwriting parameters of the insurance product under study. To simplify 

calculations, it will often be desirable to combine various underwriting 

classes. For example, ages may be quinquennialized or 'rated' classes 

grouped. This is because the parameters qj must be estimated based on 

actual experience from each class, and many classes are too sparse to 

confidently analyze. 

When Aij=aij is assumed known and fixed, it is possible to analyze what 

effect such groupings will have on the variance of S in (3.6). To this 

end, let fcjS be a collection of classes to be grouped with respective 

claim probabilities fqjJ and class sizes [nj1 , n=~nj. As a combined 

class, the claild probability q is given by: 

For notational convenience, let a- 2 denote that part of the sum in (3.6) 

which corresponds to the classes under consideration, 

-2 u Also, let (]" be analogously defined under the assumption that Cj 

is a homogeneous class with claim probability q as defined in (3.48), 

Finally, let A~ denote the second moment of the amounts in Cj, 
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Lemma 2 Let Qr2 
and ~2 be defined as in (3.49) and (3.50) respectively. 

Further, assume that the amount distributions of the various classes Cj 

are similar in that A~ A2 for all j where A~ is defined in (3.51). Then, 
J J 

proof By definition, 

(} 2 _a- 2 = 5" nJ.A2J. [q<l-q) _ q (1 )l L. j -qj '). 

- 2 2 cr -a- A2 .,-n.q. (q.-q). L- J J J 

By (3.48), 

n 

which when substituted into (3.54) yields, 

- 2 2 2 <7 n.nl () -u- = A £...... -l...2:. q · <q .-ql ). 
j,l n J J 

If m represents the number of classes to be combined, it is clear that 

the summation in (3.56) has m(m-1) terms since only those terms with 

j~l will be non-zero. By symmetry, these terms can be paired off, yielding, , 

if 2_ (J2 = A2 .z.. [ n.nlq. (qJ.-ql) + nJ.nlql (ql-ql.)] ~ 
j < 1 J J 

2 ~ n.nl 2 
A L _J_ (q.-q

1
) • 

j.:: 1 n J 

Hence, (3.52) is proved. JJ 
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IV. Higher Moments - Discrete Case 

Let n be a collection of numbers 
i=l 

a> 0. Let k be a real number, k ~ 1, and 

analogously to the case k=2 by: 

from the interval [a, b] 
/ 

define ~k(x) and ~(x) 

As in section II, 

interval [1,r] 

/ 
)Uk(x) and ~(x) need only be estimated over the 

, since, 

~ (/l x) = Rk (x). 

Also, the value of these functions need only be considered on polarized 

distributions, since if {xiJand[yiJare given as in (2.9), 

(4.1) 

(4.2) 

(4. 3) 

(4.4) 

1 
+­

n {<x1+J")k- x~J], 
(4.5) 

/ 
which exceeds }Jk(x) since x2 > x1 and for d"7' 0, k > 1, (x+ J" )k _ xk 

is an increasing function of x. 

Theorem 2 Let 

k ~ 1. Then, 
f xiJ ~=1 C [ 1,r J , k a real number satisfying 

I rk_l 
}Jk(x) ~ 1 + r-1 (/" -1), fA= f" (x), 

(k-l)(k-1)(rk-1)k 
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Further, the inequalities in (4.6) and (4.7) are sharp. 

proof Assuming (4.6), it is clear that, 

1 [ rk-1 J 
Rk(x)£ }J-k 1+( r-1)(,fl-l) • 

As a function off on [1,r] , the right hand side of (4.8) is 

maximized when, 

k(rk-r) , 

(k-1)(rk-1) 

and (4.7) follows by substitution. 

To establish (4.6), let D(t) be defined as in (2.11) and t parametrized 

as in (2.18). Tnen, 

n-m-1 +mrk + (s(r-1)+1)k 
n 

m=O, ••• ,n-1 
O::s.s-1. 

For each m, the right hand side of (4.10) is a polynomial in s with 

positive or identically zero second derivative. Consequently, it is 

maximized over [ 0,1] when s=O or 1. Hence, it is sufficient to 

consider (4.10) only for integral m=O, ••• ,n and s=O. For such values, 

f(D(t)) = 
n-m+mr 

n m=O ,1, ••• ,n 

I 
/h(D(t))= 

k 
n-m+mr 

n 
m=O, 1, ••• , n 

and a calculation shows that (4.6) is satisfied with equality at these 

points. Hence, it follows in general for 0 ~ s < 1. 

To see that the inequality in (4.6) is sharp, consider the example given 

in the p~oof of Theorem 1. Corresponding to (2.25), 
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where g (r, A j) is a polynomial of order k. As j increases, the right 

hand side of (4.13) converges to 1 + ~ (rk-1) which equals the right 

hand side of (4.6) since/= (I' -1)/ (r-1). Consequently, the inequality 

in (4.6) is sharp. Letting )l be defined as in (4.9) shows the inequality 

in (4.7) to be sharp as well. / 

From the above proof, it is clear that the distribution that maximizes 

the ratio ~(x) must have a mean/' given in (4.9). As was the case 

in (2.29) where k=2, this mean is an increasing function of r with 

upper bound equal to k/(k-1). In addition, the associated polarized 

distribution D(t) is given by t defined in (2.13), which due to (4.9) 

equals, 

n [ 1 
t = k-1 ;::r - +- ]· r -1 

Consequently, the proportion of points at the left endpoint 1, f(1), 

satisfies, 

f (1) 1- _1_ 
k-1 f r~1 - r~-1]- n 

Utilizing the well known fact that the ad.thmetic mean of any collection 

of numbers, in particualar [ 1,r, ••• ,rk-1 } , must equal or exceed the 

geometric mean, it is possible to show that for integral k, t in (4.14) 

is a decreasing function of r (i.e., negative first derivative), and 

correspondingly, f(1) an increasing function of r satisfying, 

f(l)~ 1, 
r~a:>, k ;;:. 1. 

This statement holds for non-·integral k as well, and can be proved 

by a more careful analysis of t'(r). Also, it is clear that for given 

r > 1, t converges to 0 ask increases, therefore, 

f(l)"'• 1, k~oo, r:;!:. 1. 
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I 

Lower bounds for f' k (x) can be developed by utilizing a generalization 

of (2.33) known as Holder's inequality, [ 6 ], [ 7 J which states 

that for given ai' bi' i=l, ••• ,n, 

where p
1

q are real numbers, 1£: p
1
q,:oa, satisfying: 

1/p + 1/q 1. 

When p=l, q is taken as equal to Df) and the corresponding sum defined 

equal to its limiting value as q--'} aJ , 

In addition, (4.18) is satisfied with equality if and only if there are 

real numbers o( , j3 so that; 

i=l, ••• , n. 

Letting ai 1, p k, q k/ (k-1), (4.18) yields, 

with e~uality if and only if all xi are equal due to (4.21). 

k 
Consequently )A is sharp lower bound for fk' 

bound for \: (x). 

and 1 is a sharp lower 

As it is currently stated, Theorem 2 is not applicable to all distributions 

of a discrete positive bounded random variable (r.v.). This is because 
finite 

it was assumed that the distribution could be realized as aVcollection of 
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points in [ a,b]J a)O. If f(x) is a probability density function 

defined on [ y l m C [ a,b] such that f(yj) is rational for all j, 
j.) j=l 

it can be so realized by defining, 

M min [ N j N, Nf(yj) integral for all 5 , 

n-n +1 ~ i ~ n 
m 

Conversely, every finite collection of points from [ a,b J , a> 0, 

can be identified with a probability density function f(x) with rational 

range. However, since every density function can be approximated to any 

degree of accuracy with density functions of rational range, it should 

be expected that (4.6),(4.7), and (4.22) are valid in general. 

To this end, let f(x) be a probability density function of a discrete 

r.v. X € [ a,b] a"> 0, and define, 

f(xi), k ~1, k real 

As usual, only the interval [ l,r] need be considered. 

Theorem 3 

Then, 
Let f(x) be a p.d.f. of a discrete r.v. defined on [l,rJ. 

k 
1 + ( r -1) (f - 1)' 

r-1 
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Further, all inequalities are sharp. 

proof First assume that f(x) has a finite domain. That is, let f(x) 

be given and defined on [xi 3 ~=1 C [ 1, r] Given [ > 0, 

define g£(xi) 1 i=1, ••• ,m, so that g £(xi) is rational and, 

c.? 0 

1. 

If (f(x
1
), ••• , f(xm)) is identified with a pointy <E. !T\m on the hyper­

plane defined by ,Zyi=1, it is clear that (4.28) and (4.29) require the 

existence of rational points on this hyperplane that are arbitrarily 

close to y. The existence of such points is a fundamental property 

of (1\m, i.e. that rational points are dense in (f\ m [ 3]. 

Given ~(x), it is clear that, 

t>O. 

However, the construction in (4.23) shows that Theorem 2 and (4.22) can be 

applied to f'~( g
6

) and (4.26) is sat}sfied. Since c can be arbitrarily 

chosen, (4.26) must also hold for ~k(f). 

Now for arbitrary f(x) defined on [xi} ~=1 C [ 1,r] , if f'~(f) 
is assumed to exist, it is clear that for every l ~ 0, there is an 

integer N such that, 

L x~f(x.) < [. 
i= N+1 ~ 

k fixed, 
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be a p.d.f. defined on [ x1 , ••• , XN} so that, 

Applying (4.31) and (4.32), 

/ /k
'co- Mk' ChN) J ~ _§_ [ v.. 1 

Cf) + 1] I 1- t. F k • 

Hence, since (4.26) is satisfied with hN(x), it must also hold for f(x) 

due to (4.33) and the fact that 

The inequalities in (4.27) follow from (4.26) as in Theorem 2. 

the inequalities are sharp due to the example in Theorem 2. I 
Finally, 

Since (4.3) and (4.4) are valid in general, Theorem 3 can be applied to 

any p.d.f. f(x) of a discrete r.v. defined on [ a,b] , a > 0. 

Corollary Let f(x) be a p.d.f. of a discrete r.v. defined on { l,r] 

and let MX(t) denote the moment generating function of x, 

Then, 

Further, the inequalities in (4.36) are sharp. 

proof Rewriting (4.35) as: 

k I 

<; t f<k 
Mx(t) ; L- kl 

k . 
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(4.36) follows directly from (4.26). For l £":! ~ r, if the point 

mass p.d.f. fr(x) is considered, where f/'~) = l, f~(x) = 0 otherwise, 

the inequality on the left in (4.36) is seen to be sharp. Also, for 

l !5:: r ~ r, let gf(x) be defined by: 

Clearly, 

= f1 J 

~ 
= r-1 + 

.L:l:..-
r-1 

and a calculation shows that, 

k 
l +(r -1) (f -U, 

r-1 

x=1 

x=r 

elsewhere. 

k 
r ' k 3 1, 

k? 1. 

Consequently, the moment generating function associated with g~ (x) is 

given by the right hand estimate in (4.36). I 
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V. Higher Moments - Continuous Case 

I 
Let f(x) be a continuous p.d.f. defined on [1,r] and /k'JA- and 

Rk defined analogously to (4.24) and (4.25), with, 

I Jr k 
;-k=

1
xf(x)dx, kJ-1, kreal. 

Theorem 4 Let f(x) be a continuous p.d.f. defined on [1, r], Then, 

k 

f-
I k 1 

.: J) .:. 1 + cE......:..__> c,_, -1>, -I k- r-1 r 

Further, all inequalities are sharp. 

proof For each n, consider the partition of [l,r] given by: 

xi = 1 + i 1::. x , 
r-1 

n 
, i=O, ••• , n. 

n-1 h 1 Consider Z.., f(xi).D,x. Since f(x) is continuous and as integra 

i=O 

equal to 1 over [1,r] , it is clear that, 

n-1 
L f(xi) ~x 

i=O Yn' Yn _, 1 as n ~ ,cxJ • 

Similarly, 

Jr k 
x f(x)dx 

1 

n-1 
lim Z /fCx. ),D. x. 

n i=O 1 1 

Let gn (x) be the p.d.f. defined on the partition t xi} given in (5.4) by, 

f(xi)_.6x 

"\In 
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Applying Theorem 3 to gn' 

I I 
Taking limits in (5.8) as n..., oo proves (5.2) since }'k(gn) ~ }J- k(f) 

for all k. As usual, (5.3) follo~s from (5.2). Finally, the ineqaulities 

are sharp since the discrete example given in the proof of Theorem 2 

can be approximated to any degree of accuracy by continous p.d.f.'s. I 

Corollary Let f(x) be given as in Theorem 4 and let MX(t) denote the 

moment generating function of x, 

Then, 

Further the inequalities in (5.10) ar~ sharp. 

proof The inequalities in (5.10) follow directly from (5.2) and 

(4.37). Also, the fact that tt.ey are sharp follows by considering 

continous approximations to the example given in the proof of the 

Corollary to Theorem 3.1 

It was aoted in section IV that the distribution with maximal ratio of 

p~ to .f"k will have)'given as in (4.9). It may be of interest to 

determine the mean of the distribution for which the interval developed 
I 

for/"" k is greatest. A calculation shows that, 

rk_1 1/k 
jl = (k(r~l)) 

Clearly,)'~- is an unbounded increasing function of r for each k. Also, 

for fixed r, ~is an increasing function of k with limit equal to r. 

The value of this limit can be determined by applying L'Hospital's rule 

[ 2 ] to kn? as a function of k, k _, oo 
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