
A CORPORATE MODEL IN APL

by

R.E. Williams

Mutual Life Assurance Company

113

I

I
I

I,

I
I
f
t t:,;, I:
r !.- ...

f
i: /

I
i

t

114

A. P. L. as a computer language for modelling has strengths
and weaknesses • On the plus side are :

1. Its array handling and computntional techniques;

2. As an Inter-active language It Is relatively easy
to debug programs and assemble systems ;

on the negative side are :

1. Documentation for input data and global variables is often
inconvenient or difficult and hence inadequate;

2. In making efficient use of A. P. L. it is desirable to try
to minimize the use of nested loops and procedures ; this
may however lead to more complex calculations.

This paper discusses a design for a corporate model which
attempts to emphasize the strengths and compensate for the
shortcomings of A. P. L. as a computer language for modelling

Basic Principles

1. Flexibility

It should be reasonably easy to modify or expand the
model - e.g. add an expenses submodel ; make use of
graphics ; modify submodules ; add new variables ;
update and keep track of input assumptions ; suppress
reports ; create new Or temporary reports ; etc .•

2. Autonomous sabmodels

The responsibility for making projections should reside
In the area most knowledgeable about the separate Items
Involved and their inter-relationships. Thus each line
of bus j ness .and serv j ce area is given contro lover the
procedures Dsed to project the results of their future
operations. This is reasonable if there are A. P. L.
programmers dispersed through the company •

3. Fully shared control

It Is desirable to avoid reliance on one coordinator or
central authority for the usc of the model or a.
submodel . Thus input assumptions can be modified and
the model used to test such assumptions by any ,user who
has an interest .

115

Each submodel consists of

1. a Sequential file

The first record In the file describes Its STATE and
Indicates whether the Input data has been updated and
when; It also Identifies the time of last update for
each of the companion files associated to the other
submodels and indirectly affecting some of the output
data contained In the file such as net Investment
income and income tnxes •

·2. an A. P. L. shareable workspace containing

a. Function-group to massage the sequential flle(s)

Ibis Is essentially a mainline program which
accepts the name of the specified file and possibly
some control infor~ation and proceeds to generate
projections from the Input data • writing the output
to the same file and updating the STATE vector. The
ma I nil n" wou I d he sUI' ported by suhprograms and fixed
variables organized under a group name.

b. Documentation character array

This is a character array contajning in each ro. a
description or a corresponding row in the numeric
array determined hy the sequential file. The first
sixteen columns contain an abbreviation suitable
as a row heading •

c. Fixed variahles (e.g. to specify defaults

For example. fixed varlahles are needed to specify
the name of the default sequential file. the rows
used for Input data. the rows containing specific
data to·be transferred to the allocation submodel •

d. Function-group to produce reports

Ibis would he a mainline and supporting varlahles
and subprograms needed to produce reports local to
the submodel •

In effect each workspace represents READ ONLY Information
and procedures whereas the sequential files are shared for
reading and writing data.

116

The CORPORATE MODEL consists In total of a sub.odel for each
of the following lines or service divisions

1. Individual Insurance II

2. Individual Annuity IA

3. Croup Annuity CA

4. Croup Life CL

5. Croup Health GH

6. Segregated Funds SF

7. Investment Services IS

8. Corporate Allocation CA

The flow of control and data Is as follows

1. File names (If not to be defaulted) and control
information concerning reports to be produced are
passed to a driver program •

2. The file names are passed to the CA submodel •

3. The CA submodel reads the files associated to each
of the lines, determining REVENUE ACCOUNT and cash flow
Information by line spilt par-non par. where appropriate.
In any case where a file has not yet been massaged,
the CA submodel calls the related function-group to
process the file before reading the file. The STATE of
each file Is Indicated by Its first record. The SF ,
IS , and CA files are updated with the available data

4. The IS function-group Is called to massage Its file
in effect determining new assets and investment income

5. The CA submodel then reads the IS file and allocates the
investment income by line; it does the tot~1 company tax
calculation and allocates the tax by line; It updates
all the files with this information changing the STATE
record In each file to so Indicate.

6. The driver program now calls the function-groups
required In order to produce the reports specified
The CA function-group would produce the INCOME
STATEMENT and BALANCE SnEET possibly spl It by line
Each submodel cnn produce Its own STATEMENT of
ASSUMPTIONS , SOURCE of CAIN AND LOSS , INTERNAL
BREAKDOWN of OPERATIONS etc .•

117

Objectives of the Design

1. Consistency with the basic principles

2. Facilitate the creation and update of Input data.

3. Transmit processed data frOM any source .

4. Tie consistent Input and output d,ata together permitting
. separate fi les in response to what if questions.

5. Avoid unnecessary reprocessing •

6. Control the reports generated •

7.' Adequate documentation of data.

System Software and' 1I0me-Made • Utilities

1. VSAPL under TSO (MVS Release 3.8) •
We currently have release 3.5 and are in the process
of Installing release 4.0 with Graphical Data Display
Manager (GDDM) • These versions 'are distinguished
by the Extended Editor and Full Screen Manager. The
new version will have full graphics capability and
an A. P. L.-Sesslon Manager product.

Extended Editor

The advantages of the Extended Editor are Implicitly
relied upon In the design of the model. It Is easy
to create and modify character arrays which are used
to document the file associated to a submodel • '
Functions and the documentation array cnn be edited
in parallel. Lines of code can be moved easily
between functions permitting a long program to be
organized Into integral sub-modules •

Full Screen ~~6ager

The Full Screen Manager auxiliary processor (124X
is used to create a data entry program which ties
the documentation array to tbe Input data and bas
other useful options described below •

2. File 1/0 uses auxiliary processor 111 and OS Sequential
files written in A. P. L. format (VAR option) •

118

3. TSO-Sesslon Man~ger Is a very useful complement to
A. P. L. on line ~t ~ video terminal (with PF keys) •
It permits the screen to be divided Into windows which
can be positioned to view any portion of the Input stre~m
and/or the output stream generated during a session •
Furthermore relevant sections of either stream can be
written to a data set or printed on the main printer
avoiding the use of typewriter or decwriter terminals

4. Dataentry Utility Function

the
and
that

This function is used to create , update or view
numeric data In a file. Depending on which rows
columns are specified the screen is formatted so
documentation information such as the row number .
column numbers , and character description nre written
on the screen at low intensity and the numeric data
at high Intensity • The numeric data can be overwritten
or operators can be specified to repeat a previous
field. multiply by a factor. or Increase by a
constant. Other options using the PF keys are planned.

5. Documentation-Trace Utility Function

This function takes the name of a submodule • left
and/or right arguments for this submodule , an array
name referenced in the submodule and a documentation
character array referring to the referenced array ,
creates a copy of the submodule • Invokes the STACK
auxiliary processor, and executes the submodule ,
paQ~ing at each line of code in which· the array is
referenced and printing the description of the rows
specified and other trace information required .
This utility function makes It feasible to write
submodules whicll process a single array by massaging
its rows since it provides adequate documentation
for the calculations taking place. The lines of code
themselves will be visually unappetizing - the opposite
of an • English-like self documenting high level
language' such as PL/I • Cobol etc. However It is
easier to make use of t f/ t and' f.g • for
appropriate A. P. L. primitives f • g

6. Printflle Utility Function

This provides an unformatted dump of the numeric data
In a file with description frOM the assosclated
documentation array for selected rows and columns.
Alphabetic or other row order can be specified with
an alphabetic index

119

7. Fllewrlte Utility Function

This assureS a uniform file structure Including a
STATE vector as the first record •

8. Flleread Utility Function

This assures that the first rec~rd Is not confused
with the MODEL numeric data

Evaluation

Since we are stili In the process of testing and assembling
the submodels It Is premature to evaluate this A. P. L.
application. Nevertheless the following comments can be made

- the data management and documentation techniques have been
we]] received;

- there have been some scheduling problems depending on the
level of sophistication attempted by each line of business;
the Individual Insurance and Annuity lines are designing an
extensive business-in-force model to feed their corporate
submodel ;

- projections are made In all years before the books are
closed In earlier years; final adjustments In cash flow
affecting cash and Investment income must be made with care
to keep the books In balance for each year ;

- the Inter-active and computational nature of A. P. L.
permits the data to be analysed on line to answer questions
not anticipated by the Corporate Model •

... ***

120

DISCUSSION OF PRECEDING PAPER

BILL JOHNSTON: You have one array for your input structure - do

you have sn array Which carries the results of the output items or

are the output items just generalized as a print down the side?

BOB WILLIAMS: No, the input and output assumptions or the input

assumptions and the output results are tied together in the same

array.

BILL JOHNSTON: There is one array carrying all input and all

the primary outputs?

BOB WILLIAMS: Yes, there is one array that carries all that,

and there is a convention with which to keep these separate if we

want to do this type of calculation.

BILL JOHNSTON: Having all the data in one array would make it

into a multiple work space type of structure. Do you generally work

in just one work space at a time?

BOB WILLIAMS: There is one driver function which pulls in the

various work spaces that are required; if I say one array, I mean

that each sub-model for a line of business has one array because they

are responsible for their own assumptions and their own operating

results. But there is a driver program Which will pull in their work

space, the one that contains their version of their sub-model, if you

like, snd thst one there will read their file snd update it if it is

necessary. It has raw input information in it. Without the output

results it will call their sub-model processor and update it to a

final stage Where it is ready to provide input to the investment

program.

121

BILL JOHNSTON: Now, say, data are on files and not in the work

space.

BOB WILLIAMS: The data are on files, the programs are not. The

data can be updated by anybody who wants to run the model. There is

shared control, they do not have to come to me. If the people of

that individual area want to run the whole sub-model by varying their

own assumptions to see what happens, they can do that. They can

specify separate output files so that they do not muck up the output

files that were created at the last "standard" run of the model.

BILL JOHNSTON: You see, there are probably values assigned to

computer language; people say a computer language is good if it is

self-documented; if you can read a line of code and it is under­

standable by a layman; and other people say that s computer language

is good if it is essy to program calculations, if they can be done

precisely and efficiently.

BOB WILLIAMS: Well certainly this approach to running a

corporate model in APL is not meant to make it self-documented and

understandable, because all you see if you read a line of code is the

name of the array - a bunch of operations on it. There is no way to

understand who or what is going on that volume. You would have to

take it apart. ·-]jilt if you add these functions, which operate in a

sense on your programs, and- sort of "undress" these things, which

makes apparent just exactly what calculations are taking place, by

tying the documentation array to the actual row, the actual line of

code in which a row is processed or the series of rows are processed,

it turns out to be just fine.

122

i

I
I
I
I
I
I
I

!
I
I

VOICE FROM FLOOR: With the APL corporate model, suppose you are

wondering about the ordinary life line only. I use 7 or 8 srrays but

they are all in one block in the file and they are all written as a

group. After the run is over, I have a small FORTRAN program which

is submitted and you simply print all these arrays on the high speed

printer. You can probsbly do the same things with the files of the

high speed print and the arrays are labelled by that program. And

then, when I am working on the system, I have their names and labels

across the top and down the side. I use that to indicate what the age

matrix is, for example.

BOB WILLIAMS: Well, I mean, there are obviously twice as many

as anybody could take care of, and in the use of APL there are -blind

alleys" that you might find yourself looking down, and you might get

terribly confused. For example, in the asset model we have, we end

up with almost 700 variables. We are describing the investment pro-

gram in terms of a commitment; we are keeping track of the outstand-

ing commitments on each asset type. We have programs for 15, 16

different types of assets.

AL CHRISTIANS: Does your documentation in systems give you

notice in some kind of automatic way if you change the code, so that

you do not have to change the documentation, or do you have to just

remember to change them both when you have changes?

BOB WILLIAMS: You should not be reordering your array; for

example you should not add a new row between the thirteenth and four-

teenth row.

But isn't there program documentation too? Could you, maybe,

123

insert some lines of codes?

The main programs that process the arrsys have documentation, of

course. They destroy what each line is doing. But it is not con­

venient in tracing calculations or something like that. You always

have to look at the function code, ,at the function, as you are

tracing.

There ia nothing very magic1cal about this. Basically, you are

simply maintaining, in parallel, a documentation array to correspond

to your numeric array. So, for your documentation array, you have

one vsriable, called "docu" or something, whatever you like, and you

have some in the first row here. You have maybe some short abbrevia­

tion, premiums, and over there somewhere you can have a lengthier

explanation - exactly what premiums those are. And you can have

claims, you can have invested income, etc. The point is that you

have this available and you can bring it to the function, when you

peel the function which is executing and working on some array which

is being specified on all sorts of indexes here, depending on what

calculations we want to do. And you can use this documentation array

to refer by using these indices. You can d~scribe what calculations

are taking place. If you do not have something like that, working

with a function 'tnat just has a simple R allover the place, is a

misery.

Now the other thing that I wish to point out is that the release

we are using has an IBM version of APL, that has an extended editor

for APL. If you do not have a version that has such a thing, I

suggest you get it, because it is extremely useful - you can parallel

edit functions and character variables and switch between them. So

124

it becomes very easy if you want to write some line of code here,

which is going to determine net income, like adding a bunch of these

rows and subtracting a bunch of others. If you want to know which

rows to choose, all you got to do is parallel-edit your documentation

array and pick out the numbers as fast as you get them in.

If any of you, who might want to try such a thing, would find

that you run into problems, I would be happy to share our own exper­

ience with you and try to answer any of your questions.

VOICE FROM FLOOR: It sounds as if some of these things may be

software-dependent and I do not think that you want to go too far

afield here - I gathered yours is operating under TSO.

BOB WILLIAMS: Yes, we are operating under TSO, that's true.

But this extended editor here that IBM provided (under release 73.5

and next release 4) can be used whether you operate under CMS or

under TSO.

BOB WILLIAMS: Well no, we do run our APL under TSO, and I think

there is another standard option and this extender is available.

The other thing that is very useful, by the way, for those of

you who may have a chance to decide whether or not you get to 90 with

APL is a session manager product. A session manager product is one

which keeps a continuous log of all the work you have done during the

session and you can go back to various things that you have done by

strolling up or down on the screen. You can also print different

sections of your work for documentation purposes. You can print

different sections of your work on, say, the main printer or maybe on

an auxiliary printer, or something like that. I am not sure and I

125

don't know, it might be a little expensive, but if there are enough

people who would use it then it would probably be very worthwhile.

I know that I noticed that, since we have had the APL under TSO,

I enjoy pro ramming in APL more than before that.

VOICE FROM FLOOR: You did not mention any constraints that you

put on the programmers as to how big a statement they write •

. BOB WILLIAMS: One of the problems that I find when I turn

people loose is that they have the whole program in one statement.

Well that's a question of style. I try to be as unrestrictive as

possible when style is concerned. I want people to do their own

thing when they are programming in APL, but, on the other hand, I

wanted to provide enough tools so that they would not get away from

following this approach here where, instead of using names like

premiums for your array, or claims or whatever, you are always using

the simple R or X or Z or whatever, which always makes it look as if

it's sort of a similar code or something like that; it does not

stop.

VOICE: You do not get any problem with modification then?

BOB WILLIAMS: No. I never did.

126

