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SUMMARY 

Bayesian analysis using Monte Carlo integration is an effective approach for 
handling rich multiparameter families of distributions; nonconjugate priors; 

censored data; extrapolation uncertainty; and the computation of posterior 
distributions for parameters or predictions of interest. In the example, 

posterior percentile curves for a rate function are computed from survival 
data. 

Keywords: Bayesian statistics; Monte Carlo integration; posterior 
distributions; censored data; survival analysis. 
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1. INTRODUCTION 

Bayesian statistics and numerical methods form a particularly effective 

partnership. There are at least two reasons for this: 

o It is often easy to compute the values of the likelihood function and 
the prior density (and therefore the posterior density up to a 

multiplicative constant) on any specified set of points in the 
parameter space. This is true even for many models and problems that 
would be very difficult to handle with conventional methods. 

o The principal computational problem in making a Bayesian inference or 

decision is the evaluation of integrals involving the posterior 
density. 

Thus the solution to many difficult inference and decision problems can be 
obtained by numerical integration using only the values of the likelihood 

function and the prior density on a finite set of parameter points. The 
suitable choice of this set is the most important, and sometimes the most 
difficult, aspect of the computation. 

19 



3968w 

2. BAYESIAtJ ANALYSIS USING r10NTE CARLO INTEGRATIOrr 

Bayesian inference and decision making usually require the computation of 
posterior cumulative distribution functions and/or posterior moments of 

functions of the parameter vector 

This requires evaluation of integrals of the form 

f heel ~ (el 0) de 
e 

where h is a real valued function. The posterior density ~(eIO) is given by 

Bayes I theorem, 

He\ O)a: He) UeIO) 

where ~(e) is the prior density and l(eIO) is the likelihood function 
corresponding to the observed data O. 

The Monte Carlo approximation to I is given by 

f 

The ·weights" W(em), m I, 2, ••• , M, are computed from 

~J(e) = ~(e) LCe\O)/g*(lI) 
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The em' m = 1. 2, ...• ~'. are generated independently from the K-variate 
density g*(e). This is known as "importance sampl ing." The density g*(e) is 

called the "importance function" or "generating density" and is usually chosen 

to approximate the posterior density, with the restriction that its form must 

be such that the em's can be easily generated. 

Details about the techniques used in applying this methodology and discussions 
of Monte Carlo integration error and its reduction can be found in Stewart 

1968. 1~70. 1977. 1979. 1ge3; Stewart and Johnson 1971, 1972; Johnson and 

Stewart 1971; Kloek and van Dijk 1975. 1978; van Dijk and Kloek 1978. 1980, 

1983; t'cGhee and Walford 1965, 1967. 1968; Heiberger 1976; Zellner and Rossi 

1°82. 

3. EXAI'PLE 

Consider data of the type shOltn in Fig. 1. Subjects enter the study at 

different ages and remain in the study until death, withdrawal or the 
termination of the study. (There may be some subjects who would have been in 

the study but died before their entry date. Since these occurrences are not 

included in the data. the term "left truncation" is sometimes used with this 

type of data.) 

Let the subscript denote the i th subject and 

Ei -age at entering the study 

Xi - age at death 
Ci - age at exit from study due to withdrawal or termination of study. 

For each subject we observe Ei and r:1in (Xi' Ci ) 

We define a rate function r(x) by: 

rI x) dx = (4) 

81 



3968w 

SURVIVAL DATA 

SUBJECT 

1 

2 

3 

Lj 

• 
0 

0 

I 
El 

I 
E2 

I • E3 X3 
I 0 

ELj (Lj 

AGE 

- E1 - AGE AT ENTRY 

• - Xi - AGE AT'DEATH 

o - (i - AGE AT EXIT FROM STUDY DUE TO 
WITHDRAWAL OR TERMINATION OF STUDY 

Fig. 1 
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and assume that r(x) does not depend on i or Ei . (We also assume that the 

mechanisms that determine Ei anrl Ci are non-informative for inferences 
about rlx)') 

r(x) is the hazard rate (or force of mortality) function corresponding to a 

density fIx) and cumulative distribution function, F(x). They are related by: 

rlx) fex) 
1-F\xT 

The conditional density of X given E and that C = 00 is 

f(xIE; c=oo) fIx) 
TTffi x > E 

The likelihood function given the data 0 is 

n [ ((Xj.) 1 n LlaIO) i :Xi<Ci I-FlEila) j :Xj>Cj 

n f(Xi!a) n 
i : Xi <C i j :Xj>Cj 

n [1 - FCEilal] 
all i 

[ I-F(Cj I')] 
l-FlEjlal 

[l-F(Cjla)] 

(5) 

(6) 

(7) 

The data used in this example were from a survival study of the male residents 
of Channing House, a retirement center located in Palo Alto. The data and 

further information are given in Hyde 1977, 1980. Of the total of 97 men in 
the sturly, 46 died,S withdrew and 46 survived to the end of the study. The 

ages at entry varied from 62 to 89 years. 

The prior distribution and the eight parameter (K=8) state space of rate 
functions were defined in a manner similar to Example 1 of Stewart 1979 but 

with K* = 16 as defined in Section 3.1. An analyst with experience derived 

from similar situations may have chosen a prior with a different structure, 

but this should cause no problems because of the great flexibility allowed in 
choosing priors when using 110nte Carlo integration. 
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Posterior percentile curves for the values of the rate functon. r(x). are 

shown in Fig. 2. Also shown are two dashed curves, designated by M and X. 

which are, respectively. the posterior mean and the r(x) that maximizes 

((aiD). To obtain these curves. Monte Carlo integration was used to compute 
the posterior distribution of the value of the function at each of the 15 

evenly spaced values of X. Each posterior was evaluated at 2~O points along 
the vertical axis. This required the simultaneous 110nte Carlo evaluation of 

3765 integrals. The same set {9m.~1(9m):m=I.2 .... ,H=2000} was used for all 
of the integrals. 

Displaying a sample of rate functions from the posterior is another way of 

illustrating the properties of the posterior. T~!enty rate functions generated 

from the posterior are displayed in Fig. 3. The sample was generated by t~e 

"acceptance-rejection" method described in Stewart 1983. 
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