
GENERATING RANDOM NUMBERS IN APL

by

Thomas N. Herzog

·Loyola College of Baltimore

99

. ~ .

.-:-

100

APL is a vector-matrix based computer programming language

which is a powerful tool for solving actuarial problems. One

such class of problems is Monte Carlo or simulation studies. In

the present paper we suggest improvements in the APLprimitive

function roll (denoted by?), which is a uniform pseudorandom

number generator. We also discuss procedures for generating

pseudorandom normal deviates in APL.

The paper consists of two parts. The first part deals with

uniform pseudorandom numbers, the second with pseudorandom normal

deviates. Because a large portion of ARCH readers are probably

not familiar with APL, we have not included much APL notation or

coding in this paper. Such material is, however, to be found in

Freiden and Herzog [1979] and Herzog [1981].

1. Uniform Pseudorandom Numbers

1.1 The APL Uniform Random Number Generator

The APL primitive function roll (denoted by?) is a

multiplicative congruential generator of the form

xn+l = 7 5 • xn (mod 231 - 1)

1.2 Inadequacies of the Roll Function

Marsaglia [1968] in a paper entitled "Random numbers fall

mainly in the planes" has shown that for many applications the

use of multiplicative congruential generators, such as the roll

operator, is inappropriate. Specifically, "the principal defect

is that certain simple functions of n-tuples of uniform random

numbers do not have the distribution that probability theory

predicts." "The problem lies in the 'crystalline' nature of

multiplicative generators: if n-tuples

101

(ul,u2' ••• 'un), (u2,u3, ••• ,un+l), ••• of uniform variates producej

by the generator are viewed as points in the unit cube of n­

dimensions, then all the points (n-tuples) will be found to lie

in a relatively small number of parallel hyperplanes."

Knuth [1980] reports two schemes for circumventing this

difficulty. The first such scheme, suggested by MacLaren and

Marsaglia [1965], entails the use of one random sequence to

permute the elements of another. The other scheme, suggested by

Bays and Durham [1976], can give surprisingly better results even

though it requires only one random sequence instead of two.

Specifically, the Bays-Durham scheme results in a lengthened

period and a decrease in local nonrandomness; in addition, this

latter scheme requires less computer time than the MacLaren­

Marsaglia scheme provided the procedure is carried out in

assembly language or in a computer language such as BASIC or

FORTRAN which is not a vector-matrix oriented language.

Unfortunately, the Bays-Durham scheme seems quite inefficient to

perform in APL, at least in terms of computer time.

For APL, the following widely used scheme appears to be more

efficient in this respect. To generate N pseudorandom integers

uniformly distributed between 1 and M, inclusive, (with M no more

than the underlying modulus 231_1) use the APL roll operator to

first generate N pseudorandom numbers over the desired range and

then to reorder the sequence using a random permutation of the

integers from 1 to N. This procedure keeps the length of the

period of the sequence at 231_2.

102

The recommended procedure is in the spirit of MacLaren and

Marsaglia [1965] as well as a procedure which Learmonth and Lewis

[1973] attribute to John W. Tukey. The Tukey scheme is to

generate blocks of, say 1024, pseudorandom numbers and then

shuffle the elements of each block according to some random

permutation.

1.3 Conclusions and Recommendations

1. APL'ers using the roll operator to generate

pseudorandom numbers should be well-aware of the serious defect

identified by Marsaglia [1968], and should, therefore, probably

consider "shuffling" all random sequences produced by the roll

operator.

2. A new APL primitive' (? overstruck with - , the

dieresis) should be introduced to return a "shuffled" sequence of

uniform pseudorandom numbers. Such a primitive would implement

an optimal algorithm in the interpreter. It would also be a

constant reminder to all APL'ers that the roll operator, if not

modified, may produce bad, but unrecognized, results in

simulation studies. Alternatively, the roll operator could be

redefined as a "better" random number generator such as in McGill

University's Random Number Package SUPER DUPER (Marsaglia,

Ananthanarayanan, and Paul [1976]).

2. Generating Normal Random Deviates in APL

2.1 Three Methods

Knuth [1969] describes three methods for generating

pseudorandom normal deviates. One method, is said to be

considerably faster than the others. In fact, Knuth regards its

103

relative speed sufficient to compensate for its larger memory

requirement. We will show that this analysis is not valid when

the basic machine instruction set is unavailable to programmers,

as in APL.

The three methods treated by Knuth [1969] are the polar

method, Teichroew's method, and Marsaglia's rectangle-wedge-tail

method. Each of these methods requires as input at least one

pseudorandom number uniformly distributed over the interval

(0,1).

In the polar method, two uniform deviates are required as

input. This requirement does not, however, decrease the relative

speed of the polar method because two independent normal deviates

are generated. The polar method may be described as follows:

First, generate an ordered pair (ul,u2) where ul and u2 are

independent random variables uniformly distributed between -1 and

1. If (ul,u2) is in the interior of the unit circle centered at

the origin (of a two-dimensional Cartesian coordinate system),

for·m x I and x2 as:

Ul-V -2 In R
R

where the radius R = +

'"' /-2 In R
u2 V

R

Xl and x2 are the desired independent normally distributed random

variables. If (uI,u2) is outside the unit circle centered at the

origin, generate another ordered pair and repeat the above

procedure.

In an APL implementation of Knuth's -Algorithm P- for

generating pseudorandom normal deviates by the polar method (see

104

Freiden and Herzog [1979) the primitive operations natural

logarithm and raise to an arbitrary power can be used. This

makes the polar method relatively faster in APL.

Teichroew's method also takes advantage of an APL primitive

operator since it is a polynomial approximation of a normal

deviate. Teichroew's method may be described as follows: Let U

be a vector of 12 independent random variables uniformly

distributed between 0 and 1, and define a new random variable R

by

12
(L Ui)-6

R = _--"i::...=...:l::.-,--__ _
4

Then if A is the 10-element vector A = (0, 3.949846238, 0,

0.252408784, 0, 0.076542912, 0, 0.008355968, 0, 0.029899776), it

turns out that the polynomial

9
L A· Ri

= i=O 1
H(R)

approximates a normal deviate. This polynomial is an

approximation of F -1 (G(R» where F() is the standardized

normal distribution function and G() is the exact distribution

of R. Since each element of the vector U is assumed to have a

uniform distribution over the interval (0,1), R is approximately

normally distributed with mean 0 and standard deviation 1/4.

Marsaglia's method, which may be applied to any distribution

function, is quite different from the other methods. Marsaglia

suggests rewriting the desired distribution function F as a

linear combination of n distribution functions Fl ,F 2 , ••• ,Fn •

Thus, we may write

105

where

n
F(x) L PiFi(x)

i=l

and

Each Fi is to be computed only 100Pi percent of the time, on the

average. Since most of the functions Fi are trivial

modifications of the uniform distribution, if the Pi and Fi are

chosen judiciously, the calculation of F(x) will be trivial most

of the time.

The implementation of Marsaglia's method rests on the

decomposition of a random bit string which is equivalent to the

pseudorandom number

U - O.bO bl ••• b t ·

The first bit bO determines the sign of the result. The bits bl

through ba are used to select the appropriate Fi as follows:

(a) .If 0~blb2b3b4<10, then set x to

A[bl b2b3b4l + .00 b5b6~ •• bt

(b) If 40~blb2b3b4b5b6<52, then set x to

B[blb2b3b4b5b6l + .00 b7ba ••• bt

(c) If 20a~blb2 ••• ba<225, then set x to

C[b l b 2•• .bal + .00 bgblO ••• b t

where A,--S, and C are stored tables of values.

(d) Otherwise, use a more complicated technique, which we

will not describe here.

Note that 10 times out of 16, or .62.5 percent of the time, on the

average, only step (a) is required, whereas step (d) is required

only 12.5 percent of the time, on the average.

The decomposition of U into bit strings of length 4, 6, or a

is best done in machine language using logical "AND n and "SHIFT"

106

operations within high-speed registers. The indexing of the

tables A, B, and C is also fast in machine language. In APL,

however, these operations must be simulated using multiplication

and division by the appropriate powers of two. Our APL

implementation of Marsaglia's method was limited to the first

step (step (a) above).

2.2 Timing the Methods

We are interested only* in execution speed and we expected

the algorithm making best use of APL primitives to be the

fastest. Obviously, execution speed depends on the APL

implementation and the instruction set of the host machine.

Therefore, we have. run timing tests on three different computer

systems. Of course, it is not necessary to test the complete

Marsaglia algorithm if the first step alone is slower than the

complete algorithms of the other methods. In the following

table, execution time is an average obtained by generating ten

sets of 100 normal random numbers and is measured relative to the

execution time of the polar method.

The three computer systems were

IBM 370 (The Computer Company)

o IBM 5100

Burroughs 7700 (Data Resources, Inc.)

*According to Knuth (1969, page 113), both the polar and
rectangle-wedge-tail methods "give essentially perfect accuracy."
How.ever, "Teichroew's method is only approximate, although in
most applications its accuracy (an error bounded by 2 x 10-
when IRI<l) is quite satisfactory." In the second edition of his
book, KnUith (1980) omits entirely a discussion of Teichroew's
method.

107

Relative Execution Times

S:lstem

Method 1 2 3

Polar 1. 00 1.00 1.00

Teichroew 1. 32 1.19 1.16

Marsaglia 1. 64 1. 64 1.15

Although the timings are quite different, the polar method

requires the smallest amount of execution time regardless of

which computer system is used.

2.3 Historical Remarks

The polar method was originally suggested by Box and Muller

[1958). The form of the polar method used in this paper is due

to Marsaglia [1962).

The. original reference for Marsaglia's rectangle-wedge-tail

method is Marsaglia, MacLaren and Bray [1964). An improved

version of this scheme is presented in Marsaglia,

Ananthanarayanan, and Paul [1976).

2.4 Further Thoughts

So far, there have been no remarks directed at specific
~./:-....

actuarial issues. So I thought that before closing I would at

least make one observation. For problems in which the experience

of a portfolio of insureds is to be simulated, the experience of

the underlying mortality table should be assumed to have arisen

from a -random process.- In particular, the mortality table

itself should usually be considered to be the mean of a

probability distribution. Consequently, unless the amount of

108

experience underlying all age groups represented in the mortality

table is exceedingly large (so that all variances may be

considered to be negligible), the distribution of the mortality

table as well as the portfolio under consideration should both be

simulated in such problems.

109

BIBLIOGRAPHY

Bays, C. and Durham, S. D., "Improving a poor random number
generator," ACM Transactions on Mathematical Software, Vol. 2,
No.1, March 1976, pages 59-64.

Box, G. E. P. and Muller, M. E., "A Note on the Generation of
Random Normal Deviates," Annals of Statistics, Vol. 29, 1958,
pages 610-611.

Freiden, A. and Herzog, T. N., "Generating normal random deviates
in APL," APL QUOTE QUAD, Vol. 9, No.3, March 1979, pages 49-51.

Gebhardt, F., "Generating pseudo-random numbers by shuffling a
Fibonacci sequence," Mathematics of Computation, Vol. 21, No.
100, October 1967, pages 708-709.

Herzog, T. N., Generating Uniform Pseudorandom Numbers in APL,
Actuarial Division, HUD, 1981.

Hoaglin, D. C., Theoretical Properties of Congruential Random
Number Generators: An Empirical VIew, Department of Statistics,
Harvard university, November 1976.

Knuth, D. E., The Art of Computer Programming, Vol.2, 2nd
edition,. Addison-Wesley, 1980. (The first edition was published
in 1969.)

Learmonth, G. P. and Lewis, P. A. W., "Statistical tests of some
widely used and recently proposed random number generators," in
Proceedings of Computer Science and Statistics: 7th Annual
Symposium on the Interface, W. J. Kennedy, E., Ames, Iowa: Iowa
State University Press, 1973.

MacLaren, M. D. and Marsaglia, G., "Uniform Random Number
Generators," Journal of the Association for Computing Machinery,
Vol. 12, No.1, January 1965, pages 83-89.

Marsaglia, G., "Random Variables and Computers," Transactions of
the Third Prague .Conference on Information Theory, Statistical
Decision Functions, Random Processes, June 1962, Prague,
Publishing House of Czechoslovak Academy of Sciences, 1964, pages
499-512.

Marsaglia, G., "Random numbers fall mainly in the planes,"
Proceedings of the National Academy of Science, Vol. 60, No.5,
September 1968, pages 25-28.

Marsaglia, G., Ananthanarayanan, K., and Paul, N. J.,
"Improvement on Fast Methods for Generating Normal Random
Variables,· Information Processing Letters, Vol. 5, pages 27-30.

Marsaglia, G., MacLaren, M. P., and Bray, T. A., "A Fast
Procedure for Generating Normal Random Variables,· Communications
of the ACM, Vol. 7, No.1, January 1964, pages 4-10.

110

Discussion of Preceding Psper

AL CHRISTIANS: With the APL roll function, do you know the

number of planes in hyperspace that are actually involved?

TOM HERZOG: No. I have, unfortunately, not looked into this.

Of course, this would depend on the dimension of the hyperspace under

consideration, and the latter would, in turn, depend upon your

specific application.

VOICE FROM FLOOR: It's not clear to me why you want to

introduce a new operator. Wby not simply ~prove the old one?

TOM HERZOG: I agree with your suggestion and made that

recommendation myself in my article in the December 1981 QUOTE QUAD.

KATHRYN PLANTE: Do your resulta also apply to congruential

generators of the form

x"+1 - ax" + b (mod c)

TOM HERZOG: Yes. On page 28 of his National Academy of Sciences

paper Marsaglia states that similar results can be established for

this type of generator.

111

112

