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APL is a vector-matrix based computer programming language 

which is a powerful tool for solving actuarial problems. One 

such class of problems is Monte Carlo or simulation studies. In 

the present paper we suggest improvements in the APLprimitive 

function roll (denoted by?), which is a uniform pseudorandom 

number generator. We also discuss procedures for generating 

pseudorandom normal deviates in APL. 

The paper consists of two parts. The first part deals with 

uniform pseudorandom numbers, the second with pseudorandom normal 

deviates. Because a large portion of ARCH readers are probably 

not familiar with APL, we have not included much APL notation or 

coding in this paper. Such material is, however, to be found in 

Freiden and Herzog [1979] and Herzog [1981]. 

1. Uniform Pseudorandom Numbers 

1.1 The APL Uniform Random Number Generator 

The APL primitive function roll (denoted by?) is a 

multiplicative congruential generator of the form 

xn+l = 7 5 • xn (mod 231 - 1) 

1.2 Inadequacies of the Roll Function 

Marsaglia [1968] in a paper entitled "Random numbers fall 

mainly in the planes" has shown that for many applications the 

use of multiplicative congruential generators, such as the roll 

operator, is inappropriate. Specifically, "the principal defect 

is that certain simple functions of n-tuples of uniform random 

numbers do not have the distribution that probability theory 

predicts." "The problem lies in the 'crystalline' nature of 

multiplicative generators: if n-tuples 
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(ul,u2' ••• 'un ), (u2,u3, ••• ,un+l), ••• of uniform variates producej 

by the generator are viewed as points in the unit cube of n­

dimensions, then all the points (n-tuples) will be found to lie 

in a relatively small number of parallel hyperplanes." 

Knuth [1980] reports two schemes for circumventing this 

difficulty. The first such scheme, suggested by MacLaren and 

Marsaglia [1965], entails the use of one random sequence to 

permute the elements of another. The other scheme, suggested by 

Bays and Durham [1976], can give surprisingly better results even 

though it requires only one random sequence instead of two. 

Specifically, the Bays-Durham scheme results in a lengthened 

period and a decrease in local nonrandomness; in addition, this 

latter scheme requires less computer time than the MacLaren­

Marsaglia scheme provided the procedure is carried out in 

assembly language or in a computer language such as BASIC or 

FORTRAN which is not a vector-matrix oriented language. 

Unfortunately, the Bays-Durham scheme seems quite inefficient to 

perform in APL, at least in terms of computer time. 

For APL, the following widely used scheme appears to be more 

efficient in this respect. To generate N pseudorandom integers 

uniformly distributed between 1 and M, inclusive, (with M no more 

than the underlying modulus 231_1) use the APL roll operator to 

first generate N pseudorandom numbers over the desired range and 

then to reorder the sequence using a random permutation of the 

integers from 1 to N. This procedure keeps the length of the 

period of the sequence at 231_2. 
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The recommended procedure is in the spirit of MacLaren and 

Marsaglia [1965] as well as a procedure which Learmonth and Lewis 

[1973] attribute to John W. Tukey. The Tukey scheme is to 

generate blocks of, say 1024, pseudorandom numbers and then 

shuffle the elements of each block according to some random 

permutation. 

1.3 Conclusions and Recommendations 

1. APL'ers using the roll operator to generate 

pseudorandom numbers should be well-aware of the serious defect 

identified by Marsaglia [1968], and should, therefore, probably 

consider "shuffling" all random sequences produced by the roll 

operator. 

2. A new APL primitive' (? overstruck with - , the 

dieresis) should be introduced to return a "shuffled" sequence of 

uniform pseudorandom numbers. Such a primitive would implement 

an optimal algorithm in the interpreter. It would also be a 

constant reminder to all APL'ers that the roll operator, if not 

modified, may produce bad, but unrecognized, results in 

simulation studies. Alternatively, the roll operator could be 

redefined as a "better" random number generator such as in McGill 

University's Random Number Package SUPER DUPER (Marsaglia, 

Ananthanarayanan, and Paul [1976]). 

2. Generating Normal Random Deviates in APL 

2.1 Three Methods 

Knuth [1969] describes three methods for generating 

pseudorandom normal deviates. One method, is said to be 

considerably faster than the others. In fact, Knuth regards its 
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relative speed sufficient to compensate for its larger memory 

requirement. We will show that this analysis is not valid when 

the basic machine instruction set is unavailable to programmers, 

as in APL. 

The three methods treated by Knuth [1969] are the polar 

method, Teichroew's method, and Marsaglia's rectangle-wedge-tail 

method. Each of these methods requires as input at least one 

pseudorandom number uniformly distributed over the interval 

(0,1). 

In the polar method, two uniform deviates are required as 

input. This requirement does not, however, decrease the relative 

speed of the polar method because two independent normal deviates 

are generated. The polar method may be described as follows: 

First, generate an ordered pair (ul,u2) where ul and u2 are 

independent random variables uniformly distributed between -1 and 

1. If (ul,u2) is in the interior of the unit circle centered at 

the origin (of a two-dimensional Cartesian coordinate system), 

for·m x I and x2 as: 

Ul-V -2 In R 
R 

where the radius R = + 

'"' /-2 In R 
u2 V 

R 

Xl and x2 are the desired independent normally distributed random 

variables. If (uI,u2) is outside the unit circle centered at the 

origin, generate another ordered pair and repeat the above 

procedure. 

In an APL implementation of Knuth's -Algorithm P- for 

generating pseudorandom normal deviates by the polar method (see 
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Freiden and Herzog [1979) the primitive operations natural 

logarithm and raise to an arbitrary power can be used. This 

makes the polar method relatively faster in APL. 

Teichroew's method also takes advantage of an APL primitive 

operator since it is a polynomial approximation of a normal 

deviate. Teichroew's method may be described as follows: Let U 

be a vector of 12 independent random variables uniformly 

distributed between 0 and 1, and define a new random variable R 

by 

12 
(L Ui)-6 

R = _--"i::...=...:l::.-,--__ _ 
4 

Then if A is the 10-element vector A = (0, 3.949846238, 0, 

0.252408784, 0, 0.076542912, 0, 0.008355968, 0, 0.029899776), it 

turns out that the polynomial 

9 
L A· Ri 

= i=O 1 
H(R) 

approximates a normal deviate. This polynomial is an 

approximation of F -1 (G(R» where F( ) is the standardized 

normal distribution function and G( ) is the exact distribution 

of R. Since each element of the vector U is assumed to have a 

uniform distribution over the interval (0,1), R is approximately 

normally distributed with mean 0 and standard deviation 1/4. 

Marsaglia's method, which may be applied to any distribution 

function, is quite different from the other methods. Marsaglia 

suggests rewriting the desired distribution function F as a 

linear combination of n distribution functions Fl ,F 2 , ••• ,Fn • 

Thus, we may write 

105 



where 

n 
F(x) L PiFi(x) 

i=l 

and 

Each Fi is to be computed only 100Pi percent of the time, on the 

average. Since most of the functions Fi are trivial 

modifications of the uniform distribution, if the Pi and Fi are 

chosen judiciously, the calculation of F(x) will be trivial most 

of the time. 

The implementation of Marsaglia's method rests on the 

decomposition of a random bit string which is equivalent to the 

pseudorandom number 

U - O.bO bl ••• b t · 

The first bit bO determines the sign of the result. The bits bl 

through ba are used to select the appropriate Fi as follows: 

(a) .If 0~blb2b3b4<10, then set x to 

A[bl b2b3b4l + .00 b5b6~ •• bt 

(b) If 40~blb2b3b4b5b6<52, then set x to 

B[blb2b3b4b5b6l + .00 b7ba ••• bt 

(c) If 20a~blb2 ••• ba<225, then set x to 

C[b l b 2•• .bal + .00 bgblO ••• b t 

where A,--S, and C are stored tables of values. 

(d) Otherwise, use a more complicated technique, which we 

will not describe here. 

Note that 10 times out of 16, or .62.5 percent of the time, on the 

average, only step (a) is required, whereas step (d) is required 

only 12.5 percent of the time, on the average. 

The decomposition of U into bit strings of length 4, 6, or a 

is best done in machine language using logical "AND n and "SHIFT" 
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operations within high-speed registers. The indexing of the 

tables A, B, and C is also fast in machine language. In APL, 

however, these operations must be simulated using multiplication 

and division by the appropriate powers of two. Our APL 

implementation of Marsaglia's method was limited to the first 

step (step (a) above). 

2.2 Timing the Methods 

We are interested only* in execution speed and we expected 

the algorithm making best use of APL primitives to be the 

fastest. Obviously, execution speed depends on the APL 

implementation and the instruction set of the host machine. 

Therefore, we have. run timing tests on three different computer 

systems. Of course, it is not necessary to test the complete 

Marsaglia algorithm if the first step alone is slower than the 

complete algorithms of the other methods. In the following 

table, execution time is an average obtained by generating ten 

sets of 100 normal random numbers and is measured relative to the 

execution time of the polar method. 

The three computer systems were 

IBM 370 (The Computer Company) 

o IBM 5100 

Burroughs 7700 (Data Resources, Inc.) 

*According to Knuth (1969, page 113), both the polar and 
rectangle-wedge-tail methods "give essentially perfect accuracy." 
How.ever, "Teichroew's method is only approximate, although in 
most applications its accuracy (an error bounded by 2 x 10-
when IRI<l) is quite satisfactory." In the second edition of his 
book, KnUith (1980) omits entirely a discussion of Teichroew's 
method. 
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Relative Execution Times 

S:lstem 

Method 1 2 3 

Polar 1. 00 1.00 1.00 

Teichroew 1. 32 1.19 1.16 

Marsaglia 1. 64 1. 64 1.15 

Although the timings are quite different, the polar method 

requires the smallest amount of execution time regardless of 

which computer system is used. 

2.3 Historical Remarks 

The polar method was originally suggested by Box and Muller 

[1958). The form of the polar method used in this paper is due 

to Marsaglia [1962). 

The. original reference for Marsaglia's rectangle-wedge-tail 

method is Marsaglia, MacLaren and Bray [1964). An improved 

version of this scheme is presented in Marsaglia, 

Ananthanarayanan, and Paul [1976). 

2.4 Further Thoughts 

So far, there have been no remarks directed at specific 
~./:-.... 

actuarial issues. So I thought that before closing I would at 

least make one observation. For problems in which the experience 

of a portfolio of insureds is to be simulated, the experience of 

the underlying mortality table should be assumed to have arisen 

from a -random process.- In particular, the mortality table 

itself should usually be considered to be the mean of a 

probability distribution. Consequently, unless the amount of 
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experience underlying all age groups represented in the mortality 

table is exceedingly large (so that all variances may be 

considered to be negligible), the distribution of the mortality 

table as well as the portfolio under consideration should both be 

simulated in such problems. 
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Discussion of Preceding Psper 

AL CHRISTIANS: With the APL roll function, do you know the 

number of planes in hyperspace that are actually involved? 

TOM HERZOG: No. I have, unfortunately, not looked into this. 

Of course, this would depend on the dimension of the hyperspace under 

consideration, and the latter would, in turn, depend upon your 

specific application. 

VOICE FROM FLOOR: It's not clear to me why you want to 

introduce a new operator. Wby not simply ~prove the old one? 

TOM HERZOG: I agree with your suggestion and made that 

recommendation myself in my article in the December 1981 QUOTE QUAD. 

KATHRYN PLANTE: Do your resulta also apply to congruential 

generators of the form 

x"+1 - ax" + b (mod c) 

TOM HERZOG: Yes. On page 28 of his National Academy of Sciences 

paper Marsaglia states that similar results can be established for 

this type of generator. 
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