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The greatest challenge today, not just in cell biology and ecology, but in all of 
science, is the accurate and complete description of complex systems. 

Edward O. Wilson, 1990 
 
 
 

The central task of theoretical physics in our time is no longer to write down the 
ultimate equations but rather to catalogue and understand emergent behavior in 
its many guises, including potentially, life itself. We call this physics of the next 
century the study of complex adaptive matter … We are now witnessing a 
transition from the science of the past, so intimately linked to reductionism, to the 
study of complex adaptive matter … with its hope for providing a jumping-off 
point for new discoveries, new concepts, and new wisdom. 

Robert Laughlin and David Pines, 2000 
 
 
 

I think the next century will be the century of complexity. 
Stephen Hawking, 2000 

 
 
 
 
 
 
 
 
 
 
 
 
 
Cover page:  Gene ontology network (see Chapter four). 
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INTRODUCTION 

A. MORE THAN AN INTRODUCTION 
Complexity Science is a new way to grasp and manage reality. 
Not the simple reality of planetary motion and gambling dice that 
has been the study of traditional science. But the complex reality 
in which we live:  the world of hurricanes and earthquakes, social 
reforms and economic upheavals, interest rate fluctuations, 
business cycles, and healthcare expenditure trends. In this report, 
I will introduce you to this surprising and useful new science. 
 
But this report is more than an introduction. In it, I will also make 
an argument, and extend an invitation to you. 
 
I will argue that today’s complex world demands a new breed of 
actuary, a professional I call a ‘complex systems actuary’, who: 

 Understands the complex nature of social systems. 
The social systems in which actuaries work (the worlds of 
insurance, pensions, investments, and health care) are not 
well-behaved like planets and dice. Rather, they are complex 
and unpredictable. 

 Applies new methods. Traditional actuarial methods alone 
cannot model complex social systems. To grasp and manage 
the systems in which we work, we must augment our tools 
with the new methods of Complexity Science. 

 Expands the role of actuaries. Actuaries need not be 
merely administrators within society’s problem-prone 
systems. Rather, we also can use our unique knowledge and 
skill, augmented with insights and tools from Complexity 
Science, to help solve society’s great problems and improve 
our social systems. 

 
I will invite you to become such an actuary. No matter if you are a 
veteran or just starting out, you can learn to use the insights and 
tools of Complexity Science to address the most pressing 
problems of your employer, your clients, and society as a whole. 
Your fitness for our complex world may depend on whether you 
accept this invitation, or simply send regrets. 
  

                                                      
1 Epstein & Axtell (1996), one of this report’s Top ten Complexity Science books. 
2 Wolfram (2002), also one of this report’s Top ten Complexity Science books. 

 

My affair with complexity 
 
It was the summer of 2005 when, finally, I saw a 
gleam of hope that the US healthcare system can 
be understood. That summer I worked with the 
Center for the Study of Complex Systems at the 
University of Michigan in Ann Arbor, and I read 
Joshua Epstein and Robert Axtell’s potent little 
book Growing artificial societies.1 
 
At least ten years before, I knew the US 
healthcare system was in trouble, but I could 
not understand why. As a healthcare consumer, 
actuary, and physician, I had experienced many 
sides of the healthcare problem:  the lack of 
coverage, runaway expenditures, and tortuous 
reimbursement procedures. 
 
After studying the problem and divers analyses 
of it, I came to a shocking realization:  even 
though nearly everyone offered fixes for the 
healthcare system, no one understood it. 
 
I assumed that the system was too complex to 
be understood, and that healthcare policy would 
forever be gropings of the blind. But then, in 
2003, I read Stephen Wolfram’s newly 
published book A new kind of science.2 It was 
unlike anything I had seen, a brilliant light that 
led me to Ann Arbor to learn about Complexity 
Science. There, while reading Epstein and 
Axtell’s book, I saw that the healthcare system 
can be modeled and understood, that clear-
sighted healthcare policy is possible. 
 
Since then, I have also learned that all the 
complex social systems in which actuaries work 
can be modeled and understood, but that for 
this purpose traditional actuarial methods are 
insufficient. 
 
In this report, I will share with you what I have 
learned. 
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B. MAJOR THEMES 
Throughout this report I interweave five themes: 
 
1. Social systems are complex systems. The social systems 

in which actuaries work are complex systems, with 
mechanisms dramatically different from those of simple 
systems such as planets and dice. To understand and manage 
the behaviors of such systems – this is society’s greatest 
challenge. 
 

2. We must study complex system behavior from the 
bottom up. The behavior of a complex system arises from 
the bottom-up, from its components, the relationships among 
its components, and the behavior rules that the components 
follow. To understand and manage such systems, we must 
model them from the bottom up, using special methods of 
Complexity Science, rather than top-down traditional 
actuarial methods. 
 

3. Long-term prediction of complex systems is 
impossible. The long-term behavior of complex systems – 
such as the fluctuations of financial market prices and health 
care trend rates – cannot be accurately predicted for more 
than short periods. Actuaries pursuing long-term prediction 
of complex systems are wasting time. 
 

4. Understanding and effectively managing complex 
systems is possible. Though the long-term of complex 
systems cannot be predicted, their behavior can be 
understood and managed, like a farmer manages the 
cultivation of crops. 
 

5. Actuaries can help solve society’s great problems. 
Using our unique skills and knowledge – along with the tools 
and insights of Complexity Science – actuaries can effectively 
address the great problems of complex social systems, and 
lead the development of new social policy, rather than merely 
administer existing problematic systems. 
 

In exploring these themes, I will use many examples and issues 
from health care, because that is where my primary interest lies, 
and because the Society of Actuaries (SOA) Health Section funded 
this report. But I will also include examples from other actuarial 
areas, including pensions, investment, property-casualty, and 
reinsurance. The basic concepts, insights, and tools of Complexity 
Science apply to all complex systems and all actuaries. 
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C. ORGANIZATION 
The report is organized in three parts and nine chapters: 
 
 Part I – A new science  (two chapters) gives an overview 

of Complexity Science and agent-based models, and shows 
how they relate to the problems of complex social systems. 
 

 Part II – Complexity Science models (five chapters) 
introduces Complexity Science models and methods. It 
presents four archetypal models of Complexity Science, and 
provides the background and tools for you to start applying 
them in your work. 
 

 Part III – An invitation (two chapters) presents a vision of 
a new type of actuary, the ‘complex systems actuary’, and 
proposes a plan to develop this professional. 

 
Each chapter includes exercises to help you better understand its 
material. Answers to these exercises are in the document titled 
Answers to exercises, found on the SOA web page for this report. 

D. SUPPLEMENTAL MATERIAL 

Supporting the report is the following supplemental material: 
 
 Top ten Complexity Science books. Among the scores 

of books about Complexity Science, ten stand out for 
actuaries. They are listed and annotated in the section titled 
Top ten Complexity Science books at the end of the report. 
 

 Essential resources. To prepare this report, my first step 
was to search for material about Complexity Science that is 
relevant for actuaries. In this search, I reviewed thousands of 
potentially relevant journal articles, books, web sites, 
unpublished reports, and videos. I distilled the results of this 
search into about one hundred resources with brief 
annotations, found in the section titled Essential resources at the 
end of the report. The report’s bibliographic citations (found 
in footnotes) refer to these resources. 

 
Because you may want to learn how to perform such a search, 
another section at the end of the report, titled Finding the 
essential resources, details how I performed the search, and a 
document on the SOA web page for this report, titled 
Literature search results, details the search results. 
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D. SUPPLEMENTAL MATERIAL CONTINUED 

 Computer code. Until you use it, Complexity Science is 
useless. Perhaps the most important material to help you start 
using Complexity Science are the models and computer code 
supporting the examples in Part II of the report. They are 
found on the SOA web page for this report. I carefully 
documented the computer code to make it easier for you to 
apply Complexity Science models in your work. 

 
To help you set up the computer platforms for the 
Complexity Science models, there is a document titled Getting 
started with modeling platforms on the SOA web page for this 
report. 

 
 Glossary. The report includes a glossary of technical terms. 

When a technical term is first introduced, it is bold and in 
quotation marks, like ‘new term’. 

E. LEARNING OBJECTIVES 

After you read this report and work with the Complexity Science 
models, you will be able to: 
 Explain the basic concepts, tools, insights, and results of 

Complexity Science. 
 Discuss the most important resources, organizations, and 

people in Complexity Science. 
 Understand and assess any book, journal article, or other 

material about Complexity Science. 
 Develop models of complex systems using the modeling 

platforms Excel, igraph, and Repast Simphony. 
 Explain why Complexity Science is important in actuarial 

work. 
 Explain how an actuary can become a complex systems 

actuary, and why you might want to become one. 
 
 
I hope you enjoy the report. Even more, I hope you become a 
complex systems actuary. If you start along this path, please let 
me know. (And please let me know if you have suggestions to 
improve this report.) 
 
Alan Mills (alan.mills@earthlink.net) 
June 10, 2010 
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PART I:  A NEW SCIENCE 
 
I am convinced that the societies that master the new sciences 
of complexity and can convert that knowledge into new 
products and forms of social organization will become the 
cultural, economic, and military superpowers of the next 
century. 

Heinz Pagels. 19881 
 
 
 
 
 

                                                      
1 Pagels (1988), page 53. 
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CHAPTER ONE:  COMPLEXITY SCIENCE 
The movement’s nerve center is a think tank known as the Santa Fe Institute … The researchers who gather 
there are an eclectic bunch, ranging from pony-tailed graduate students to Nobel laureates … But they all 
share the vision of an underlying unity, a common theoretical framework for complexity that would illuminate 
nature and humankind alike. … They believe that their application of these ideas is allowing them to 
understand the spontaneous, self-organizing dynamics of the world in a way that no one ever has before – with 
the potential for immense impact on the conduct of economics, business, and even politics. … They believe they 
are creating, in the words of Santa Fe Institute founder George Cowan, ‘the sciences of the twenty-first century.’ 

Mitchell Waldrop1 

A. INTRODUCTION 
How is it that from our cataclysmic origin (the so-called Big Bang) 
only about 1017 seconds ago, we now have insurance companies, 
pension plans, health systems, and the Society of Actuaries, not to 
mention the New York Stock Exchange, the United Nations, and 
myriad other social systems? All this in the face of the immutable 
Second Law of thermodynamics that says we should instead be 
speeding toward a bland soup of hadrons and quarks. 
 
Now that we have such social systems, how will they continue to 
develop? Will they smoothly progress toward ever-more 
cohesion, efficiency, usefulness, and complexity? Or, like 99 
percent of all past life forms, will they soon go extinct? 
 
Why do our social systems take the particular forms they do? Why 
do they go through sudden dramatic upheaval, such as the collapse 
of the Soviet Union, the 1987 stock market crash, or the recent 
financial meltdown? Can we predict the future of our social 
systems? Can we manage their evolution? Can we, should we, 
optimize their efficiency?  
 
Such questions are the focus of ‘Complexity Science’, a new 
field that studies universal principles common to all complex 
systems – business firms, countries, galaxies, roses, and children:  
how they form, how they evolve, how they die. 
 
Though young, Complexity Science has much to say about such 
questions – and much that is relevant to actuarial work. This 
chapter presents an overview of Complexity Science, including its 
development, hallmarks, concepts, tools, and key results. The 
chapter ends with a review of current issues in Complexity 
Science and exercises to sharpen your understanding of this new 
field.  

                                                      
1 Waldrop (1992), pages 12-13. This book is one of this report’s Top ten Complexity Science books. 
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B. BIRTH OF A NEW SCIENCE 
It was 1982, in a cafeteria at Los Alamos National Laboratory 
(LANL), during the weekly luncheon of the lab’s Senior Fellows. 
George Cowan voiced a radical idea that would give birth to a 
new science. 
 
The Senior Fellows were semi-retired LANL senior scientists who 
nevertheless were current with the latest scientific concepts, such 
as chaos and dynamical systems. George Cowan, one of them, had 
worked at LANL for 39 years and had managed its research (see 
sidebar). He proposed that the group establish a new trans-
disciplinary research institute, an institute devoted to the study of 
real-world complex systems in nature and society; that for such 
study the institute would assemble all types of scientists – 
physicists, mathematicians, economists, biologists, cognitive 
psychologists, and social scientists; and that to enable such study 
the institute would build an advanced computer facility. The 
Senior Fellows greeted Cowan’s idea with resounding enthusiasm 
and support. 
 
In February 1987, the Santa Fe Institute (SFI) opened. Located in 
Santa Fe, about 35 miles from LANL, SFI was first housed in an 
old adobe structure, a charming place that was formerly a 
nunnery, with ceilings held up by rough-hewn fir beams, small 
bedrooms that were converted into offices, and a former chapel 
with stained-glass windows that became the conference room – a 
fit setting of stability, calm, and tradition to contrast with SFI’s 
paradigm-breaking ambitions. Cowan was its president, and its 
board chair was legendary Nobel laureate Murray Gell-Mann. 
 
Today, more than two decades later, SFI has become the vibrant 
research center Cowan imagined. It is in a larger building, with 35 
year-round resident interdisciplinary researchers, 70 researchers 
in summer, 60 external faculty members, and 25 administrative 
staff members. Each year, it hosts two dozen workshops, and an 
annual summer school with 150 students. It researches the range 
of complex systems, from cells and biological systems to business 
firms and economic systems. 
 
Through its Business Network, SFI works with business 
organizations to make sense of complexities they face. Deloitte 
Touche Tohmatsu and Towers Watson are members.3 

                                                      
2  Waldrop (1992), pages 54-55 and 336. This book is one of this report’s Top ten Complexity Science books. 
3 To learn more about the SFI Business Network, visit “www.santafe.edu/network”. 

 
A determined man 

 
Like most people associated with Complexity 
Science, George Cowan is multi-faceted. As one 
of the original Manhattan Project researchers 
and head of research at LANL, he created deadly 
weapons; yet, he also founded the Los Alamos 
National Bank, and was the initial inspiration for 
the Santa Fe Institute. 
 
In his book Complexity, Mitchell Waldrop wrote 
about Cowan: 
“Cowan was the one who had conceived the 
institute in the first place. He was the one who 
had envisioned a science of complexity before 
anyone had even known what to call it. He was 
the one who had done more than anyone else to 
make the Santa Fe Institute happen, to make it 
the most intellectually exciting place that any of 
them had ever been in.  
 
… he was a retiring, soft-spoken man who 
managed to look a bit like Mother Teresa in a 
golf shirt and unbuttoned sweater. He was not 
noted for his charisma; in any given group he 
was usually the fellow standing off to one side, 
listening. And he was certainly not known for 
his soaring rhetoric. Anyone who asked him 
why he had organized the institute was liable to 
get a precise, high-minded discussion of the 
shape of science in the twenty-first century and 
the need to take hold of scientific opportunities 
… 
 
Only slowly, in fact, would it begin to dawn on 
the listener that Cowan, in his own cerebral 
way, was a fervent and determined man indeed. 
He didn’t see the Santa Fe Institute as a paradox 
at all. He saw it as embodying a purpose far 
more important than George A. Cowan, Los 
Alamos, or any of the other accidents of its 
creation … To Cowan, it was a chance for 
science as a whole to achieve a kind of 
redemption and rebirth.”2 
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B. BIRTH OF A NEW SCIENCE CONTINUED 
In addition to SFI, there are now many active Complexity Science 
research groups, including: 
 
 Center on Social and Economic Dynamics (Brookings 

Institution) 
 New England Complex Systems Institute 
 Center for the Study of Complex Systems (University of 

Michigan) 
 Center for Social Complexity (George Mason University) 
 Institute on Complex Systems (Northwestern University)5 
 
For the first time in history, these groups are focused squarely on 
complex systems, a subject that traditional science has avoided:  
Physics, with its emphasis on simple systems, has historically 
defined itself to avoid complexity. Biology has concentrated on 
specific observation, with little theoretical discussion of general 
phenomena such as complexity. With ‘general systems theory’ in 
the 1960s, social science briefly attempted to examine complexity 
in human organizations, but its results were ineffective. In the 
1970s, the new areas of fractals (see Chapter six) and ‘chaos 
theory’ (see sidebar) addressed one type of complexity, but they 
focused only on features of complex systems that could be 
summarized in mathematical equations.6 

C. COMPLEX SYSTEMS 
You may wonder, “What is a complex system?” That is a hard 
question, one that has even Complexity Science experts baffled. 
For example, the experts John Miller and Scott Page write, 
“Rather than venturing further on the well-trodden but largely 
untracked morass that attempts to define complex systems, for 
the moment we will rely on Supreme Court Justice Stewart’s 
words … on a case dealing with obscenity: … ‘I shall not today 
attempt further to define the kinds of material I understand to be 
embraced within that shorthand description; and perhaps I could 
never succeed in intelligibly doing so. But I know it when I see 
it.’.”7  
 
However, to give you some idea of the subject of complex 
systems, let’s step briefly into the morass:  

                                                      
4  To learn more about the origins of chaos theory, see Gleick (2008). 
5 For information about these and many more centers, see Sanders & McCage (2003). 
6 Wolfram (2002), pages 861-863. This book is one of this report’s Top ten Complexity Science books. 
7 Miller & Page (2007), page 3, one of this report’s Top ten Complexity Science books. 

 
Chaos theory 

 
One day in 1961, the meteorologist Edward 
Lorenz was using a computer to model weather 
with a set of twelve equations. He had run the 
equations to evolve a weather pattern for a 
particular time period, but wanted to see the 
end of the pattern again. To save time, rather 
than start the simulation at the beginning of the 
time period, he started it midway through, using 
parameters from his previous printout for the 
starting point. 
 
An hour later, when he returned, he was 
surprised:  rather than reproduce the prior 
results, the new results ended up wildly 
different. He found the reason: the parameters 
he entered for the second run were accurate 
only to three decimal places, whereas the initial 
run had results accurate to six decimal places. 
That small difference in initial conditions led to 
wildly different weather. 
 
This effect, sensitive dependence on initial 
conditions, became known as the butterfly 
effect:  a butterfly’s flight in Texas today can 
produce a tiny atmospheric change that a month 
later produces a storm in Thailand. 
 
This result led to the conclusion that it is 
impossible to predict the weather for more than 
a few days, and to chaos theory. 
 
Chaos theory is the mathematical study of 
dynamic systems that are highly sensitive to 
initial conditions (‘chaotic systems’). Many 
complex systems – such as the weather, 
populations, neurons, and economic systems – 
can also be chaotic systems.4 
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C. COMPLEX SYSTEMS CONTINUED 
Let’s start by defining basic terms:8  
 ‘set’:  A collection of objects. For example, the moon, a cat, and 

a pixel are objects that we can call a set. The objects need not 
be related to one another. 

 ‘system’:  A set whose objects are related to one another. For 
example, the grid of pixels on your computer monitor 
naturally form a system:  They are related objects because 
they are part of one lattice network, working together to 
perform a particular function. 

 ‘dynamic system’:  A system together with a behavior rule that 
causes the state (ie, an attribute) of at least one of its objects to 
change over time. Because a pixel can assume a variety of 
intensities and colors, and because your computer can send a 
behavior rule to pixels causing them to change their state, the 
system of monitor pixels together with the behavior rule is a 
dynamic system. Note that to define a dynamic system, we 
introduced the concept of an object’s state, and the concept of 
a rule that governs the object’s behavior over time. 

 ‘simple system’:  A dynamic system for which the state changes of 
its objects are relatively uninteresting.  For example, if all your 
monitor pixels were to simultaneously flash black then gray 
then black then gray, one flash per second non-stop, they, 
together with their behavior rule, would be relatively boring 
and thus constitute a simple system. To define a simple 
system, we have now introduced human judgment about what 
is interesting. 

 ‘random  system’:  A dynamic system for which the state changes 
of its objects appear to be random.  For example, if your monitor 
pixels were to continuously produce ‘snow’, covering your 
monitor with random pattern-less white dots, then they, 
together with the ‘snow’ behavior rule, would be a random 
system. Again, such a system is relatively uninteresting. 

 
Now suppose a brilliant budding flower appears on your monitor, 
opening magically into a glorious rose. This dynamic system – the 
collection of related objects (pixels) and their new behavior rule – 
captures your interest. It has become a ‘complex system’:  an 
interesting dynamic system. 
 
  

                                                      
8 I do not mean for these definitions to have logical rigor; rather, I merely want to develop a helpful sketch of 

‘complex systems’. 

Complex
systems

Random
systems

Simple
systems
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C. COMPLEX SYSTEMS CONTINUED 
Now imagine your entire visual field as a vast monitor. Some 
things you see are simple and uninteresting, some appear random 
and are also uninteresting, but some – the pattern of a snowflake, 
the swirl of a galaxy, or the development of a child – are 
absorbingly interesting. These are complex systems. No longer 
are their objects simple pixels fixed in a grid; rather, they are 
molecules, stars, and biological cells that take myriad states and 
move. Other complex systems you will see are financial markets 
with dramatically fluctuating prices, companies that come and go, 
health care systems with unpredictable expenditure trends, and 
governments that rise and fall. 
 
Thus, complex systems are collections of related objects with 
intriguing patterns of evolution that we find somewhere between 
randomness and simplicity. In this report, we call the objects of 
complex systems ‘agents’ (more about them in the next 
chapter); and to the agents, their relationships, and their behavior 
rules, we add one more ingredient, an ‘environment’, in which 
the agents move and with which they interact. Agents, 
relationships, behavior rules, and an environment:  these are the 
basic elements of all complex systems. 
 
Much of Complexity Science deals with a special subset of 
complex systems found particularly in social settings, ‘complex 
adaptive systems’. Such complex systems change their behavior 
to adapt to changes in their environment. Physician groups are an 
example of a complex adaptive system:  they commonly change 
their diagnostic and prescribing behavior in response to changing 
insurance reimbursement policies. 
 
I hope this sketch has given you a sense for complex systems, a 
concept that eludes definition. Perhaps it is the human element, 
our subjective evaluation of a dynamic system as interesting or 
not, that makes an objective definition so elusive. Just as the 
movement of planets in our solar system was at one time 
mysterious and intriguing, what counts as a complex system today 
may become tomorrow’s simple system. Similarly, what today 
appears random may tomorrow be found to have interesting 
patterns of a complex system (see the sidebar).  

                                                      
9 The drawing by Leonardo da Vinci is ‘turbolenza’ found in his notebook called the Codex Leicester (now owned by Bill 

Gates). The images of turbulence are in Brown and Roshko’s paper titled, “On density effects and large structures in 
turbulent mixing layers”, published 1974 in the Journal of Fluid Mechanics. See Bass (1999), pages 92-95 for more about the 
story, and how it relates to randomness in financial markets. 

 

Randomness redux 
 
For centuries, scientists have vigorously debated 
the structure of high-speed turbulence. Some 
held that even at high speed, turbulent fluids 
consist of little waves and mini-vortices, as in 
Leonardo da Vinci’s drawing of turbulence. 
 
 
 
 
 
 
 
 
Others were emphatic that this was impossible:  
there is no structure, there is randomness and 
nothing more. This debate led physicist and 
Nobel laureate Richard Feynman to say, 
“Turbulence is the greatest puzzle in classical 
physics.” 
 
In 1970, Gary Brown and Anatol Roshko solved 
the puzzle. They took pictures of two gases, 
helium and nitrogen, flowing next to each other 
at high speed, forming turbulence. Their famous 
images show that, rather than being completely 
random, turbulence consists of repeating nested 
swirling patterns, especially at its edges. Thus, 
what was once thought a purely random system 
is now understood to be a complex system. Da 
Vinci was right.9 
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D. COMPLEXITY 
Even though we cannot accurately define a complex system, we 
can measure its complexity – ironically, in perhaps too many ways 
(see sidebar). 
 
For example, using a ‘transaction information’ complexity 
measure, the chart below compares the complexity of five US 
service-oriented complex systems. The measurements are taken 
from two perspectives:  the information required by the system as 
a whole, and the information required by the system’s consumers. 
For example, from the perspective of the healthcare system as a 
whole, to determine the elements of an average medical 
expenditure transaction, one must answer about a billion binary 
questions.11 As the chart shows, by this measure of complexity, 
the retail system is the most complex, but its complexity is mostly 
hidden from consumers. Not so for health care:  it has one of the 
highest ratios of consumer complexity to system complexity. 
 
 
 
 
 
 
 
 
 
 
The chart below shows the evolution of the international financial 
network’s complexity, from 1985 to 2005. The network nodes 
(vertices) are countries; node size is proportional to total external 
financial stocks held by each country; and the thickness of links 
between nodes is proportional to the ratios of external bilateral 
financial stocks to GDP. Clearly, complexity has increased.12 
 
 
 
 
 
 
 
  

                                                      
10 See Mitchell (2009), pages 94-111, and Érdi (2008), pages 201-214. 
11 Basole & Rouse (2008). 
12 Haldane (2009) 

 
Measures of complexity 

 
There are at least forty measures of a complex 
system’s complexity. These measures relate to 
how hard it is to describe the system, how hard 
the system is to create, or the degree of its 
organization. 
 
Following are examples:10 
 Transaction information:  The number 

of bits of information required to identify 
the elements of a typical system 
transaction. 

 Network complexity:  There are many 
measures of network complexity that we 
will explore in Chapter four. One is the 
average number of connections per 
network vertex. 

 Degree of hierarchy:  The nestedness, 
or levels of hierarchy, within a system. 
More complex systems have more levels. 

 Algorithmic information content:  
The number of bits in the shortest 
computer program that completely 
describes the system. 

 Logical depth:  The number of steps a 
Turing machine would take to construct 
the series of 0s and 1s that completely 
describes a system. This is a measure of 
how difficult it is to construct a system. 

 Statistical complexity:  The minimum 
amount of information about a system’s 
past behavior required to predict its near-
term future statistical behavior. 
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E. HALLMARKS 
In addition to a focus on complex systems, three other hallmarks 
differentiate Complexity Science from traditional science: 
 
 Trans-disciplinary. Recognizing deep similarities among 

complex systems throughout nature and society, Complexity 
Science no longer divides our study of reality into the areas of 
traditional science, such as physics, biology, and social 
science. Rather, it cultivates a new breed of scientist who can 
explore complex systems in any setting. 
 

 Constructive. Complexity Science models complex systems 
from the bottom up:  starting from the interactions of 
individual objects following their behavior rules, it constructs 
complex systems that usually have characteristics not 
predictable from an analytic study of their components. 

 
This approach is in stark contrast to most sciences, where 
either a purely top-down aggregate statistical perspective is 
favored (as in the social sciences and with actuarial models) or 
where a reductionist approach predominates – tearing systems 
down to their components, but not building them back again 
(as in physics and biology). In the reductionist approach, there 
is an underlying assumption that if one understands a system’s 
components, then one understands the system as a whole, an 
assumption Complexity Science has shown to be false (see 
sidebar). 

 
 Computer-based. Because most complex systems consist of 

thousands or millions of interacting objects, following a 
variety of behavior rules, computers are necessary to model 
their interactions and to construct the resulting system 
behavior as a whole. Traditional mathematics is insufficient 
for such a task. Indeed, computer availability was a major 
reason Complexity Science arose. 

 
Writing about the convergence of scientific disciplines in 
Complexity Science, Heinz Pagels wrote, “The material force 
behind this change is the computer, the instrument of the 
sciences of complexity. … The computer as a research 
instrument provides us with a new way of seeing reality, and 
the architectonic of the sciences must change accordingly.”14   

                                                      
13 Wolfram (2002), page 3. 
14  Pagels (1988) 

 
Complete mystery 

 
“In the existing sciences much of the emphasis 
over the past century or so has been on breaking 
systems down to find their underlying parts, 
then trying to analyze these parts in as much 
detail as possible. And particularly in physics this 
approach has been sufficiently successful that the 
basic components of everyday systems are by 
now completely known. But just how these 
components act together to produce even some 
of the most obvious features of the overall 
behavior we see has in the past remained an 
almost complete mystery.” 

Stephen Wolfram13 
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F. COMPARISON WITH OTHER FIELDS 
Complexity Science is often confounded with other fields, even 
though it is fundamentally different. Following are brief 
comparisons. My hope is that from seeing what Complexity 
Science is not, you will better understand what it is. 
 
 ‘Artificial intelligence’:  This field’s goal is to develop 

computers that think (‘strong AI’), or that perform specific 
reasoning tasks (‘weak AI’). Even though Complexity Science 
studies the brain as one complex system, it also studies many 
others. And its goal is understanding, rather than 
performance. 

 ‘Artificial life’:  This field shows that computer programs 
can emulate certain features of living organisms. Again, 
although Complexity Science studies living organisms as 
complex systems, and employs computer programs to model 
them, it has a broader scope. 

 ‘Catastrophe theory’:  Popular in the 1970s, this field is a 
branch of mathematics that studies how large discrete changes 
(catastrophes) can appear in solutions of continuous equations 
with only small parameter changes. Complexity Science, by 
contrast, is not a branch of mathematics, and indeed views 
traditional mathematics as only one tool – usually an 
inadequate one (see sidebar) – to study complex systems. 

 ‘Chaos theory’:  Chaos theory is a branch of mathematics 
that studies the mathematical characteristics of dynamic 
systems that are highly sensitive to initial conditions. Although 
many complex systems are sensitive to initial conditions, 
Complexity Science’s interest in them goes beyond their 
mathematical characteristics. 

 ‘Computational complexity theory’:  A branch of 
computer science, this field classifies computational tasks 
according to their inherent difficulty. In contrast, Complexity 
Science is not a branch of computer science. Neither is it 
focused on the relative difficulty of computer programs.  

 ‘Cybernetics’ and ‘Systems dynamics’:  Originating in 
electrical engineering, these related fields deal with the 
aggregate non-linear behavior of systems characterized by 
feedback loops. Their perspective is top-down, looking at a 
system’s aggregate behavior, whereas Complexity Science 
studies systems from the bottom up, how their behavior arises 
from their components and the behavior rules the 
components follow.  

                                                      
15 Wolfram (2002), pages 1 and 3. 

 
Limitations of mathematics 

 
“Three centuries ago science was transformed by 
the dramatic new idea that rules based on 
mathematical equations could be used to 
describe the natural world. … 
 
If theoretical science is to be possible at all, then 
at some level the systems it studies must follow 
definite rules. Yet in the past throughout the 
exact sciences it has usually been assumed that 
these rules must be ones based on traditional 
mathematics. But the crucial realization … is 
that there is in fact no reason to think that 
systems like those we see in nature should 
follow only such traditional mathematical rules. 
… 
One might have thought that with all their 
successes over the past few centuries the 
existing sciences would long ago have managed 
to address the issue of complexity. But in fact 
they have not. And indeed for the most part 
they have specifically defined their scope in 
order to avoid direct contact with it. For while 
their basic idea of describing behavior in terms 
of mathematical equations works well in cases 
like planetary motion where the behavior is 
fairly simple, it almost inevitably fails whenever 
the behavior is more complex.” 

Stephen Wolfram15 
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F. COMPARISON WITH OTHER FIELDS CONTINUED 

 ‘Dynamical systems theory’:  A branch of applied 
mathematics, this field studies systems that can be modeled 
with a particular class of mathematical equations (differential 
equations or difference equations). Again, Complexity 
Science is not a branch of mathematics, and the behavior of 
complex systems that it studies generally cannot be captured 
by such mathematical equations. 

 ‘Experimental mathematics’:  A branch of mathematics, 
this field uses computers and numerical computation to 
investigate mathematical objects and properties. Generally, 
the field studies objects and properties that have already been 
investigated using traditional mathematics. By contrast, 
Complexity Science employs computers to investigate 
properties of complex systems that are usually inaccessible to 
traditional mathematics. 

 ‘Fractal geometry’:  This field studies shapes in nature, and 
shows that many are not regular or smooth, but rather are 
nested shapes with intricate patterns. The study of 
Complexity Science goes far beyond shapes found in nature. 
Using simple rules, Complexity Science can generate the 
nested patterns found in natural systems, but also can produce 
many other patterns. 

 ‘Game theory’:  A branch of applied mathematics, this field 
studies behavior in strategic situations where one person’s (or 
organization’s) choices depend on the choices of others. 
Complexity Science may employ game theory results in 
developing its behavior rules (see Chapter five, section B) 

 ‘General systems theory’:  Popular in the 1960s, this field 
studies the general principles of social system functioning. 
Although the field may be considered a precursor to 
Complexity Science, its practitioners did not succeed in 
convincing others of its practical value. 

 ‘Non-linear dynamics’:  A branch of mathematics, this 
field analyzes non-linear mathematical equations. Complexity 
Science is not a branch of mathematics, and the behavior of 
the complex systems it studies often cannot be captured by 
such mathematical equations.16 

  

                                                      
16 For a more detailed discussion of differences between Complexity Science and other fields, see Wolfram (2002), 

pages 12-16. 
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G. BASIC CONCEPTS 
This section describes seven basic concepts in Complexity Science 
that you will encounter often.  

1. Computation 
One may think of the aggregate behavior of a complex system as a 
‘computation’, in which each of its agents carries out (or 
computes) its behavior rule, the way a computer carries out its 
program. Equivalently, we can say that the complex system is 
processing ‘information’, where the information at any time is 
the state of the environment, together with the states of all the 
agents, that are used to define the system’s behavior rules. 
 
For example, consider a colony of ants (a complex system) 
located on an imaginary grid (its environment). On a few cells of 
the grid is food (a state of the environment). To collect the food, 
each ant follows its inherited behavior rule (if it finds food, carry 
it back to the nest, and lay down a scent trail along the return 
path; if it comes upon a food scent trail, follow it with a 
probability that increases with the scent strength; if there is no 
food or scent nearby, move in a random direction). The 
information the colony processes at each time step is the state of 
each cell in the environment grid (the amount of food, and the 
scent strength). The inherited behavior rule is the colony’s 
program; the computation result is the distribution of ants on the 
environment, and the amount of food collected. 18 
 
Because it provides a consistent way to analyze the behavior of a 
complex system, the notion of computation (or information 
processing) is important. And it can lead to important results:  for 
example, in 1985 the mathematician Alain Lewis proved that 
perfect rationality, one of the cornerstones of traditional 
economics, is incomputable. Thus, no matter how sophisticated 
their behavior rules, agents in a complex system (such as humans) 
can never be perfectly rational. So, for real-world complex 
systems such as economic systems, perfect rationality is a fiction.19 
 
Sometimes, as you will see in Chapter five, a complex system’s 
computation is equivalent to a Universal Turing Machine (see 
sidebar).  

                                                      
17 For a complete description of the Turing Machine, see the Stanford Encyclopedia of Philosophy, at “plato.stanford.edu”. 
18 For an excellent discussion of computation and information processing in complex systems, see Mitchell (2009), chapters 

10, 11, and 12. 
19 Lewis (1985) 

 
Universal Turing Machines 

 
In the 1930s, while thinking about Gödel’s 
incompleteness theorem, Alan Turing 
wondered if he could construct a machine that 
not only would perform simple arithmetic, but 
also would help investigate the limits of what 
can be computed. In 1937, he described such a 
machine, now known as a Turing Machine. It 
consists of three parts: 
1. A tape that is infinitely long and divided into 
successive cells, each of which has either a “0”, a 
“1”, or a blank. 
2. A read/write head that can move to a 
particular cell and either read its symbol or 
write a symbol to it. Associated with the 
read/write head is a current state. 
3. A transition table with a set of rules that 
tells the read/write head its next state and its 
next action (write a symbol, or move one cell 
left or right), based on its current state and the 
symbol at the head’s current position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
With an appropriate transition table, a Turing 
machine can perform any arithmetic or logical 
function, even one that is infinitely long. 
Modern computers are finite implementations 
of a Turing Machine. 
 
Remarkably, Turing proved that there exists a 
Turing Machine that can reproduce the behavior 
of any other Turing Machine, including itself. 
This is a Universal Turing Machine.17 
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G. BASIC CONCEPTS CONTINUED 

2. Non-linear 
Physicist Heinz Pagels, one of the early prophets of Complexity 
Science, wrote, “Life is nonlinear, and so is just about everything 
else of interest.”20 What did he mean? 
 
A linear relationship (or function f) satisfies the following 
principles: 
 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) +  𝑓(𝑦) (the principle of additivity),and 
𝑓(𝑎𝑥) = 𝑎𝑓(𝑥) (the principle of homogeneity) 21 
 

Change in an independent variable produces a proportional change 
in a dependent variable. For example, the function f(x) = 2x is 
linear. 
 
 A ‘non-linear’ relationship is one that is not linear; change in an 
independent variable may produce wildly non-proportional 
change in a dependent variable (see the sidebars). For example, 
the function f(x) = x2 is non-linear. 
 
Non-linear relationships are important because the computations 
of most complex systems are non-linear. As examples, the 
weather, diseases, populations, and financial markets all follow 
non-linear dynamics. The concept of non-linearity is also 
important because it helps clarify the difference between 
Complexity Science and traditional science.  The assumption of 
linearity is the heart of traditional science’s reductionist approach:  
split a system into parts and analyze the computation of each part; 
the computation of the whole then equals the sum of the 
computations of the two parts. Unfortunately, for nearly all 
complex systems, this approach doesn’t work. 
 
As you study Complexity Science, beware:  some authors 
(especially social scientists) use the term ‘non-linear’ in a different 
way. By ‘non-linear’, they mean that a system’s behavior rules and 
relationships give rise to mutually-reinforcing feedback among 
agents. Even though feedback loops usually produce non-linear 
system dynamics, the description of ‘non-linear’ above is more 
common and preferred.  

                                                      
20 Pagels (1988), page 73. 
21 For all a except complex numbers, additivity implies homogeneity. Note also that there are two definitions of ‘linear 

function’, the one given above, and one from analytic geometry where a linear function is a first-degree polynomial of one 
variable, the familiar f(x) = mx + b. When b = 0 and a is not complex, the definitions are equivalent. 

22 Bass (1999), pages 65-66. 

 
Non-elephants 

 
It is peculiar to refer to most of the world’s 
functions as ‘non-linear’. As the great 
mathematician Stanislaw Ulam quipped, “This is 
like referring to the class of animals that are not 
elephants as non-elephants.”  
 

 
Financial markets and yo-yos 

 
“In linear equations, two plus two equals four. 
Linear equations describe straight lines, discrete 
phenomena, and an exceedingly small portion of 
our everyday experience. In nonlinear 
equations, the effect is not proportional to the 
cause. The straw that breaks the camel’s back is 
nonlinear. A small shove can result in a big 
push. A system evolving in one direction can 
suddenly veer off in another. Thermometers and 
bathroom scales are linear. Financial markets 
yo-yoing between bubbles and crashes are 
nonlinear. For centuries, scientists reduced the 
world to linear equations because these were 
what they could solve. This changed in the late 
1970s, with the invention of the personal 
computer. Its number crunching skills 
revolutionized physics by allowing scientists to 
calculate nonlinear equations. It also allowed 
them to iterate these calculations indefinitely, 
which sometimes produces the surprising result 
that two plus two does not equal four.” 

Thomas Bass22 
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G. BASIC CONCEPTS CONTINUED 

3. Emergence 
In Complexity Science literature, the term ‘emergence’ is 
ubiquitous, but its meaning is often muddled. 
 
In their book Growing artificial societies, Joshua Epstein and Robert 
Axtell clearly define emergence as a stable macroscopic or 
aggregate pattern induced by the local interaction of agents.24 For 
example, ants and termites following simple behavior rules 
produce complex patterns of aggregate social behavior; or, as you 
will see in Chapter six, agents in the artificial society called 
Sugarscape, following simple trading rules, produce a social 
system with an aggregate pattern of skewed wealth distribution. 
In this report, it is with this sense that I use the term ‘emergence’. 
 
However, in Complexity Science literature generally, this term 
has become muddled almost to the point of uselessness, with 
many authors using it to describe a result that is surprising or 
mysterious. One might ask, “Surprising to whom?” Given the 
term’s arbitrary current usage – and its controversial history – 
Epstein recently wrote, “I have researched this term more deeply 
and find myself questioning its adoption altogether.”25 
 
Nevertheless, emergence properly conceived is one of the 
cornerstones of Complexity Science:  aggregate patterns of a 
complex system arise out of the endogenous interactions of its 
agents with each other and an environment, without any central 
controller or other outside influence. 
 
Examples of aggregate patterns are: 
 ‘oscillation’:  Swings in aggregate properties of complex 

systems are a common emergent pattern. Numbers of 
predators and prey oscillate; corporations go through business 
cycles; and financial market prices oscillate.  

 ‘punctuated equilibrium’:  Many complex systems go 
through long periods of relative stasis, interspersed with brief 
periods of explosive activity. 

 ‘power laws’:  The pattern of skewed distribution called 
power law (or, equivalently, ‘Zipf law’ or ‘scale-free 
distribution’) is covered in Chapter four.  

                                                      
23 Aaron (1999), page 6. 
24 Epstein & Axtell (1996), page 33. 
25 Epstein (2006), page 31. This book is one of this report’s Top ten Complexity Science books. For an engaging discussion 

of the term ‘emergence’ and its colorful history, see pages 31-38. 

 
Emergence 

 
In his paper Predicting the unpredictable, Eric 
Bonabeau writes: 
“… you first need to understand the concept of 
‘emergent phenomena,’ and the best way to do 
that is by thinking of a traffic jam. Although they 
are everyday occurrences, traffic jams are 
actually very complicated and mysterious. On 
an individual level, each driver is trying to get 
somewhere and is following (or breaking) 
certain rules, some legal (the speed limit) and 
others societal or personal (slow down to let 
another driver change into your lane). But a 
traffic jam is a separate and distinct entity that 
emerges from those individual behaviors. 
Gridlock on a highway, for example, can travel 
backward for no apparent reason, even as the 
cars are moving forward. 
 
Emergent phenomena are not just academic 
curiosities; they lie beneath the surface of many 
mysteries in the business world. How prices are 
set in a free market is but one illustration. Why, 
for example, do employee bonuses and other 
incentives sometimes lead to reduced 
productivity? Why do some products – like 
collapsible scooters – generate tremendous 
buzz, seemingly out of nowhere, while others 
languish, despite their multimillion-dollar 
marketing campaigns? … 
 
Because of their very nature, emergent 
phenomena have been devilishly difficult to 
analyze, let alone predict. Traditional 
approaches like spreadsheet and regression 
analyses or even system dynamics … are 
currently impotent in analyzing and predicting 
them. Such approaches work from the top 
down, … whereas the behavior of emergent 
phenomena is formed from the bottom up, 
starting with the local interactions of the 
different independent agents.”23 
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G. BASIC CONCEPTS CONTINUED 

4. Evolution 
Evolution is a mechanism of emergence. In Complexity Science, 
the concept of ‘evolution’ is more than Darwin’s theory of 
biological evolution; it is the way complex systems of all kinds – 
including businesses, markets, and economic sectors – create 
behavior patterns that solve hard problems, most commonly 
problems of survival. 
 
To understand the concept, consider an insurance company 
competing for survival and market dominance. The company is a 
complex system, made up of many agents (generally people) in a 
particular network of relationships, following prescribed behavior 
rules (many of which are encoded in documents like the 
company’s mission statement and its business policies and 
procedures). The company’s purpose is to select from all possible 
combinations of relationship networks and behavior rules (its 
‘design space’) the particular combination that will best enable 
it to survive and dominate. How does it do this? 
 
The design space can be thought of as a 3-dimensional landscape (a  
‘fitness landscape’), where each point corresponds to one 
combination of behavior rules and agent relationships. Some 
combinations will lead to certain failure (low fitness), and some 
will be winners. But the number of combinations is vast. How 
does the company search through all the combinations to find an 
optimal fitness peak?  
 
The answer is evolution. Built into the successful company’s 
behavior rules is an evolutionary algorithm consisting of 
experimentation and random mutation. Local experimentation 
enables its objects to try out different combinations of 
relationships and behavior rules that are similar to current 
combinations. Some of these will increase fitness, and will be 
replicated throughout the organization, securing for it a higher 
position on the fitness landscape. This is the slow walk up the low 
hill shown in the diagram at right. But the evolutionary algorithm 
also includes random mutation, wild jumps that can land on much 
higher fitness levels. Such mutations will also be replicated and 
increase the company’s ability to thrive.26 
 
Thus evolution is a mechanism of emergence.  

                                                      
26 For a fascinating account of evolution in Complexity Science, read Beinhocker (2006), chapter nine. This book is one 

of this report’s Ten best Complexity Science books. 

Fitness landscape

Fitness
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G. BASIC CONCEPTS CONTINUED 

5. Self-organization 
Theoretical biologist and legendary Complexity Science pioneer 
Stuart Kauffman writes, “The living world is graced with a bounty 
of order. Each bacterium orchestrates the synthesis and 
distribution of thousands of proteins and other molecules. Each 
cell in your body coordinates the activities of about 100,000 genes 
and the enzymes and other proteins they produce. Each fertilized 
egg unfolds through a sequence of steps into a well-formed whole 
called, appropriately enough, an organism. If the sole source of 
this order is what Jacques Monod called ‘chance caught on the 
wing,’ the fruit of one fortuitous accident after another and 
selection sifting, then we are indeed improbable. Our lapse from 
*paradise … leaves us spinning around an average star at the edge 
of a humdrum galaxy, lucky beyond reckoning to have emerged as 
living forms.”28 
 
But, he is convinced, evolution (‘selection sifting’) is not the only 
mechanism of emergence. Another is ‘self-organization’, the 
propensity of dynamic systems to organize themselves into 
complex systems, on their own – without experimentation, 
mutation, or selection – and seemingly counter to the Second Law 
of thermodynamics. Stuart Kauffman calls such self-organization 
‘order for free’ (see sidebar). 
 
A related concept is ‘self-organized criticality’ which we will 
cover in Chapter five when we study Per Bak’s Sandpile model. 
 

6. Robust 
Complex systems are often described as robust or fragile, or both.  
A ‘robust’ complex system is one that manages to survive even 
when its agents are removed or damaged. For example, the 
structure and culture of the typical business organization, from 
the corner store to a multi-national conglomerate, persists, even 
though it may experience significant personnel turnover. 
 
 Similarly, a ‘fragile’ complex system is one that can fail if only a  
few of its agents are damaged. As you will discover in Chapter 
four, many modern complex systems of interest to actuaries, such 
as the world financial system, are simultaneously robust and 
fragile. 
  
                                                      
27 For a more detailed description of this experience, and of Stuart Kauffman, see Regis (2003), chapter two. 
28 Kauffman (1995), page 71. 

 
Stuart Kauffman 

 
Stuart Kauffman, a theoretical biologist and 
physician, is a creative and influential 
complexity scientist with many academic 
accolades, including a MacArthur ‘genius’ award 
and a faculty position at the Santa Fe Institute. 
 
In 1965, while in medical school, he thought 
about light bulbs. What if a hundred light bulbs 
in a 10x10 grid were wired together such that 
the state of each bulb (on or off) at time t+1 
depends on the state of two other randomly 
selected bulbs at time t. Suppose further that the 
behavior rule defining the bulbs state at time 
t+1 is selected randomly from the six possible 
rules (if the other bulbs are both on at time t, 
the bulb will be on at time t+1, etc.). What 
would happen? Would the hundred lights 
randomly turn on and off? Would they all freeze 
into one state? 
 
He programmed his light bulb problem into an 
IBM computer (with punch cards) and was 
astounded by the result:  most of the bulbs 
settled into a static on or off state, while about 
10 of them fell into a cyclical pattern of 
recurrent blinking. The result was a major 
experience in his life. About this result, many 
years later he said, “I’m still deeply proud of 
that. I’m still stunned that if you make a random 
network with light bulbs and everybody has two 
inputs per light bulb, and otherwise you make 
everything at random, the thing behaves with 
order. Still blows me away! Thirty-seven years 
later, still blows me away!”27 
 
That experience, and many follow-on 
simulations and experiments led him to 
conclude that evolution is not the only 
mechanism leading to emergence in complex 
systems, and is not even the most important 
mechanism. Rather, agents self-organize. We 
get “order for free”. 
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G. BASIC CONCEPTS CONTINUED 

7. Edge of chaos 
The term ‘edge of chaos’ may have more usefulness as a 
metaphor than as an essential Complexity Science concept. This 
term signifies that the most interesting complex systems are those 
closer to random systems (ie, nearer to the edge of chaos) than to 
simple systems. For a more colorful description of this concept, 
see the sidebar. 
 
In their book Complex adaptive systems, John Miller and Scott Page 
propose that the ‘edge of chaos’ concept has both a weak and a 
strong form, and that the strong form may be incorrect. 
 weak form:  the most interesting and productive complex 

adaptive systems lie somewhere in the space between simple 
systems and random systems. 

 strong form:  (the form most authors cite) the most 
productive complex systems lie very close to (at the edge of) 
random systems. 

 
Miller and Page write, “One hypothesis is that adaptive systems 
will have a bias toward emphasizing simple structures that resist 
chaos over more complicated ones that handle difficult situations. 
There are two reasons for this hypothesis. The first is that simple 
structures are likely to be easier to find and maintain. … The 
second justification for the hypothesis is that systems that are 
fragile are very risky in terms of rewards, and adaptive systems 
tend to be risk averse. While being able to handle delicate 
situations appropriately on occasion might result in large rewards, 
there is also a chance that it will lead to large losses. … The 
strong-form hypothesis – namely, that adaptive systems 
congregate at a narrow edge where slight changes in their 
behavior lead to chaos or frigidity – is harder to justify.”30 
 
Stuart Kauffman concurs:  “It is far too early to assess the working 
hypothesis that complex adaptive systems evolve to the edge of 
chaos. Should it prove true, it will be beautiful. But it will be 
equally wonderful if it proves true that complex adaptive systems 
evolve to a position somewhere in the ordered regime near the 
edge of chaos. Perhaps such a location on the axis, ordered and 
stable, but still flexible, will emerge as a kind of universal feature 
of complex adaptive systems in biology and beyond.”31  

                                                      
29 Waldrop (1992), page 12. 
30 Miller & Page (2007), page 140. 
31 Kauffman (1995), page 91. 

 
Spontaneous, adaptive, alive 

 
In Complexity, Mitchell Waldrop writes: 
 
“This balance point – often called the edge of 
chaos – is where the components of a system 
never quite lock into place, and yet never quite 
dissolve into turbulence, either. The edge of 
chaos is where life has enough stability to sustain 
itself and enough creativity to deserve the name 
of life. The edge of chaos is where new ideas and 
innovative genotypes are forever nibbling away 
at the edges of the status quo, and where even 
the most entrenched old guard will eventually 
be overthrown. The edge of chaos is where 
centuries of slavery and segregation suddenly 
give way to the civil rights movement of the 
1950s and 1960s; where seventy years of Soviet 
communism suddenly give way to political 
turmoil and ferment; where eons of 
evolutionary stability suddenly give way to 
wholesale species transformation. The edge of 
chaos is the constantly shifting battle zone 
between stagnation and anarchy, the one place 
where a complex system can be spontaneous, 
adaptive, and alive.”29 
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H. TOOLS 
To model the behavior of complex systems, complexity scientists 
employ many tools. Although most have been assimilated from 
other fields, such as physics and mathematics, Complexity Science 
applies them in new ways and to new complex systems. A 
common characteristic of all the tools is that they are computer-
intensive. 
 
Some tools are used to set up the model structure, including the 
structure of agent relationships and agent behavior rules; and 
others are for real-world data analysis to develop agent attributes 
or behavior rules, or to validate model results. 
 
Model structure 
The primary tool to set up a model’s structure is the ‘agent-
based model’. Chapter two describes this tool, and throughout 
the report are many examples of its use. 
 
To organize agent relationships, complexity scientists use 
‘graphs’ and ‘networks’. Chapter four describes the use of 
these tools. 
 
Agent behavior rules can be based on a simple ‘if-then’ structure, 
or more complicated. Common tools that complexity scientists 
use to organize behavior rules are ‘game theory’, ‘genetic 
algorithms’, ‘heuristics’, and ‘neural networks’. Chapter 
two covers these. 
 
Data analysis 
To analyze real-world data, complexity scientists employ many 
tools that are familiar to actuaries, such as time series analysis, 
data visualization, and data mining. They also employ tools that 
may be unfamiliar, such as: 
 ‘controlled experiment’:  Controlled experiments, 

especially behavioral economics experiments, that uncover 
real-world behavior rules that agents follow. These are 
covered in Chapter five.  

 ‘multi-dimensional histograms’:  Histograms showing 
frequencies of more than one system state over time. 

 ‘pattern matching algorithms’: Algorithms that find data 
patterns with potential near-term predictive value. 

 ‘phase space diagrams’:  Multi-dimensional diagrams that 
show the possible states of a system, with each state 
corresponding to a point on the diagram. 
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I. KEY INSIGHTS 
This section summarizes many of Complexity Science’s key 
insights. These help us better understand the nature of complex 
systems, and have led to many practical results. 
 
 Emergence from simple rules. Complex systems with 

intricate and interesting behavior can emerge from agents 
following simple behavior rules. This is one of the key insights 
from Stephen Wolfram’s work with cellular automata, which 
we will cover in Chapter five. 
 

 Impossibility of long-term prediction. Predicting the 
long-term behavior of complex systems is impossible. This is 
the crux of Wolfram’s Principle of Computational 
Equivalence that we’ll study in Chapter five. Indeed, it is a 
theme running throughout Complexity Science, and one of 
the five major themes of this report. 
 

 Self-organization. Agents can start out in complete 
disarray, and by merely following simple behavior rules 
generate a complex system that is highly organized. They do 
this without any central control mechanism. This is one of the 
central insights of Stuart Kauffman and Per Bak that we will 
explore in Chapter five. Some authors call this result ‘order 
for free’ or ‘spontaneous order’. 
 

 Ubiquitous power laws. Complex system properties often 
follow power laws. This is one of the common patterns of 
emergence. We will encounter this result in Chapters four, 
five, and six. 
 

 Punctuated equilibrium. Another common pattern of 
emergence is punctuated equilibrium, long periods of relative 
stasis, interspersed with brief periods of explosive 
productivity. 
 

 Robust and fragile. Complex systems are often 
simultaneously robust and fragile. For example, as you will 
see in Chapter four, many real-world networks such as the 
Internet are robust to random attack, but fragile to focused 
attack. 
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J. PRACTICAL RESULTS 
In each of Chapters four through seven, there is a section titled 
Practical applications. Each section gives examples how Complexity 
Science has produced results of significant practical importance. 
These results are listed below. 
 
Chapter four (Networks) examples: 
 Explain the 2000 worldwide airline crisis. 
 Show how to make the world airline network less vulnerable 

to terrorist attack. 
 Show how to manage the spread of AIDS. 
 Help make the world financial network more resilient. 
 Map the resilience of organizations (for enterprise risk 

management). 
 
Chapter five (Cellular automata) examples: 
 Explain financial market price fluctuations. 
 Show the aggregate behavior of infectious diseases, including 

power-law distribution and cyclical dynamics. 
 Show the impact of media and population density on public 

opinion. 
 Help to understand the impact of patient choice on mortality 

and complications of complex surgical procedures. 
 Explain why the 1961 change in the US minimum Social 

Security retirement age had an unexpected impact. 
 Show the potential impact of a new guaranteed income 

variable annuity product, to help determine its pricing. 
 
Chapter six (Artificial societies) examples: 
 Explain why a society’s wealth ends up in a skewed 

distribution. 
 Explain why in real economies price and quantity traded do 

not correspond to supply and demand curves. 
 Help develop national strategy to counter bioterrorism. 
 Determine the best screening strategy for type 2 diabetes. 
 
Chapter seven (Serious games) examples: 
 Help develop effective business strategies for insurance and 

re-insurance companies. 
 Explain property and casualty re-insurance price cycles. 
 Train students how to manage an insurance company. 
 Enable consumers to design health insurance plans. 
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J. PRACTICAL RESULTS CONTINUED 

Following are additional practical results of Complexity Science: 
 Remaking economics. One of the most far-reaching 

practical results of Complexity Science is that it is remaking 
the field of economics. Eric Beinhocker writes about this in 
his book The origin of wealth.33 

 Understanding the impact of regulations and policy 
change. Complexity Science is helping regulators and policy 
makers understand the impact of proposed changes. For 
example, to avoid repeating the 2000 disaster when Enron 
and other companies manipulated energy supplies and prices, 
several US states now use agent-based models to test complex 
electricity market designs before implementation.34 

 Generating business savings. Applying Complexity 
Science methods helped Citibank uncover over $200 million 
of previously unidentified exposure for delinquent credit card 
payments, Proctor and Gamble save 22 percent in distribution 
expense, DuPont save $500 million annually in manufacturing 
expense, the Internal Revenue Service improve its fraud 
detection capability by 8,000 percent, Nasdaq understand the 
impact of changing stock prices from fractions to decimals, 
Hewlett-Packard anticipate how changes in its hiring strategy 
would affect its corporate culture, Société Générale 
determine operational risks of its asset management group, 
and Southwest Airlines save $10 million yearly in labor 
costs.35 

 
Southwest Airlines approached Stuart Kauffman to ask his 
help to improve the company’s freight distribution process. 
Using agent-based simulation models, Kauffman and his team 
of complexity scientists discovered that the airline’s cargo 
handlers (the complex system’s agents) followed a behavior 
rule (that Kauffman dubbed ‘the hot potato rule’) leading to 
an emergent pattern of backlogged freight. Kauffman found, 
and Southwest implemented, a better behavior rule, which 
resulted in considerable savings.36 

 Automating financial trading. Complexity Science tools 
and insights applied to financial markets have resulted in vast 
profits (see the sidebar).  

                                                      
32 To learn more about The Prediction Company, read Bass (1999). 
33 Beinhocker (2006). 
34 Economist Leigh Tefatsion of Iowa State University (in Ames, Iowa) has led the development of the agent-based model 

known as the Ames wholesale power market test bed. 
35 Smith & Segre-Tossani (2003) and Bonabeau (2002). 
36 Read Regis (2003) for more information about this and other practical results of Complexity Science. 

 
The Prediction Company 

 
Two childhood friends from Silver City, New 
Mexico – Doyne Farmer and Norman Packard – 
both became complexity scientists, and together 
founded one of the most successful Complexity 
Science businesses, The Prediction Company. 
 
Located in Santa Fe, The Prediction Company 
uses Complexity Science tools and insights to 
build financial market trading systems. When 
they started the company in 1991, the two 
scientists knew virtually nothing about trading 
financial instruments. By 2001, the Prediction 
Company’s ‘black box’ trading systems had 
became the finest in the world. In 2005, the 
company was purchased by one of the largest 
banks, Union Bank of Switzerland.  
 
The company’s systems automate the financial 
trading process. They crunch through terabytes 
of worldwide financial data, using armies of 
sophisticated pattern recognition and learning 
programs – like genetic algorithms and neural 
networks – to find data patterns that are likely 
to reappear. They then automatically place buy 
and sell orders to take advantage of the patterns. 
Even though their systems only produce small 
near-term predictive advantages over other 
systems, because their trade volume is high, 
they produce vast profits.32 
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K. ISSUES AND FUTURE DIRECTION 
In 1996, John Horgan wrote dismissively about complexity 
scientists, “They will make incremental advances, such as 
extending the range of weather forecasts or improving the ability 
of engineers to simulate the performance of jets or other complex 
technologies. But they will not achieve any great insights into 
nature – certainly none comparable to Darwin’s theory of 
evolution or quantum mechanics. They will not force any 
significant revisions in our map of reality or our narrative of 
creation.”38 
 
Horgan’s main complaints about Complexity Science were: 
 that it employed terminology amounting to little more than 

metaphor, and 
 that its computer models bore little resemblance to reality. 
 
As you have seen, his complaint about terminology is apt still. 
But, his complaint about computer models has turned out to be 
unfounded:  through their computer models, complexity scientists 
such as Stephen Wolfram, Joshua Epstein, and Stuart Kauffman 
are significantly revising our map of reality. 
 
Although Complexity Science has already achieved more than 
Horgan thought it ever would, it is still plagued by the lack of a 
conceptual foundation. Its vocabulary is still imprecise, it has yet 
to develop a logical foundation, and there are basic questions that 
remain unanswered (see sidebar). 
 
Nevertheless, complexity scientists are providing rigorous theory 
and tools to illuminate our understanding of natural and social 
complex systems, and to help us better manage our complex 
financial, insurance, pension, health, and political systems. I hope 
that complex systems actuaries will add to this store of knowledge 
and tools. 
 
(In the last few years, as Complexity Science has matured, Horgan 
and other detractors have been silent.) 
 
  

                                                      
37 Miller & Page (2007), Appendix A. 
38 Horgan (1996), pages 225-226. 

 
Open questions 

 
In their book Complex adaptive systems, John 
Miller and Scott Page list several open questions 
for Complexity Science.37 Following are 
extracts: 
 
What does it take for a system to exhibit 
complex behavior? What is it about 
interacting agents that leads to complex 
behavior? Is there some behavioral threshold 
that must be breached before complexity can 
arise? 
 
Is there an objective basis for 
recognizing emergence and complexity?  
If you put a frog in a blender and turn it on, 
there is only a macabre interest in the resulting 
chemical soup. If, however, you start with a 
chemical soup and run the blender backwards, 
and out of the froth pops a fully formed frog, 
then something rather different has happened. Is 
there some easy and reliable way to separate out 
these two experiences? Of course, this would 
matter little if we weren’t seeing so many frogs 
popping out of the froth of both nature and our 
models. … How do we separate complex 
systems from merely complicated ones? 
 
What mechanisms exist for tuning the 
performance of complex systems? Insofar 
as real social systems behave according to the 
laws of complex adaptive social systems, what 
policies can be used to direct the outcomes of 
these systems? 
 
What makes a system robust? What does it 
take for a system to persist in the face of 
external changes? Alternatively, we could frame 
the question as uncovering the factors that make 
a given system brittle. 
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L. EXERCISES 
1. Check the appropriate cells to describe each item: 
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a ball, a blanket, and a bird        
a traffic light        

air molecules in a room        
a cloud        

the weather        
the solar system        

a soccer team        
a termite colony        

the U.S. healthcare system        
        
 
For each system, identify its objects. If there are relationships 
among the objects, behavior rules, or an environment, also 
identify these. 
 
2. Think of members of an orchestra on a stage as agents in a 
dynamic system, each of which can play one sound (its state) at 
any time. Then consider a music score as the agents’ behavior 
rule. 
a) What kind of score would turn the musicians into a simple 

system, a random system, or a complex system? 
b) Can you think of a score that would turn the agents into a 

complex adaptive system? 
 
3. Using the example of an orchestra in the previous example, 
show how it performs a computation. Identify the information, 
the program, the computation, and the computation result. Does 
this computation produce an emergent property? Is the orchestra 
a universal computer? 
 
4. Contrast how a complex systems actuary and a traditional 
actuary might approach the following problem:  It is well-known 
that physicians change their diagnostic and prescribing practices to 
adapt to changes in insurance reimbursement policies. Your 
employer, a health insurance company, has asked you to 
determine the expected impact on company profits from 
implementing a new policy that reduces to zero its reimbursement 
for a popular diagnostic test. 
  



Complexity science – an introduction (and invitation) for actuaries 

Chapter one:  Complexity Science continued 

ONE:  COMPLEXITY SCIENCE     27 

M. TO LEARN MORE 
To learn more about the new Complexity Science, you may enjoy 
watching the series of NOVA videos titled “Emergence – 
complexity from simplicity, order from chaos”39. Although now 
dated, Mitchell Waldrop’s book Complexity (one of this report’s 
Top ten Complexity Science books) is an excellent introduction to the 
field.40 
 
To learn more about the difficulties of prediction, you may enjoy 
the book The future of everything – the science of prediction by David 
Orrell.41 

N.  REVIEW AND A LOOK AHEAD 
This chapter introduced Complexity Science, including its 
development, hallmarks, concepts, tools, key results, and issues.  
 
The next chapter describes the model structure used to simulate 
complex systems:  the agent-based model. 
 
 
 
 
 
 
 
 
 
 

                                                      
39 NOVA (2007) 
40 Waldrop (1992) 
41 Orrell (2007) 
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CHAPTER TWO:  AGENT-BASED MODELS 
The agent-based computational model – or artificial society – is a new 
scientific instrument. It can powerfully advance a distinctive approach to 
social science, one for which the term ‘generative’ seems appropriate. 

Joshua Epstein2 

A. INTRODUCTION 
The heart of Complexity Science is agent-based modeling. This 
chapter introduces you to ‘agent-based models’ (also called 
‘computational models’ and ‘multi-agent models’3), 
describes their purpose and characteristics, compares them to 
actuarial modeling, and – most usefully – discusses how you can 
build your own. 

B. PURPOSE 
Many actuaries believe the primary purpose of modeling is 
prediction, to predict policyholder events, economic measures 
like interest rates, and healthcare expenditure trend rates. But 
prediction is only one of the many purposes of agent-based 
models, and – especially considering the futility of trying to 
predict the long-term behavior of complex systems – not the most 
important. 
 
Joshua Epstein provides sixteen good reasons other than 
prediction to build agent-based models (see sidebar). Let’s look at 
a few that are particularly relevant for actuaries: 

Explanation 
For complex systems, explanation is more important than 
prediction. For example, because agent-based models have helped 
us better understand relationships between epidemic dynamics 
and underlying population configurations, we can now implement 
better containment strategies, even though we are powerless to 
predict an epidemic’s course. 
 
Similarly, explanatory models that increase our understanding of 
actuarial risks can help us better manage them, even if we cannot 
predict their incidence or consequences. 
  

                                                      
1  J. M. Epstein (2008) 
2 Epstein (2006), page 5. 
3 In current usage, the term ‘multi-agent model’ has various meanings that can be confusing. Sometimes it is used as a 

synonym for ‘agent-based model’. But the term can also mean a model in the field of multi-agent systems, a field mainly 
concerned with robot interactions. The term can also be used to mean a subset of agent-based models in which agents are 
heterogeneous. 

 
Why model? 

 
“The modeling enterprise extends as far back as 
Archimedes; and so does its misunderstanding. 
… The first question that arises frequently – 
sometimes innocently and sometimes not – is 
simply, ‘Why model?’. … my favorite retort is, 
‘You are a modeler.’ Anyone who ventures a 
projection, or imagines how a social dynamic – 
an epidemic, war, or migration – would unfold is 
running some model. But typically it is an implicit 
model in which the assumptions are hidden, their 
internal consistency is untested, their logical 
consequences are unknown, and their relation to 
data is unknown. The choice, then, is not 
whether to build models; it’s whether to build 
explicit ones. … 
 
No sooner are these points granted than the next 
question inevitably arises: ‘But can you predict?’ 
For some reason, the moment you posit a model, 
prediction … is reflexively presumed to be your 
goal. Of course, prediction might be a goal … 
But, more to the point, I can quickly think of 16 
reasons other than prediction … to build a model … 
1. Explain (very distinct from predict) 
2. Guide data collection 
3. Illuminate core dynamics 
4. Suggest dynamical analogies 
5. Discover new questions 
6. Promote a scientific habit of mind 
7. Bracket outcomes to plausible ranges 
8. Illuminate core uncertainties 
9. Offer crisis options in near-real time 
10. Demonstrate tradeoffs/ suggest efficiencies 
11. Challenge the robustness of prevailing 

theory through perturbations 
12. Expose prevailing wisdom as incompatible 

with available data 
13. Train practitioners 
14. Discipline the policy dialogue 
15. Educate the general public 
16. Reveal the apparently simple (complex) to 

be complex (simple)” 
Joshua Epstein 1 
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B. PURPOSE CONTINUED 

Data collection 
In order to explain a phenomenon of interest, a model can help 
clarify the data we should collect. Such a model would contribute 
to an iterative process, for data can also guide model design. 

Confidence intervals 
Even in cases where we cannot predict, models can help us 
understand plausible outcome ranges. Using sensitivity analysis, 
we can explore a range of parameters to identify salient 
uncertainties, regions of robustness, important thresholds, and 
possible outcomes. 

Real-time crisis management 
In complex systems, crises will strike at unexpected times, in 
unexpected ways. This is one of the lessons of Complexity 
Science. Although agent-based models won’t improve our ability 
to predict the behavior of complex systems, they can help 
actuaries alert their employers and clients about the kinds of 
surprises that may emerge, and to suggest small interventions that 
will produce significant returns. This ability is particularly 
important for actuaries employed in enterprise risk management. 
 
For example, in Chapter four you will learn how network 
analysis: 
 can help mitigate the impact of an infectious disease, even 

though we cannot predict its course, and 
 can make networks such as the airline system and the Internet 

more resilient to attack, even though we cannot predict when 
an attack will occur. 

Training 
Models can help actuaries and executives better understand and 
develop intuitions about the behavior of the complex systems in 
which they operate. Serious games are particularly suited for this 
(see Chapter seven). 

Policy support 
Policy proposals are often developed by people who do not 
understand the complex systems for which they are proposing 
change. By modeling the behavior of such systems, actuaries can 
support policy development. 

Public education 
The public does not understand what actuaries do. Simple models 
can help people understand actuarial work.  
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C. KEY CHARACTERISTIC 
The key characteristic of an agent-based model is that it is bottom- 
up. The model specifies the agents that comprise a system (see 
sidebar) and the relationships among agents; it may also specify 
agent behavior, agent interactions with an environment, and even 
the involvement of a human player. But that’s all; the model does 
not impose top-down criteria. 
 
Based on the model’s specification, the computer then runs 
myriad agent interactions, creating the system’s behavior from the 
bottom up. Overall system behavior patterns gradually emerge, as 
in reality. 

D. STRUCTURE 
No matter whether agent-based models are implemented as Excel 
spreadsheets, advanced Java models, or sketches on a napkin, their 
structure generally includes the following elements: 

Agents and their attributes 
Databases or iterated functions define the number of agents and 
their individual attributes. 

Agent relationships 
Functions or databases define how agents are related. For 
example, all of the Excel models in Chapter five (cellular 
automata) use one- or two-dimensional grids on a spreadsheet to 
define agent relationships. 

Agent behavior 
One or more functions define the rules for how the agents behave 
with one another and with the environment. The next section of 
this chapters treats behavior rules in detail. 

Environment 
If agents can move or interact with an environment, the model 
includes an environment. It can be as simple as a one-dimensional 
grid, or as complex as a realistic topographic map. 

Time 
A model incorporates a method to organize sequential agent 
behavior, typically as time steps or ‘ticks’. 

Analysis 
A model usually includes analyses of its results. For example, 
Excel models in Chapter five include graphs of model results. 

User interface 
Models typically include a way for users to enter and change 
parameters, as well as a visual display of agents as they interact.  

 
Agents 

 
An ‘agent’ is the part of a model that 
represents an actor within a system. It might 
represent a person, an organization, an 
economic sector such as health care, a 
governmental entity, or a country.  Agent-based 
models typically include many such  agents, 
often thousands or millions. 
 
Following are agent characteristics. 
 
Hierarchical 
An agent can include other agents, just as 
organizations include people. 
 
Local 
Agents act locally. They generally only interact 
with other agents within a relatively small 
neighborhood. 
 
Autonomous 
Agents take independent action to attain their 
goals. 
 
Boundedly rational 
Agent behavior rules are based on real-world 
behavior, which is far from perfectly rational; 
people and organizations generally act based on 
limited knowledge and simple – often illogical – 
heuristics; they are what behavioral economists 
call ‘boundedly rational’. 
 
Adaptive 
Agents can learn to adapt to their environment, 
and change their behavior based on what they 
learn. 
 
Heterogeneous 
Agents can be quite different from one another 
and follow different behavior rules. In fact, for a 
system to be robust, agents must be diverse. As 
you will see in Chapter four, breakdowns in 
agent diversity can lead to correlated behavior 
and massive disruptions, such as the recent 
worldwide financial meltdown. 
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E. AGENT BEHAVIOR RULES 
Agent-based models are the heart of Complexity Science, and at 
the heart of agent-based models are agent behavior rules. An 
agent’s behavior rule determines how it changes its state in 
response to the states of other agents and the environment. 
 
This section describes several types of behavior rules, and shows 
how you can develop such rules for your Complexity Science 
models. 

1. Behavior rule types 

Simple if-then rule 
The simplest, and most common, behavior rule is the simple if-
then rule. As an example of a behavior rule for a physician agent:  
If the result of a total cholesterol test for a patient agent is greater 
than 240 mg/dl, then order a fasting lipid profile test. A simple 
if-then rule is often expressed as a ‘transition table’, examples 
of which you will find below and in Chapter five. 

Genetic algorithm 
Inspired by the mechanics of biological evolution, genetic 
algorithms were created by John Holland (see sidebar). They 
enable agents to efficiently search complex fitness landscapes for 
optimal solutions. To employ a genetic algorithm, an agent first 
uses a fitness function to compare the relative values of competing 
solutions (points on the fitness landscape). It then selects the best 
solutions and combines them into a new set of solutions (new 
points on the fitness landscape) which it tests again. Repeating 
such a process, it iteratively evolves an optimal solution. 
 
In her book Complexity, Melanie Mitchell gives an entertaining 
example showing how genetic algorithms work5:  Suppose an 
agent is a near-sighted robot janitor – named Robby – assigned to 
pick up empty soda cans on a 10x10 grid. He uses a genetic 
algorithm to find an optimal (ie, shortest) path to pick up the 
cans. Because Robby is near-sighted, he can only see the contents 
of immediately adjacent grid cells to its north, east, south, and 
west. And he can only take seven actions:  move one cell to the 
north, east, south, or west, move one cell in one of the four 
directions randomly (based on a randomly-generated number), 
pick up a can, or do nothing.  

                                                      
4 Waldrop (1992), pages 144-148. You may enjoy Holland’s lecture about modeling complex adaptive systems: 

Holland (2008). 
5 Mitchell (2009), pages 129-142. 

 
John Holland 

 
John Holland, a father of Complexity Science 
and creator of the genetic algorithm, is the  
world’s first PhD in computer science (from the 
University of Michigan). 
 
Mitchell Waldrop describes one of the first 
lectures that Holland gave at the Santa Fe 
Institute, in 1987: 
 
“He proved to be a compact, sixtyish 
Midwesterner with a broad, ruddy face that 
seemed fixed in a perpetual grin, and a high-
pitched voice that made him sound like an 
enthusiastic graduate student. … 
 
First, he said, each of these [complex adaptive] 
systems is a network of many ‘agents’ acting in 
parallel. … Furthermore, said Holland, the 
control of a complex adaptive system tends to 
be highly dispersed. … If there is to be any 
coherent behavior in the system, it has to arise 
from competition and cooperation among the 
agents themselves. … Second, said Holland, a 
complex adaptive system has many levels of 
organization, with agents at any one level 
serving as the building blocks for agents at a 
higher level. … Furthermore, said Holland – 
and this was something he considered very 
important – complex adaptive systems are 
constantly revising and rearranging their 
building blocks as they gain experience. … 
Third, he said, all complex adaptive systems 
anticipate the future. … every complex 
adaptive system is constantly making predictions 
based on its various internal models of the world 
… it’s no wonder that complex adaptive 
systems were so hard to analyze with standard 
mathematics. … 
 
Holland’s ideas produced a shock of 
recognition, the kind that made more ideas start 
exploding in your own brain”.4 
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 
Genetic algorithm continued 

Robby always starts at cell (0,0), and during each cleaning session 
he can take only 200 actions. Each action meets with reward or 
punishment:  if he is in the same cell as a can and picks it up, he is 
rewarded 10 points; but if he bends down to pick up a can on a 
cell where there is no can, he is fined 1 point. If he bumps into a 
wall, he is fined 5 points. To maximize his reward, Robby wants 
to pick up as many cans as possible without bending down 
unnecessarily or crashing into walls.  
 
Each solution on Robby’s fitness landscape is a strategy that Robby 
can follow to carry out his 200 actions. The best solution is the 
one that maximizes Robby’s points. 
 
The set of all situations that Robby could encounter can be listed 
as in the first five columns of the following table: 
 

 
Current state of environment in cells relative to Robby 

 

north south east west current action 
      

empty empty empty empty empty move north 
empty empty empty empty can pick up can 

… … … … … … 
empty empty empty empty can move north 
wall empty empty empty empty move north 

 
There are about 250 possible situations. If for each situation, there 
is in the last column of the table a corresponding action that 
Robby can take, then the table is one of Robby’s possible 
strategies, or one solution in his fitness landscape. Because Robby 
can take any one of seven actions for each situation, the potential 
number of solutions (the fitness landscape) is quite large – about 
7250. Among all these possibilities, Robby wants to find a strategy 
that maximizes his points, for any random arrangement of cans on 
the grid. 
 
Assuming that there are exactly 250 situations, and that the 
situations are always listed in the same order in the table, each 
strategy can be represented as a series of 250 numbers from 0 to 
6, where each number corresponds to one of Robby’s seven 
possible actions. For example, one strategy might be: 
 

062454344 … 533210 (a string of 250 numbers) 
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 
Genetic algorithm continued 

For purposes of the genetic algorithm, we can think of each 
number in the string as a gene, and the entire string as the DNA of 
an ‘individual’. 
 
To evolve an optimum strategy, or individual, the genetic 
algorithm does the following: 
1. It generates a random set of 100 strategies (a set of 100 

different individuals). 
2. For a random placement of cans, Robby then follows each 

strategy 200 times (corresponding to his maximum of 200 
actions) and along the way keeps a tally of his points. The 
number of points is the strategy’s (individual’s) ‘fitness’. 

3. He repeats the previous step 1,000 times, and keeps track of 
the average fitness of each of the 100 strategies (individuals). 

4. He repeats the following steps until he generates a new 
population of 100 strategies (individuals): 
a. Randomly choose two ‘parent’ individuals, with the 

probability of selection proportional to individual fitness.  
b. Mate the two parents to create two children. To do this, 

randomly choose a position to split the two number 
strings, and form one child by taking the numbers before 
that position from parent A and after that position for 
parent B, and vice versa for the second child. 

c. Mutate the children’s DNA. With a small probability, 
choose one or more numbers and replace them with a 
randomly generated number between 0 and 6. 

d. Put the two new children in the new population of 
individuals (a new generation). 

5. Return to step 2. 
 
The algorithm repeats this process multiple times to evolve an 
optimum strategy (individual) with the highest fitness. 
 
To test Robby’s evolved strategy, Mitchell did her best to develop 
a strategy on her own, using human judgment (Mitchell has a PhD 
in computer science, and is a respected complexity scientist). She 
then compared her strategy with Robby’s over 10,000 cleaning 
sessions. Mitchell’s average score was 346, while Robby’s average 
was 483. A perfect score would have been 500. 
 
Because of its effectiveness, the genetic algorithm is often used to 
model adaptive agents in a complex adaptive system.  
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 

Artificial neural network 
Artificial neural networks (ANN) were also inspired by biological 
mechanics, specifically the neural system of the human brain. 
ANN are useful when an agent needs to learn from past patterns 
of its complex system in order to determine its future actions, just 
as humans use their brains to learn and adapt. 
 
To understand the motivation for ANN, let’s briefly look at the 
human brain. It consists of nerve cells called neurons, each with 
four parts: 
 cell body:  the part of the cell that takes input from other 

neurons and sends output to other neurons. 
 dendrites:  fibers connected to the cell body that receive 

input from other neurons 
 axon:  a fiber connected to the cell body that delivers the 

neuron’s output to other neurons. 
 synapse:  where a dendrite fiber from one neuron connects 

to the axon of another neuron. 
 
The human brain has about ten billion (1010) neurons and about 
1014 synapses (the average neuron is connected to other neurons 
with about 104 synapses). Neurologists have discovered that the 
brain learns by changing the strength of synaptic connections 
according to the number of times the synapses are stimulated. 
ANN are based on a similar principle. 
 
To understand how an ANN works, let’s first explore a simple 
ANN known as a perceptron. The perceptron consists of three 
parts:  
 output node:  the part of the perceptron that computes the 

output. 
 input nodes:  the part that collects input. 
 weighted links:  the connections between input nodes and 

the output node, with each link associated with a weight. 
 
The output that the output node computes is: 
 

𝑦 = 𝑓(𝑥1 𝑤1 + … +  𝑥𝑛𝑤𝑛 −  𝑡) 
 
where (x1 … xn) are inputs, (w1 … wn) are weights, t is a ‘bias 
factor’, and f( ) is an ‘activation function’.  
  

axon

dendrites

cell body

synapse

input
nodes

output
node

weighted
links

x1

xn

w1

wn



Complexity science – an introduction (and invitation) for actuaries 

Chapter two:  Agent-based models continued 

TWO:  AGENT-BASED MODELS     35 

E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 
Artificial neural network continued 
As in the brain, a perceptron learns by adjusting the weights of its 
links until the output fits the underlying data.  
 
For example, suppose the agent’s underlying historical data is 
given by the following table of eight samples: 
 

 

 
Suppose further that its output function f is simply the sign 
function (producing -1 if its argument is negative, and +1 
otherwise), and that t = 0.4. 
 
To determine an optimal set of weights, the agent does the 
following: 
1. Initializes its weights w1, w2, and w3 with random values 
between 0 and 1. 
2. Computes the expected output 𝑦�𝑛 for each historical sample 
based on the current weights. 
3. Updates the weights with the following formula: 
 

𝑤𝑖
𝑘+1 =  𝑤𝑖

𝑘 +  𝜎 (𝑦𝑛 −  𝑦�𝑛
𝑘) 𝑥𝑖𝑛 

 
where the superscript k refers to the iteration number, xin is the 
ith input item for the nth sample, and 𝜎 is a parameter called the 
‘learning rate’ which for this example we can set equal to 0.5. 
 
4. The agent returns to step 2 and iterates until the weights 
converge, or until 𝑦𝑛 −  𝑦�𝑛

𝑘  reaches the desired degree of 
precision. 
 
For this example, all the weights converge to 0.3. 
 
  

n x1 x2 x3 y 
     

1 0 0 0 -1 
2 0 0 1 -1 
3 0 1 0 -1 
4 1 0 0 -1 
5 0 1 1 1 
6 1 0 1 1 
7 1 1 0 1 
8 1 1 1 1 
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 
Artificial neural network continued 
A real ANN is more complicated than a perceptron:  it may add 
several intermediate layers between the input and output. These 
additional layers are called ‘hidden layers’, and their nodes are 
‘hidden nodes’. For a real ANN, the activation function may be 
any type, including linear, logistic, or hyperbolic tangent 
functions.  
 
Multilayer ANN are called ‘universal approximators’, because 
they can approximate any target function. 

Game theory 
In a complex social system, agents usually need to follow behavior 
rules that incorporate cooperation and competition with one 
another. To construct such behavior rules, the structure of game 
theory is useful. 
 
The most common structure in game theory is the ‘prisoner’s 
dilemma’. It is so common and important that Robert Axelrod, a 
Complexity Science pioneer, wrote “The two-person iterated 
Prisoner’s Dilemma is the E. coli of the social sciences, allowing a 
very large variety of studies to be undertaken in a common 
framework. It has even become a standard paradigm for studying 
issues in fields as diverse as evolutionary biology and networked 
computer systems. Its very simplicity has allowed political 
scientists, economists, sociologists, philosophers, mathematicians, 
computer scientists, evolutionary biologists, and many others to 
talk to each other.”6 
 
To understand the prisoner’s dilemma, consider two agents who 
are arrested for a crime (that they did commit).7 Because the 
police have inadequate evidence to convict either, they tell each 
suspect: 
 if he rats against the other, he will receive a reward and will 

be released, provided the other suspect does not rat; 
 if both agents rat against each other, each will go to jail but 

with a reduced sentence; 
 if he keeps quiet and the other agent rats, he will go to jail for 

a long time; 
 if both keep quiet, both will go free. 

                                                      
6 Axelrod (1997), page xi. 
7 There are many variations of the prisoner’s dilemma, with differing rewards. 
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 
Game theory continued 
The choices in the prisoner’s dilemma can be represented as a 
‘payoff matrix’. Each matrix cell contains a pair of payoffs (x,y), 
where the first of the pair is Agent B’s payoff and the second is 
Agent A’s. If both keep quiet, both go free and the payoff is (1,1); 
if both rat, each goes to jail for a reduced term, and their payoff is 
(-2,-2); if Agent A rats and Agent B keeps quiet, then their payoff 
is (-5,1) because Agent B goes to jail for a long time and Agent A 
goes free. Clearly, mutual cooperation is the best outcome (the 
total payoff is 1 + 1 = 2). But would you keep quiet? 
 
The dilemma is whether to follow your narrow self-interest (rat 
and hope the other doesn’t) or cooperate for greater mutual gain 
(keep quiet and hope the other does also). This dilemma arises in 
situations as diverse as marriage, business strategy, combat, and 
nuclear arms control. Although our lives depend on cooperation, 
the reality is that people usually choose their narrow self-interest 
over the common good, and end up with a sub-optimal total 
payoff. Interestingly, for a single-round game such as the classic 
prisoner’s dilemma, self-interest is actually the most rational 
choice. 
 
Life’s dilemmas are usually not found in single-round games. For 
example, marriage, business relationships, and even wars usually 
have many rounds. What is the best strategy for a many-round 
game, the so-called ‘iterated prisoner’s dilemma’? 
 
In 1987, Robert Axelrod published the answer. Based on 
suggestions from John Holland (both were at the University of 
Michigan), he set up a computer simulation to pit agents against 
each other for thousands of iterations of the prisoner’s dilemma, 
and used a genetic algorithm for them to evolve an optimal 
strategy. The result? The most commonly evolved optimal 
strategy was ‘tit-for-tat’:  cooperate the first time, and thereafter 
do what the other agent did in the game’s last turn.8 
 
Thus, the structure of game theory, combined with the genetic 
algorithm, evolved an effective behavior rule for agents in many 
social circumstances. You can also use the structure of game 
theory to develop agent behavior rules.  

                                                      
8 Axelrod (1997) 

   
Agent A 

  keep 
quiet rat 

Agent B 
keep quiet (1,1) (-5,1) 

rat (1,-5) (-2,-2) 
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 

Heuristics 
In his book Predictably irrational, Dan Ariely writes, “For a long 
time, economists have maintained that human behavior and the 
functioning of our institutions are best described by the rational 
economic model, which basically holds that man is self-interested, 
calculating, and able to perfectly weigh the costs and benefits in 
every decision in order to optimize the outcome. But in the wake 
of a number of financial crises, from the dot-com implosion of 
2000 to the subprime mortgage crisis of 2008 and the financial 
meltdown that followed, we were rudely awakened to the reality 
that psychology and irrational behavior play a much larger role in 
the economy’s functioning than rational economists (and the rest 
of us) had been willing to admit. … If the rational economic 
approach is not sufficient to protect us, what are we supposed to 
do? What models should we use? Given our human fallibilities, 
quirks, and irrational tendencies, it seems to me that our models 
of behavior and, more important, our recommendations for new 
policies and practices should be based on what people actually do 
rather than what they are supposed to be doing under the 
assumption that they are completely rational.”10 
 
Clearly, in our agent-based models of complex social systems, we 
want to include agent behavior rules that reflect what people 
actually do. Our understanding of what real people actually do in 
social situations comes mainly from the work of Daniel Kahneman 
and Amos Twersky (see sidebar). Their experiments in human 
judgment and decision-making, together with the experiments of 
scientists such as Dan Ariely who followed them, uncovered the 
startling result that human judgment is based not on rational 
cognitive processes, but rather on heuristics – unconscious ‘rules of 
thumb’ that humans have developed over millennia to deal with 
our environment. 
 
In his book The origin of wealth, Eric Beinhocker provides a vivid 
illustration of the distance between rationality and heuristics.11 He 
asks you to imagine traveling on an airplane, sitting on the aisle 
next to an eccentric-looking woman. 
  

                                                      
9 Kahneman (2008a) and Kahneman (2008b) 
10 Ariely (2008b), pages 279-281, one of this report’s Top ten Complexity Science books. 
11 Beinhocker (2006), pages 119-120, also one of this report’s Top ten Complexity Science books. 

 

Kahnemann and Twersky 
 
Psychologists Daniel Kahneman and Amos 
Twersky shared one of the most productive 
collaborations in the history of social science. 
Starting in 1969, for more than 25 years they 
conducted groundbreaking experimental 
research into human judgment and decision-
making. Their research had such a profound 
impact that in 2002 Kahneman became the first 
psychologist to win a Nobel Prize in Economics 
(an honor that, had he lived, Tversky would 
have shared). 
 
As an example of one of their experiments: 
In two trials, participants immerse a hand in 
cold water until instructed to remove it. The 
first trial lasts 60 seconds at 57 degrees 
Fahrenheit (very painful), and the second trial 
lasts a total of 90 seconds with 60 seconds again 
at 57 degrees followed by 30 seconds at 59 
degrees (a little less painful). When asked which 
of the two trials they would choose to repeat, 
the remarkable finding is that 65-80 percent of 
subjects elect to repeat the second trial, even 
though it is longer than the first trial. 
 
This, and a host of similar experiments, led 
Kahneman and Twersky to conclude that we 
store memories of our experiences according to 
what they called a “peak/end rule heuristic”:  
our memory of events is primarily an amalgam 
of the peak point of the experience and its end 
point. Nothing else matters. 
 
For an excellent introduction to their work, see 
the YouTube videos of Kahneman presenting 
Explorations of the mind.9 
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E. AGENT BEHAVIOR RULES CONTINUED 

1. Behavior rule types continued 
Heuristics continued 
Mid way through the flight, the woman declares that she is bored, 
and says that she will give you and the businessman in the window 
seat $1,000 if you can both agree how to share the money. She 
takes out ten $100 bills to show that she is serious. The condition 
for her offer is that the businessman must decide how to split the 
money, and that you must accept his decision. If you reject his 
decision, you both get nothing. The businessman turns to you and 
says, “My decision is that I get $900 and you get $100. Would you 
accept his decision? 
 
Most people don’t. This ‘ultimatum game’ has been played with 
thousands of real people of all types, from many cultures, and of 
all ages. The overwhelming majority reject the decision, because 
it is unfair. Clearly, the response is emotional and appears 
irrational, but recognizably human.12 
 
Human behavior is marked by a slew of additional irrational 
heuristic biases with labels such as: 
 framing bias 
 anchoring bias 
 representativeness bias 
 availability bias 
 confirmation bias 
 conjunction bias 
 narrative bias 
 proximate cause bias 
 expert bias 
 
We also have great difficulty judging probabilities, and are 
supremely overconfident. No matter how much mathematics and 
statistics we study, or how much experience we have, we are 
human and we err.13 
 
Physicians err, hospitals err, insurance companies err, consumers 
choosing health insurance policies err, corporate executives err, 
retirees err, all human and institutional agents in our Complexity 
Science models will err. We had best build this fact into our 
behavior rules.  

                                                      
12 A case can also be made that in a larger cultural sense, the response is actually rational, for it fights unfairness. 
13 To learn more about these biases and irrational behaviors, see Ariely (2008b), Kahneman, Slovic, & Tversky (1982), 

and Kahneman & Tversky (2000). 
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E. AGENT BEHAVIOR RULES CONTINUED 

2. Developing behavior rules 
There are many types of behavior rules and structures:  simple if-
then rules, genetic algorithm rules, neural network rules, game 
theory structures, behavioral economics rules, and many more 
that we have not covered. How do you decide which type to use? 
 
In the foregoing discussion of rule types, I gave a few hints: 
 For simple behavior, simple if-then rules or transition tables 

may be sufficient. 
 Where agents need to search a large fitness landscape for 

optimal solutions, genetic algorithms may be helpful. 
 Where agents need to learn from past patterns to determine 

future action, think of neural networks. 
 Where cooperation or competition are involved, the 

structure of game theory may be appropriate. 
 Whenever the agents are real people or institutions, consider 

the results of behavioral economics. 
In practice, a combination of rule types may be appropriate. 
 
You may find it helpful to: 
 Search the literature. Perform formal literature searches 

for information about the way your model’s agents behave 
and how to reduce that behavior to rules. For an example of a 
formal literature search, see the section at the end of this 
report titled Finding the essential resources. 

 Ask people. Conduct interviews, focus groups, and surveys 
to elicit information about the ways humans and institutions 
behave. 

 Conduct controlled experiments. Although outside the 
traditional province of actuaries, controlled behavioral 
experiments are one of the most powerful ways to understand 
human and institutional behavior. If you review the work of 
Ariely, Kahneman, and Twersky, you will discover that such 
experiments are easy to set up and administer. 

 Ask experts. Use structured methods, such as ‘knowledge 
engineering’, to obtain information from experts. Knowledge 
engineering is a set of techniques from the field of software 
engineering for eliciting and organizing the knowledge of 
experts.14  

 
  

                                                      
14 North & Macal (2007), pages 103-112. 
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F. COMPARISON WITH ACTUARIAL MODELS 
Agent-based models and traditional actuarial models are quite 
different. 
 
Although traditional actuarial models take many forms, in essence 
they simply project historical aggregate patterns into the future. 
These patterns may be population transition probabilities (such as 
rates of death, retirement, and disease); time series trend rates 
(such as interest rates or health expenditure trend rates); or 
probabilities of particular risks (such as rates of accident or 
catastrophe). And the projection may involve considerable 
actuarial judgment about deviations of future patterns from 
historical. But, no matter if the model type employed is a micro- 
(or cell-based) simulation, a statistical model, risk analysis model, 
or some other model type, the essential methodology is projecting 
historical aggregate patterns into the future, a methodology that is 
top-down. 
 
By contrast, agent-based modeling is bottom-up. It seeks to 
understand and model the behavior of a system’s fundamental 
units, its agents. System-wide attributes and behavior, such as the 
aggregate patterns of actuarial models, are then a by-product, an 
emergent result. 

G. OBJECT-ORIENTED PROGRAMMING 
Although agent-based models can be implemented using any 
programming language, an innovation in computer science called 
‘object-oriented programming’ fits naturally with agent-
based models. 
 
Object-oriented programming is used widely. It is the method 
used to create programs like Microsoft Excel and Word, most 
video games, and even movies like Avatar. 
 
In object-oriented programming, any component of reality can be 
represented as an ‘object’. For example, living things such as a 
person, a heart, and even a blood cell can be objects, as can 
inanimate things such as a phone and a photon. 
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G. OBJECT-ORIENTED PROGRAMMING CONTINUED 

In an agent-based model using object-oriented programming, each 
agent is an ‘object’ that is an instance of a ‘class’. For example, in 
an agent-based model of a healthcare system, a particular 
physician object named Dr. Welby might be an instance of the 
class called ‘physician’. 
 
Every class has ‘attributes’ (variables) and ‘methods’ (functions). 
Each instance of a class will have a value for each attribute. For 
example, if ‘specialty’ is an attribute of the class ‘physician’, its 
value for Dr. Welby may be ‘primary care’, whereas its value for 
Dr. Jones may be ‘heart surgeon’. Attributes can change over 
time. For example, the value of the attribute ‘address’ may 
change for Dr. Welby when he moves from the city to the 
country. 
 
Methods are the functions of a class. For example, a method for 
the class ‘physician’ might be a behavior rule to prescribe a certain 
medication when a patient presents with a specified constellation 
of signs and symptoms. 
 
Agents are naturally implemented as instances of classes, with 
their attributes and state information corresponding to attributes, 
and their behavior rules corresponding to methods. A population 
of agents is easily created by generating multiple instances of a 
class. As you will see in Chapter six, the many agents of 
Sugarscape and Archimedes are generated as instances of object-
oriented classes. 
 
Just as there can be hierarchies of agents, there can be hierarchies 
of classes, such as the class ‘hospital’, the sub-class ‘employee’, 
the sub-sub-class ‘physician’, etc., down to any level of detail. 
 
The attributes and methods of a class are ‘inherited’ by every 
instance of that class. For example, the class ‘physician’ may have 
‘skill level’ as an attribute. This attribute would be inherited by 
the class instance Dr. Welby. Inheritance makes object-oriented 
models easy to update:  Whenever an attribute or method is 
changed for a class, the change is automatically inherited by all 
instances of the class and its subclasses. 
 
Many modern programming languages support object-oriented 
programming, including Java, VB.NET and C++.  
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H. STRENGTHS AND WEAKNESSES 
Agent-based models are particularly advantageous when: 
 A system can be represented by interacting agents with 

definable behaviors. 
 Relationships among agents, or between agents and the 

environment, can change over time. 
 Agent dynamics are dependent on spatial relationships, 

such as geographic location. 
 Agents can adapt their behavior or learn. 
 You need to present a model to people who are 

uncomfortable with mathematical models. People can often 
relate to the notion of agents more easily than to abstract 
mathematical models. They can easily imagine taking on 
the role of an agent. 

 
They are not as useful when: 
 A system is simple, with few component parts. 
 Agent behavior cannot be modeled, even approximately. 
 It is impossible to gather the data necessary to establish 

individual agent attributes. 

I. GETTING STARTED 

Perhaps the best way to get started with agent-based modeling 
is to experiment with and understand the models 
accompanying this report. Next, do the report’s exercises; 
many of these ask you to modify the models accompanying this 
report. Then, find a problem in your work that appears to be 
amenable to an agent-based modeling approach, and build a 
model to address the problem. 
 
As you build agent-based models, you will find it helpful to 
follow common modeling best practices (see sidebar). 
  

                                                      
15 Miller & Page (2007), pages 245-254. 

 
Best practices 

 
In their book Complex adaptive systems, John Miller 
and Scott Page list several best practices for 
agent-based modeling.15 Following are extracts: 
 
Keep the model simple: Good models strip 
phenomena down to their essentials, yet retain 
sufficient complication to produce the needed 
insights.  
 
Focus on the science, not the computer:  
New technological developments may enhance 
our ability to explore better existing models or 
create new ones, but without a solid model 
underlying the work, such improvements are 
meaningless. 
 
Avoid black boxes:  Each part of a model 
must be as clear and accessible as possible. 
 
Nest your models:  Nesting standard models 
within computational ones is usually a very 
natural process. … once nested, it is easy to 
compare the model’s predictions in the special 
cases with known results, and then to show how 
the model verifies known results and 
observations. One way to nest models is to rely 
on “tunable” dials for controlling key 
assumptions. 
 
Create multiple implementations:  One 
useful way to facilitate the creation of multiple 
implementations of a model is to have at least 
two groups separately code the model 
(preferably using two different computer 
languages). Not only does this process help 
clarify the important issues, but it also results in 
two versions of the model that can be run in 
parallel to confirm results and gain insights. 
 

(continued on the next page) 
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J. VERIFICATION AND VALIDATION 

One of the best practices recommended by Miller and Page is to  
‘prove your results’ (see sidebar). The accepted way to  prove 
your results is called ‘verification and validation’, or ‘V&V’. 
 
Verification and validation are often confused with each other.17 
As illustrated in the diagram below, model verification involves 
both externally directed tasks and internally directed tasks. 
Externally, verification ensures that the model is an accurate 
reflection of stakeholder needs, that design accurately follows 
requirements, and that construction accurately follows design. 
Internally, it ensures that the model is internally consistent and 
without defects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Validation involves two externally directed tasks. One ensures 
that the model is an accurate reflection of the real world, and the 
other ensures that experts assess the model as reasonable, 
practicable, and relevant. Standard actuarial measures, such as the 
coefficient of determination (R2), can be used to ensure that the 
model accurately reflects the real world. 
 
It is best practice to include structured V&V processes, such as 
structured walkthroughs or formal audits, at each major step of 
model development such as after requirements analysis, design, 
and construction.18 
  
                                                      
16 Miller & Page (2007), pages 245-254. 
17 They can also be confused with the epidemiologic concepts of internal and external validity, which relate to proper 

demonstration of cause-effect relationships between variables in scientific studies (internal validity) and to whether such 
relationships can be generalized (external validity). 

18  For more information about V&V, read chapter 11 of North & Macal (2007). 

 
Best practices 

continued 
 
Check the parameters:  … computational 
models should always be subject to sensitivity 
analysis of key parameters. 
 
Document code:  Care and time spent in this 
domain are necessary for ensuring that the 
results can be fully analyzed and easily tied to 
the exact conditions that produced the outcome. 
 
Beware of debugging bias:  When modelers 
observe results that are not as expected, they 
are likely to spend a lot of effort debugging their 
code. When their expectations are met, little 
such effort is expended. 
 
Write good code:  McConnell (2004) 
provides a nice overview of the basics for 
writing high-quality, extendable, easily 
communicated code. 
 
Distribute your code:  Code for published 
results should be easily available to others so 
that they can replicate the results. 
 
Prove your results:  Whenever possible, 
computation results should be clarified and 
verified as thoroughly as possible … Whenever 
possible, the analysis of computational models 
should be enhanced with complementary 
modeling efforts. 
 
Reward the right things:  … judgments in 
this area should focus not on the computer per 
se, but on the quality and simplicity of the 
model, the cleverness of the experimental 
designs, and the new insights gained by the 
effort.16 
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K. HISTORY 

Although agent-based models were first contemplated in the 
1940s, because of limited computing power, they were not 
implemented. 
 
In the 1970s, Conway’s Game of Life (see Chapter five) was one 
of the first computerized agent-based models. It was soon 
followed by Schelling’s segregation model (see Chapter six) in 
which agents moved around on a two-dimensional grid. 
 
In 1987 at the Santa Fe Institute, Craig Reynolds presented his 
simulation of flocking birds (that he called ‘boids’). Each boid 
followed three simple in-flight rules and, with no other 
controller, the result was so lifelike that the approach has been 
used for many movies to simulate flocking and stampeding 
behavior.19 The Santa Fe Institute continued to support the 
development of agent-based models, and sponsored the first 
widely used agent-based modeling platform, SWARM. 
 
The first large-scale agent-based model was Sugarscape, 
developed by Joshua Epstein and Robert Axtell at the Brookings 
Institution in 1996. In Chapter six, we will explore Sugarscape in 
detail. 
 
In the 1990s, Uri Wilensky and others developed the popular 
agent-based educational platform NetLogo. And in 2000, 
Argonne National Laboratory released the agent-based modeling 
platform called Repast. In Chapter six, we will use Repast to 
develop the Schelling Segregation model and Sugarscape. 

L. EXERCISES 
1. Find a counter-example to the author’s statement that 
traditional actuarial models project historical aggregate patterns 
into the future. (When you find it, please let the author know.) 
2. Identify two areas in your work that can benefit from agent-
based modeling. 
3. One of Joshua Epstein’s sixteen reasons for building models is 
to “discover new questions” (number five). Do you think 
Complexity Science has the potential to prompt you to ask 
questions about your work that you’ve never asked, or to explore 
areas you previously thought were impossible to address? 
4. Go through the details of the ANN perceptron model in section 
E, to convince yourself that it works.   

                                                      
19 To see an example of ‘boids’ visit Craig Reynolds web page “www.red3d.com/cwr/boids/”. 
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M. TO LEARN MORE 
To learn more about agent-based modeling, you may enjoy the 
book Managing business complexity by Michael North and Charles 
Macal.20 You may also enjoy reading two chapters in Joshua 
Epstein’s book Generative social science titled:  
 Agent-based computational models and generative social science, and 
 Remarks on the foundations of agent-based generative social science.21 
 
To learn more about genetic algorithms, read chapters 9 and 11 of 
Melanie Mitchell’s book Complexity.22 You may also enjoy her 
earlier book An introduction to genetic algorithms.23 
 
To learn more about artificial neural networks, read Fundamentals 
of neural networks by Laurene Fausett.24 To learn more about the 
application of game theory to Complexity Science, read Robert 
Axelrod’s book The complexity of cooperation.25 
 
To learn more about heuristics and behavioral economics, read 
Dan Ariely’s book Predictably irrational.26 You may also enjoy 
watching his Predictably irrational series on YouTube.com.27 For 
information about behavioral economics and its applications 
(including applications to healthcare) read Behavioral economics and 
its applications.28 For applications of behavioral economics to 
retirement issues, read Behavioral dimensions of retirement 
economics.29  
 
To learn more about building credible agent-based models, and 
about their verification and validation see the papers How to build 
valid and credible simulation30 models and Verification and validation of 
simulation models.31 
  

                                                      
20 North & Macal (2007), one of this report’s Top ten Complexity Science books. 
21 Epstein (2006), pages 1-74, also one of this report’s Top ten Complexity Science books. 
22 Mitchell (2009) 
23 Mitchell (1996) 
24 Fausett (1994) 
25 Axelrod (1997) 
26 Ariely (2008b), one of this report’s Top ten Complexity Science books. 
27 Ariely (2008 - 2009) 
28 Diamond, Vartiainen, & Yrjö Jahnssonin säätiö. (2007) 
29 Aaron (1999) 
30 Law (2009) 
31 Sargent (2009) 
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N.  REVIEW AND A LOOK AHEAD 
This chapter concludes Part I. It introduced agent-based models 
and discussed their characteristics, their strengths and weaknesses,  
how they compare with actuarial models, their history, and how 
you can start using them. 
 
In Part II, we will examine the four archetypal agent-based models 
of Complexity Science. After reading its chapters and doing the 
exercises, you will have a firm grasp of Complexity Science 
models and how to build them. 
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PART II:  COMPLEXITY SCIENCE MODELS 
 
Models can surprise us, make us curious, and lead to new 
questions. This is what I hate about exams. They only show 
that you can answer somebody else’s question, when the most 
important thing is:  Can you ask a new question? It’s the new 
questions … that produce huge advances, and models can 
help us discover them. 

Joshua M. Epstein1 
 
 
 
 

                                                      
1  See J. M. Epstein (2008), section 1.15. 
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CHAPTER THREE:  FOUR ARCHETYPAL MODELS 

A.  INTRODUCTION 
In October 1970, an unusual article appeared in Scientific American, 
in the ‘Mathematical Games’ column. Its title was “The fantastic 
combinations of John Conway’s new solitaire game ‘life’” and was 
about British mathematician John Conway’s game called the Game 
of Life.1 The article traced how Conway developed the game, 
gave the game’s simple rules, and reported some of its theoretical 
results. But that’s not what got people’s attention. Rather, people 
were, and continue to be, fascinated by the lifelike patterns 
generated by the Game of Life. As its computation unfolds, the 
game’s grid becomes a canvas of complex patterns that seem alive, 
a miniature universe that evolves (see the sidebar.) 
 
 
 
 
 
 
 
 
 
 
The Game of Life was one of the first powerful examples of 
‘cellular automata’, one of the four archetypal model types of 
Complexity Science that you will soon learn how to apply. 
 
About the same time, Thomas Schelling, a prominent economist 
and recipient of the 2005 Nobel Prize in Economics, was on a 
plane flight from Chicago to Boston. He began thinking about 
racial segregation, and drawing Xs and Os on a grid, like tic-tac-
toe. The Xs and Os represented people of two different races that 
move from space to space on the grid according to simple rules 
driven by their racial preferences. With this simple model, he 
discovered a startling fact: even color-blind preferences lead to 
neighborhoods that are segregated.3 
 

                                                      
1  See Gardner (1970). To watch Conway tell the story of the Game of Life, see Conway (2007a) and Conway 

(2007b). Rules for the Game of Life are given in Chapter five, and you can play the game on the Excel two-
dimensional cellular automaton model that accompanies this report. 

2 Waldrop (1992), pages 202-203. 
3 Schelling (2006) 

 
There was something alive … 

 
In his book Complexity, Mitchell Waldrop 
presents Chris Langton describing his encounter 
with The Game of Life2 (Langton is one of the 
pioneers of Complexity Science.): 
 
“One time I glanced up,” he says. “There’s the 
Game of Life cranking away on the screen. Then 
I glanced back down at my computer code – and 
at the same time, the hairs on the back of my 
neck stood up. I sensed the presence of someone 
else in the room.” 
 
Langton looked around, sure that one of his 
fellow programmers was sneaking up on him. 
… But no – no one was behind him; no one was 
hiding. He was definitely alone. 
 
Langton looked back at the computer screen. “I 
realized it must have been the Game of Life. 
There was something alive on that screen. And 
at that moment, in a way I couldn’t put into 
words at the time, I lost any distinction between 
the hardware and the process.” 
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A.  INTRODUCTION CONTINUED 

Schelling’s Segregation model was one of the first ‘artificial 
society’ models of Complexity Science, another of the four 
archetypal model types. 
 

 
 
The Game of Life and Schelling’s Segregation Model are two early 
examples of the computer-based models and bottom-up 
perspective that distinguish Complexity Science from traditional 
science. In Part II, you will learn how to apply these new tools 
and perspectives to solve real-world problems. 
 

B.  FOUR ARCHETYPAL MODELS 
Part II introduces you to four archetypal model types that span all 
Complexity Science models, and shows you how to use them. The 
following table shows the salient features of the four archetypal 
model types. 
 

 
 

Model 
type 

 
 
 

Agents 

 
 

Agent 
relationships 

 
Agent 

behavior 
rules 

 
 
 

Environment 

 
 

User 
involvement 

      
1.  Networks      
2.  Cellular automata      
3.  Artificial societies      
4.  Serious games      
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B.  FOUR ARCHETYPAL MODELS CONTINUED 
1. Networks 
The first archetype is networks. With networks, we will explore 
models of agents and their relationships. For example, in a 
complex real-world economic system, two people (agents) might 
be related because they are neighbors. 
 
As you will see, one can learn a lot about a complex system by 
using networks to explore its underlying structure. The branch of 
Complexity Science that developed this model type is ‘network 
science’ or ‘network theory’. Chapter four introduces 
networks and shows you how to apply them. 
 
2. Cellular automata 
In the next type of archetypal model, cellular automata, agents 
and their relationships are augmented by agent behavior rules. In 
an economic system, for example, people (agents) who are 
neighbors (relationship) might engage in trade with one another 
(following agent behavior rules). 
 
This model type expands our capacity to understand real-world 
systems. In Chapter five, you will learn about cellular automata 
and how to apply them. 
 
3. Artificial societies 
The next archetype, artificial societies, adds an environment. 
Now, in addition to relationships and interactions among 
themselves, agents also interact with an environment. For 
example, in an economic system, neighboring people might trade 
with one another, and might also extract products from an 
environment (such as fruit or gold) to trade. 
 
Chapter six introduces artificial societies and shows you how to 
use them. 
 
4. Serious games 
The fourth archetype is serious games. These models incorporate 
one or more active users who play a game that usually 
incorporates agents, relationships, agent behaviors, and an 
environment. The primary purpose of such games is for the users 
to better understand the real-world system being modeled. You 
will learn about serious games in chapter seven.  
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B.  FOUR ARCHETYPAL MODELS CONTINUED 
Boundaries among these archetypal models are blurred. For 
example, network science also includes a type of network called a 
‘dynamical network’ that incorporates agent behavior rules 
within networks. As we progress, I will point out significant 
places where the boundaries are blurred. Nevertheless, these four 
archetypes will help you understand and apply Complexity 
Science models. 

C.  STRUCTURE OF PART II 
Each of the four chapters of Part II presents one of the model 
archetypes. Each includes: 
 
 An introduction to the model type, including definitions and 

theoretical examples 
 A discussion about how the model type relates to the other 

model types 
 An introduction to the new concepts and perspectives of 

Complexity Science that underlie applications of the model 
type 

 Examples of real-world applications 
 Supporting material to help you learn to apply the model type 

(see sidebar) 
 
 
 
 
 
 

 
Supporting material 

 
This report’s supporting material will help you 
learn about Complexity Science: 
 
Computer code 
An enjoyable and effective way to learn about 
Complexity Science is to play with computer 
models. The computer code used to generate 
examples of the archetypal models in the next 
four chapters are available on the SOA web page 
for this report. 
 
To make it easy to work with the models, the 
code includes many comments. 
 
The network models in this report were 
generated using the modeling platforms ‘R’ with 
‘igraph’, ‘Excel’ with ‘Visual basic for 
applications’, and ‘Java’ with ‘Repast 
Simphony’. To set up these platforms on your 
computer, see the document on the SOA web 
page titled Getting started with modeling platforms. 
 
Exercises 
To help you solidify and apply what you have 
learned, at the end of each chapter is a section 
with (I hope) entertaining and useful exercises. 
 
References 
Following the exercises are references to 
resources that will help you learn more. 
 
Glossary 
At the end of this report is a Glossary of 
Complexity Science terms introduced in the 
report. 
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CHAPTER FOUR:  NETWORKS 
Thanks to the rapid advances in network theory it appears that we are not far from the next major step:  constructing 
a general theory of complexity. The pressure is enormous. In the twenty-first century, complexity is not a vague 
science buzzword any longer, but an equally pressing challenge for everything from the economy to cell biology. Yet, 
most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In 
most systems, complexity starts where networks turn nontrivial. 

Albert-László Barabási1 

A. INTRODUCTION 
About the time that Conway was publishing the Game of Life, and 
Schelling was modeling segregation with X’s and O’s on a grid, a 
young sociologist named Stanley Milgram was starting an 
experiment that would become famous as the “small world 
experiment”. He was curious about the structure of the social 
network that connects people. His intuition was that two random 
people in this network are closer together than one might expect. 
To test his intuition he mailed 160 packages to a random group of 
people in Omaha, Nebraska, asking each to forward the package 
to an acquaintance who might personally know a named 
stockbroker in Boston, and thus would be able to deliver the 
package. The next recipient was asked to do the same. 
 
Given that the population of the U.S. at that time was about 200 
million, how many links on average do you think it took between 
the 160 Nebraskans and the Boston stockbroker? People who 
don’t know the answer usually guess one hundred or more. But 
you probably already know the answer. It was about six. Thus, on 
average, there were ‘six degrees of separation’ (see sidebar) 
between them. To test this idea further, Milgram sent packages to 
randomly selected whites in Los Angeles, asking them to get the 
packages to randomly selected blacks in New York. Again, this 
time even more surprisingly, the average number of links was 
about six. Indeed, given the results of other studies, it may well 
be that two random people among the earth’s seven billion may 
be only six acquaintances distant.3 It appears to be a small world. 
 

                                                      
1 See Barabási (2003), page 237.  This is one of this report’s Top ten Complexity Science books. 
2  To read the short story, see M.E.J. Newman, Barabási, & Watts (2006), pages 21-26, also one of this report’s Top ten 

Complexity Science books. 
3  For example, a Microsoft 2008 study titled Planetary-scale views on an instant-messaging network shows that the average chain 

of contacts between users of its worldwide .NET Instant Messenger Service was 6.6 people. 

 
Small world 

 
The first published appearance of the small 
world insight – that the world’s inhabitants are 
connected by no more than six links – was not 
by a mathematician, but a celebrated Hungarian 
short-story writer named Frigyes Karinthy. 
 
In his 1929 story titled Chain-links2, he writes: 
 
“Planet Earth has never been as tiny as it is now. 
It shrunk – relatively speaking of course – due 
to the quickening pulse of both physical and 
verbal communication. … One of us suggested 
performing the following experiment to prove 
that the population of the Earth is closer 
together now than they have ever been before. 
We should select any person from the 1.5 
billion inhabitants of the Earth – anyone, 
anywhere at all. He bet us that, using no more 
than five individuals, one of whom is a personal 
acquaintance, he could contact the selected 
individual using nothing except the network of 
personal acquaintances.” 
 
Nearly forty years would pass before Milgram 
would start his experiments, and another thirty 
years before we would understand why our 
planet is a small world. 
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INTRODUCTION CONTINUED 

But how is the so-called ‘small world effect’ possible? If I were 
to give you a sheet of paper with seven billion dots on it 
representing the earth’s population, how could you connect the 
dots such that there are only six links between any two dots, and 
yet retain the characteristic of most human communities that most 
connections are among dots close together? … It took thirty years 
to find the answer to this question. Using the simplest model type 
in Complexity Science, the network, you will soon learn the 
answer. 
 
A ‘network’ is a collection of real-world entities (agents) 
connected by relationships. Examples of networks are social 
systems of people related by friendship or consanguinity, an 
organization’s employees related by an organizational chart, and 
healthcare providers related by referral relationships. 
 
The goal of network models is to understand how the structure of 
networks affects the behavior of complex systems built upon 
them. We would like to understand, for instance, how the 
structure of social networks affects the spread of disease, how the 
structure of an organization affects its vulnerability, and how the 
structure of a provider community affects access to health care, 
quality, and expense. 
 
The modern study of networks is still in its infancy. It started 
around the turn of this century, with the publication of two short 
but revolutionary papers, one by Watts and Strogatz titled 
“Collective dynamics of ‘small-world’ networks”, and one by 
Barabási and Albert titled “Emergence of scaling in random 
networks”, papers that we will explore in this chapter.4 
 
 

The best way to learn about networks is to use them. This chapter 
provides many tools and exercises to help you learn. In particular, 
don’t hesitate to learn the statistical software package ‘R’ that this 
chapter introduces; it is powerful and easy to use, as is its 
component package for network analysis called ‘igraph’. Setup 
instructions for ‘R’ and ‘igraph’ are in the separate document 
Getting started with modeling platforms. 

 

                                                      
4  Both articles are in M.E.J. Newman, et al. (2006), (one of this report’s Top ten Complexity Science books).  The Watts-

Strogatz paper is on pages 301-303, and the Barabási-Albert paper is on pages 349-352. 



Complexity science – an introduction (and invitation) for actuaries 

Chapter four:  Networks continued 

FOUR:  NETWORKS     55 

“vertex”

“edge”

A

B

“directed edge”

C

D

“vertex”

“edge”

A

B

“vertex”

“edge”

A

B

“edge”

A

B

“directed edge”

C

D

“directed edge”

C

D

B. NETWORK BASICS 
Now, let’s cover basic network model definitions and concepts. 
 
A ‘graph’ is a representation of a real-world network. It consists 
of a collection of points called ‘vertices’ that are connected by 
lines called ‘edges’ (see the two simple graphs below5). A vertex 
represents a network agent and an edge represents a relationship 
between two agents (see the sidebar). 
 
Vertices and edges can be either homogeneous (all alike) or 
heterogeneous (different). Vertices can also be hierarchical (ie, a 
vertex can represent a whole network). An edge can be either 
‘directed’ (representing a directional relationship between two 
nodes, such as an email sent from one person to another), or 
‘undirected’ (the relationship is bi-directional). A graph with 
directed edges is called a ‘digraph’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ‘geodesic path’, or simply ‘geodesic’, between two 
vertices is the path with the least number of edges that must be 
traversed to travel from one vertex to the other. In the undirected 
graph on the left above, the geodesic path length from A to B (or 
B to A) is 3. In the directed graph, what is the geodesic path 
length from C to D? And from D to C? (Hint: they are different.) 
 
The ‘mean geodesic’ is the average of all a graph’s geodesics. 
For the undirected graph above, the mean geodesic is 2.02. 

                                                      
5 Created with the function CreateSimpleGraph() and plotted with PlotGraph(), both from the set of igraph functions 

supplied with this report. For example, to create the undirected graph:  in R enter gGraph1 <- 
CreateSimpleGraph(FALSE) followed by PlotGraph(gGraph1,”FR”, FALSE, 7, “Console”, “”, 2,2). 

 
A vertex is a node is a … 

 
Because Complexity Science is a new field that 
straddles many traditional fields, its terminology 
can become a little confusing. 
 
For example, the terminology for graphs can 
come from mathematics, sociology, computer 
science, or physics. What we will call a vertex 
can also be called a node (computer science), an 
actor (sociology), or a site (physics). Similarly, 
an edge is also called a link (computer science), 
a tie (sociology), and a bond (physics). In the 
body of this report, I present the most 
commonly used terms in Complexity Science, 
but include alternative terms in the Glossary. 
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B. NETWORK BASICS CONTINUED 

The ‘diameter’ of a graph is the number of edges of the longest 
geodesic path. The diameter of the undirected graph on the 
previous page is 4. Can you see why? What is the diameter of the 
directed graph?6 
 
The ‘degree’ of a vertex is the number of edges connected to it. 
A vertex of a directed graph has an ‘in-degree’ (the number of 
in-coming edges) and an ‘out-degree’ (the number of out-going 
edges). The ‘maximum degree’ is the degree of the vertex with 
the greatest degree. For the undirected graph on the previous 
page, the maximum degree is 5. Likewise, the ‘minimum 
degree’ is the degree of the vertex with the least degree (1 for 
the undirected graph). The ‘mean degree’ is the average of the 
degrees for all vertices (2.13 for the undirected graph). 
 
A vertex’s neighboring vertices within a certain edge distance are 
called a ‘neighborhood’. Vertex ‘A’ on the simple undirected 
graph has four neighbors within its neighborhood of two edges. 
 
Each of the simple graphs on the previous page consists of two 
groups of vertices, like islands separate from one another. Each 
such island is a ‘cluster’. So, the simple graphs have a cluster 
number of 2. 
 
The ‘density’ of a graph  is the ratio of its actual number of edges 
to the possible number of edges (0.133 for the undirected simple 
graph). Its ‘transitivity’ is a measure of the probability that the 
adjacent vertices of a vertex are connected. It is equal to: 
 

3 x number of triangles in a graph 
number of connected triples 

 
A ‘triangle’ is three vertices all of which are connected to each 
other, and a ‘connected triple’ is three connected vertices  
(which may also be a triangle). For the undirected graph, the 
number of triangles is 1, and the number of triples is 32, so the 
graph’s transitivity is 3/32, or 0.09375. Transitivity measures the 
density of triangles in a graph, or its degree of cliquishness. 
 

                                                      
6 It is 7. 

 
Why so many definitions? 

 
Why do we need so many definitions and 
measures, when we can simply look at a 
graph to understand its characteristics and 
structure? 
 
The main reason is that Complexity 
Science deals with the real world, and 
real-world networks are often big. For a 
network with scores or even hundreds of 
agents, the structure of its graph is easily 
captured by the eye. But the networks of 
Complexity Science may have millions or 
billions of agents, and their graphs cannot 
be effectively rendered for viewing even 
with modern computer tools. To 
understand these networks, we need 
careful definitions and statistical measures. 
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B. NETWORK BASICS CONTINUED 

A graph’s ‘correlation coefficient’ measures the extent to 
which vertices are connected to other vertices with like degree 
(i.e., large-degree vertices connected to other large-degree 
vertices, and small-degree connected to small-degree).7 It varies 
between -1 (negatively correlated) to 1 (perfectly correlated). 
The correlation coefficient of the simple undirected graph is -.83. 
Can you see why? 
 
The following charts show the ‘degree distribution’ of the 
simple undirected graph above, presented both as a histogram and 
as a frequency distribution. 8 Can you verify them? 
 
 
 
 
 
 
 
 
 
 
 
Graphs can be displayed in various ‘layouts’, which are 
alternative ways to place graph vertices. For example, below are 
six different layouts for displaying the simple undirected graph we 
have been discussing. The circular layout places the vertices 
equidistant on a circle, and the Reingold-Tilford layout places one 
of the clusters in a hierarchy. Above I used the Fruchterman-
Reingold layout to display the simple graph, because it displays 
the graph’s structure clearly. For more information about the 
layouts, refer to the ‘layout’ section of the igraph documentation.9 
 
 
 
 
 
 
 
 

                                                      
7 The tendency of vertices to connect to vertices with similar properties is called ‘assortative mixing’ or ‘assortativity’. 
8 The charts were plotted with the functions PlotHistogram() and PlotDegreeDistribution(). 
9 The igraph documentation, titled “Package ‘igraph’” and written by Gabor Csardi, is available at “igraph.sourceforge.net”. 
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C. NETWORK MODELS 

Now let’s explore four primary models of networks in 
Complexity Science:  the ‘random’, ‘lattice’, ‘Watts-
Strogatz’, and ‘Barabási-Albert’ models. Examples of these 
models, each with 1000 vertices,  are shown below in the 
Fruchterman-Reingold layout:10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What do these graphs look like to you? The first looks, well, 
random:  its vertices and edges do not seem to follow any pattern. 
The lattice model is a contrail of vertices. In the Watts-Strogatz 
model, most of the vertices are connected in long strings like 
Christmas lights. And the Barabási-Albert model looks like the 
random model (but, as we shall see, here looks are deceiving). 

                                                      
10  Created with CreateRandomGraph(1000, .01, FALSE, FALSE), CreateLatticegraph(1000, 5, FALSE), 

CreateWattsStrogatzGraph(1000, 5, .01), and CreateBarabasiAlbertGraph(1000, 5); plotted with PlotGraph() using the 
“FR” layout. 
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C. NETWORK MODELS CONTINUED 
Let’s see how each of these models is formed: 

1. Random model 
In the random network model (also known as the Erdös-Rényi 
model – see sidebar), the probability that two vertices are 
connected by an edge is fixed and independent of the vertices’ 
attributes. For example, in the random graph of 1000 vertices 
above, the probability that two vertices are connected by an edge 
is 0.01. Following is a random network with an attachment 
probability of 0.01, but only 100 vertices.11 Its connections still 
look random. Two of its vertices are even completely separated 
from the rest, like islands. (So, how many clusters does this graph 
have?) 
 
 
 
 
 
 
 
 
 
 

2. Lattice model 
In a lattice model, each vertex is connected to a fixed number 
(2n) of neighbors (n neighbors are on each ‘side’ of the vertex). In 
the lattice graph above with 1000 vertices, n = 5. Following are 
smaller versions, with only 20 vertices. The one on the left has 
n=1; the other has n = 5.12 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
11 Created with CreateRandomGraph(100, .01, FALSE, FALSE) 
12 Created with CreateLatticeGraph(20, 1, FALSE) and CreateLatticeGraph(20, 5, FALSE) 

 
Paul Erdös 

 
The Hungarian Paul Erdös was one of the 
world’s greatest mathematicians. He died in 
1996 at age 83, and never had a wife, child, or 
property. Although he lived like an itinerate 
hobo with little to accompany him but a small 
suitcase, while traversing the world he authored 
more than 1,500 mathematical research papers, 
a few of which (co-authored with fellow 
mathematician Alfréd Rényi) were about the 
random network model. 
 
Until recently, real-world networks of complex 
topology have been modeled using the random 
graph theory of Erdös and Rényi. But these 
models were rarely empirically tested. As you 
shall see, they are not the best models of reality. 
 
A whimsical measure of relative stature among 
mathematicians is the ‘Erdös number’. It is the 
geodesic between a mathematician and Paul  
Erdös in the network of all mathematicians, 
where an edge represents collaboration on a 
mathematical paper. 
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C. NETWORK MODELS CONTINUED 

3. Watts-Strogatz model 
In the Watts-Strogatz model, all of the vertices start out in a 
lattice network, connected like a string of pearls. Then, with 
probability p, an edge between vertex A and vertex B is replaced 
by an edge between vertex A and a randomly selected second 
vertex. 
 
In the Watts-Strogatz graph above with 1000 vertices, each vertex 
in the starting lattice network has 2x5 neighbors, and the edge 
replacement probability is 0.01. Below is a starting lattice with 20 
vertices, a 2x1 neighborhood, and a replacement probability of 
0.10.14 Watts and Strogatz used such a graph to solve the small 
world problem (see sidebar). 
 
 
 
 
 

4. Barabási-Albert model 
The Barabási-Albert model starts with one vertex, and then at 
each subsequent step adds an additional vertex with m edges 
connected to previous vertices with a probability proportional to 
the degree of the vertices; thus, vertices with a higher degree are 
relatively more likely to become connected to additional vertices 
– the rich get richer. 
 
For the Barabási-Albert graph above with 1000 vertices, the 
process took 999 steps, with five new edges being added at each 
step. Below are more simple Barabási-Albert graphs, with 100 
vertices; the first adds one new edge at each step, the second adds 
two edges, and the third adds five edges.15 The second graph has 
the same number of vertices and edges as the random graph on the 
previous page. Now do they look different? 
 

                                                      
13 See M.E.J. Newman, et al. (2006), pages 301-303. 
14 Created with CreateWattsStrogatzGraph(20, 1, 0.10) 
15 Created with CreateBarabasiAlbertGraph(100, x) with x = 1, 2, and 5. 

 
How Watts and Strogatz cracked 

the small world problem 
 
As noted in the introduction of this chapter, it 
took about 30 years to solve the riddle of how 
two vertices in many real-world social 
networks (that are characterized by high local 
transitivity) can be separated by only about six 
degrees (six edges). 
 
In their 1998 paper13, Duncan Watts and 
Steve Strogatz showed that real-world 
networks have high transitivity (their agents 
form cliques) and a low mean geodesic (low 
degrees of separation), two characteristics that 
cannot be modeled with either random graphs 
or lattice graphs (the two network models 
known at the time). They proposed a third 
model for the small world phenomena, and 
named it the small world model (we are 
calling it the Watts-Strogatz model). 
 
With an edge replacement probability of only 
0.01, this model has both high transitivity and 
a low mean geodesic. Thus, for a network to 
exhibit the small world property, they showed 
that it takes relatively few agents with 
connections outside of a clique (only about 
one in a hundred). As you will soon see, this 
small probability has great practical 
implications. 
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C. NETWORK MODELS CONTINUED 
Beyond the visual, how do these models compare? The following 
table statistically compares the examples with 1000 vertices 
shown above:16 
 

  
 

Random 
graph 

 
 

Lattice 
graph 

 
Watts-

Strogatz 
graph 

 
Barabasi- 

Albert 
graph 

 
Number of vertices 

 
1000 

 
1000 

 
1000 

 
1000 

Number of edges 4963 5000 5000 4995 
Diameter 5 100 13 5 
Mean degree 9.9 10 10 9.9 
Maximum degree 21 10 12 185 
Minimum degree 2 10 8 5 
Mean geodesic 3.3 50.5 6.9 3.0 
Density 0.01 0.01 0.01 0.01 
Transitivity 0.01 0.67 0.63 0.03 
Correlation coefficient -0.009 NA -0.012 -0.012 
Number of clusters 1 1 1 1 
     

 
In many respects the graphs are quite similar. But, a few of their 
measures indicate dramatic differences among them:  They have 
markedly different diameters, maximum degrees, mean 
geodesics, and transitivity. 
 
As the table shows, the mean geodesic of the lattice graph is much 
greater than any of the other three. It represents a ‘large world’ 
network, a type that is not commonly found in the natural or 
human social world. As a consequence, the diameter of the lattice 
graph is also greater. 
 
Because the random graph has low transitivity, and thus does not 
correspond to the clique-ishness of the real world, it too does not 
qualify as a small world. 
 
The Watts-Strogatz and Barabási-Albert graphs, by contrast, have 
low mean geodesics and higher transitivities than the random 
graph. Thus, they are both potential models of small worlds. 
 
 

                                                      
16  Developed using the function AnalyzeGraph(). 
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C. NETWORK MODELS CONTINUED 

The maximum degrees of the graphs are also quite different. 
Whereas the maximum degree of random, lattice, and Watts-
Strogatz graphs are relatively small, the Barabási-Albert graph has 
a maximum degree of 185. This means that at least one vertex has 
a connection with 185 other vertices. A vertex with such a 
relatively large degree is called a ‘hub’, another characteristic of 
many real world networks. But it was yet another key feature of 
many real-world networks – the ‘power law’ – that prompted 
Barabási and Albert to develop their model. 
 
In their famous 1999 paper19, they first showed that the degree 
distributions of many large real-world networks follow a power 
law (see sidebar). They then proposed a new model they called 
the ‘preferential attachment model’ (which we are calling the 
Barabási-Albert model) to represent such networks. The key 
factors of this model are (a) that it grows over time and (b) new 
edges are attached to vertices with a probability that is 
proportional to their number of degrees. Incorporating these two 
factors in a model results in a degree distribution that follows a 
power law. 
 
Following are the degree distributions of the four model types: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
17 See Clauset, Shalizi, & Newman (2007), pp 22-30 for an analysis of power laws in real data. This paper also presents a 

rigorous method to determine if a data set follows a power law. 
18 See Adamic (2002). 
19 See Barabasi & Albert (1999). This paper is found in M.E.J. Newman, et al. (2006), pages 349-352. 

 
The power law and Pareto 

 
The degree distribution of many natural 
and human-made networks – including 
the World Wide Web (the global 
collection of web pages), the Internet 
(the interconnected underlying 
hardware), yeast protein interactions, 
and metabolic networks – follows a 
power law.17 
 
The power law distribution formula is: 
 
p(X = x) ~ x-k 

where k is a constant. 
 
Or, the probability that a random 
variable takes the value ‘x’ is 
proportional to one over x to the kth 
power. For phenomena following the 
power law, small occurrences are 
common, whereas large occurrences are 
rare. 
 
The power law is mathematically 
equivalent to the Pareto distribution and 
to ‘Zipf’s law’. Depending on the 
situation, one of these alternate forms 
may be more useful for analysis than the 
power law.18 For this report, we will 
typically use the Pareto distribution, 
rather than the power law distribution. 
 
The Pareto distribution formula is: 
 
p(X ≥ x) = (x/xmin)-k+1 

where xmin ( ≠ 0) is the minimum value 
of x. 
 
This implies a linear relationship that is 
useful for identifying power law 
distributions: 
 
ln(y) = (-k+1)*ln(x) - (-k+1)*ln(xmin) 
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C. NETWORK MODELS CONTINUED 

Clearly, the distributions are quite different. The degree 
distribution for the random graph looks like a Poisson 
distribution, which is not surprising, since the probability of a 
vertex having degree d is: 

 ( ) ( )
! (1 )

! !
d n dnP X d p p

d n d
−= = −

−
 

 
This produces a binomial distribution, which, as n approaches 
infinity, becomes a Poisson distribution. 
 
The lattice and Watts-Strogatz distributions are also 
straightforward: they are centered on degree 10, with a slight 
deviation in the Watts-Strogatz model due to its rewiring. 
 
The Barabási-Albert model distribution is more unusual. It has 
many vertices with a low degree, but also has a long tail including 
a few vertices with very high degree. It is an example of a 
‘skewed distribution’, a non-symmetrical distribution with a 
long and often ‘fat’ tail. 
 
Its many hubs are the ‘connectors’ mentioned in Malcolm 
Gladwell’s book The tipping point20, and imbue these networks 
with special properties that we’ll study in this chapter. In the real 
social world, connectors are people who have connections with 
many other people. 
 
 

                                                      
20 Gladwell (2002) 
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C. NETWORK MODELS CONTINUED 
The following chart shows that the degree distribution of our 
Barabási-Albert graph with 1000 vertices is nearly linear when 
plotted on log-log axes.21 In the chart, the solid red (thick) line is 
an exact Pareto (power law) distribution, and the dotted red lines 
are the Pareto distribution ± 0.01. The solid blue (thin) line is the 
least squares regression line for the data points. Because the data 
points are close to the Pareto distribution, the degree distribution 
may follow a power law. (However, to conclusively prove this, 
much more work needs to be done.22) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For comparison, following is a Pareto comparison chart for our 
random graph with 1000 vertices. Clearly, its degree distribution 
does not follow a power law (and neither do the degree 
distributions for the lattice and Watts-Strogatz graphs). 
 
 
 
 
 
 
 
 
 
 
 

                                                       
21 Plotted with PlotParetoComparison(gPAGraph, TRUE, 0, “Console”, “”, 5, 4). 
22 For a rigorous method to determine if a degree distribution follows a power law, see Clauset, et al. (2007). 

1 2 5 10 20 50 100 200

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Degree (log scale)

F
re

qu
en

cy
 (

lo
g 

sc
al

e)

1 2 5 10 20

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Degree (log scale)

F
re

qu
en

cy
 (

lo
g 

sc
al

e)



Complexity science – an introduction (and invitation) for actuaries 

Chapter four:  Networks continued 

FOUR:  NETWORKS     65 

D. REAL-WORLD NETWORKS 

Now that we have studied the basics of networks, as well as four 
key network models, let’s look at networks in the real world. The 
table below lists some of the human-made and natural networks 
that have been studied, together with their key features.23 
 

  
Mean geodesic 

 
Transitivity 

   

 
 

 
Network 

Random 
graph 

 
Network 

Random 
graph 

 
Random 

Small 
world 

Power 
law 

Human-made networks        
student romances 16.01 10.23 0.005 0.004    
company directors 4.60 3.64 0.59 0.002    
electric power grid 18.99 8.50 0.10 0.0006    
mathematics co-authorship 3.92 NA 0.15 0.00002    
email address books 5.22 5.33 0.17 0.001    
thesaurus word classes 4.87 3.28 0.13 0.009    
World Wide Web 11.27 NA 0.11 0.0002    
Internet 3.31 5.40 0.035 0.0007    
electronic circuits 11.05 NA 0.01 NA    
        
Natural networks        
marine food web 2.05 2.46 0.16 0.06    
freshwater food web 1.90 1.76 0.20 0.240    
neural network 3.97 2.38 0.18 0.05    
metabolic network 2.56 3.17 0.09 0.012    
yeast protein interactions 6.80 9.29 0.07 0.0006    
        

 
The first and third columns of the table give the mean geodesic 
and transitivity for each of the networks, while for comparison the 
second and fourth columns give the mean geodesic and transitivity 
(where available) for random networks with the same number of 
vertices and edges as the real-world networks. For example, the 
mean geodesic for the network of company directors is 4.60 and 
the transitivity is 0.59, compared to 3.64 and 0.002 for a 
comparable random network. Thus, by definition, the network of 
company directors is a small world, as shown in the table. 
 
As the table shows, the networks listed have three major types of 
structure:  random, small world, and small world plus power-law 
distributed. 
 
                                                      
23 See M.E.J. Newman (2003) pp 4-10 for a discussion of these networks, with citations. The mean geodesics and 

transitivities for random graphs were calculated using the functions CreateRandomGraph() and AnalyzeGraph(). 
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D. REAL-WORLD NETWORKS CONTINUED 

Now let’s explore two real-world networks in detail. 

1. Airline routes 

During one of your flights, while reading an in-flight magazine 
you have probably seen a map showing the airline carrier’s routes 
from airport to airport. Below is a graph of all worldwide 
passenger flight routes, in the Fruchterman-Reingold layout.24  It 
has 2,852 nodes (airports) and 14,996 edges (routes between 
airports).25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using its plot (above), and its key measures, density distributions, 
and Pareto comparison chart (below), what can you conclude 
about the real-world airline network? 

 
 

                                                       
24 Created with CreateAirlineGraph() and PlotGraph(). 
25 Determined with AnalyzeGraph(). 

 
Number of vertices 2,852 

Number of edges 14,996 

Diameter 16 

Mean degree 10.5 

Maximum degree 232 

Minimum degree 1 

Mean geodesic 3.95 
(random = 3.64) 

Density 0.004 

Transitivity 0.25 
(random = .004) 

Correlation coefficient -0.015 

Number of clusters 4 
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D. REAL-WORLD NETWORKS CONTINUED 

In 2000, there was a worldwide airline crisis. Around the world, 
because of demand exceeding capacity, airports were cancelling 
and delaying flights at an unprecedented rate (see the sidebar). 
 
What led to such a worldwide crisis? And what could be done to 
alleviate it? To both questions, the network model type of 
Complexity Science provides an answer. 
 
A clue to answer the first question is found in the Pareto 
comparison chart on the previous page. It – as well as the 
histogram and the density distribution chart – indicates that the 
degree distribution of airports nearly follows a power law, but 
falls away from a perfect power law at the higher-degree vertices. 
This suggests that airports grew into their current structure by 
preferential attachment, which indeed they did:  for competitive 
advantage, airlines sought to link up with major airline hubs such 
as Atlanta, Chicago, and Los Angeles. The rich got richer. But, 
because available land for airport expansion is limited, there is a 
physical limit to an airport’s size. For example, O’Hare and LAX 
cannot easily expand to meet growing demand. This limitation 
leads to the falling away from a perfect power law distribution at 
the higher degree vertices. Thus, the answer to the first question 
(what led to the worldwide crisis) is:  the airline network evolved 
a preferential attachment structure in which high-degree hubs, 
because of the physical limitation of available land, could not 
continue growing to meet demand. Thus, the airline network’s 
structure makes it susceptible to failure because of physical 
limitations. (The structure also makes it susceptible to terrorist 
attack, which we’ll discuss below.) 
 
And the answer to the second question? The point of an airline 
network is to enable a traveler to get from point A to point B in 
the shortest amount of time for the least cost. Translated to 
network terminology, such a network needs to be a small world. 
But, as you have seen, both the Watts-Strogatz model and the 
Barabasi-Albert models are small worlds. So, the answer to the 
second question is:  transform the airline network to a network 
more like the Watts-Strogatz small world; encourage the modest 
expansion of smaller local airports with the inclusion of some 
long-distance flights for each. This is currently happening:  smaller 
airports are starting to compete with the large hubs. 

                                                      
26 Much of this story comes from Buchanan (2002). 

 
The airline crisis of 2000 

 
In the spring of 2001, the U.S. Congress held 
a series of hearings to understand why the 
number of flight delays exceeding 45 minutes 
had doubled over the preceding five years, and 
why serious delays were affecting 10 percent 
of all flights. In the summer of 2000, O’Hare 
airport had cancelled some 4,600 flights and 
delayed an additional 57,000. 
 
George Donohue, a professor of systems 
engineering and operations research at George 
Mason University, reported to Congress, “The 
U.S. hub and spoke air transportation system 
is approaching a serious capacity crisis.” He 
pointed out that the network as a whole was 
then at 58 percent of capacity, and would 
soon be at 70 percent of capacity. The three 
largest airports, in Atlanta, Chicago, and Los 
Angeles, were at 80 percent of capacity. For 
all airports, serious delays start at about 50 
percent of capacity. 
 
The situation was the same around the world. 
Rod Eddington, chief executive of British 
Airways, said at the time, “Congestion in the 
skies and on the ground in Britain is becoming 
critical … Heathrow is groaning at the 
seams.”26 
 
Of course, September 11, 2001 changed the 
crisis from one of excess demand to one of 
inadequate demand. But, in time, the excess 
demand problem is sure to return. 
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D. REAL-WORLD NETWORKS CONTINUED 

Let’s stay with the world airline network example for a moment 
more, to explore a few concepts of Complexity Science: 
‘emergence’, ‘resilience’, ‘fragility’, and ‘robustness’. 
 
A key insight of Complexity Science is that complex systems 
‘emerge’; they are not engineered. Think of the difference 
between an airplane and the airline network. An airplane is a 
system, consisting of thousands of parts, that has been 
meticulously designed, constructed, and assembled for a specific 
purpose. Blueprints show exactly where each part goes, and 
manuals explain how the parts should be manipulated to achieve 
the airplane’s purpose. An airplane is an extremely complicated 
system, but not a complex one. 
 
By contrast, an airline network also consists of thousands of parts 
(airports) that serve a specific purpose, but its parts have grown 
up without a specific design. The network is a self-organized 
complex system that has emerged. Emergence is a key feature of 
complex systems that we will revisit many times in this report. 
 
The airline network is simultaneously robust and fragile. The 
chart to the right shows what happens to the mean geodesic of the 
airline network as vertices are removed one by one.27 The red 
horizontal line shows the result of removing vertices randomly, 
while the blue rising line shows the result of removing vertices in 
the order of their degree, starting with the highest-degree 
vertices. Do you see anything interesting about the chart? 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                       
27 Plotted with PlotNetworkResilience(). 
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D. REAL-WORLD NETWORKS CONTINUED 

As the chart demonstrates, because there is hardly any change in  
the mean geodesic as vertices are randomly removed, the airline 
network is resilient to random failure of its vertices (airports). It 
is robust to random failures. 
 
But ordered removal is another matter. As the largest vertices are 
removed, the mean geodesic increases dramatically. With only 3 
percent of its largest vertices removed, the mean geodesic more 
than triples, and effectively destroys the air travel network. This 
result brings a grave message: Because the airline network is not 
resilient to targeted airport removal, targeted terrorist attacks at 
key airports could incapacitate the network. It is fragile to 
targeted attack. 
 
Unfortunately, as the sidebar shows, changing the network from a 
Barabasi-Albert model to a Watts-Strogatz model, or even to a 
random model, won’t help with this problem:  all three models 
are fragile to targeted attack. 
 
 

 
Network resilience 

 
Following are resilience charts for the three 
model types (random, Watts-Strogatz, and 
Barabasi-Albert) with 1000 vertices we 
examined above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
They demonstrate a similar pattern: targeted 
removal of high-degree vertices rapidly 
increases the mean-geodesic, while random 
removal changes the mean geodesic more 
slowly. Thus, all three model types are 
simultaneously fragile and robust. They are 
not resilient to targeted attack. 
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D. REAL-WORLD NETWORKS CONTINUED 

2. Gene interactions 

Now let’s look at another real-world network, one from the 
natural world. A set of about 2,500 genes interact with one 
another to control all the metabolic interactions of our cell 
components. An overview of these genes and their interactions is 
shown in the charts and statistics on this page.28 Given this 
information, what can you conclude about the gene network? Is it 
a small world? If so, what kind? Is it fragile or robust, or both? Is it 
power law distributed? What might the structure of this network 
say about our cells’ resilience or susceptibility to disease? Is the 
network a complex system with emergent characteristics, or 
merely a complicated system? Why do you think our genes 
evolved in this way? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                                                       
28 Created with CreateGeneOntologyGraph() and PlotGraph(). 

 
Number of vertices 2,433 

Number of edges 4,642 

Diameter 13 

Mean degree 3.8 

Maximum degree 539 

Minimum degree 1 

Mean geodesic 4.7 
(random = 6.0) 

Density 0.002 

Transitivity 0.006 
(random = .001) 

Correlation coefficient - 0.125 

Number of clusters 1 
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E.  PRACTICAL APPLICATIONS 
In the preceding sections of this chapter, we focused primarily on 
understanding what networks are, their structures, their statistical 
characteristics, how they emerge, and the model types we can use 
to represent them. In the end, though, our goal is to understand 
how real-world networks behave. Ultimately, as actuaries, we 
want to better understand – and perhaps even predict – the 
behavior of social networks (such as insurance plan members, 
healthcare providers, and pension plan members), the behavior of 
organizational networks (such as insurance and reinsurance 
companies), and even the behavior of economic networks as a 
whole. 
 
In the previous section, in our exploration of the global airline 
network, we saw how network theory can help us better 
understand the behavior and resilience of an important real-world 
system. Here we will look at further practical applications of 
networks that are of interest to actuaries. Keeping in mind that 
the study of complex system networks is barely ten years old, the 
results to date are impressive. The primary practical 
breakthroughs of interest to actuaries relate to the propagation of 
disease and information over networks, and to the assessment of 
network resilience.  

1. Disease and information propagation 
In 2000, Kuperman and Abramson used computerized network 
models to explore disease propagation, and made important 
discoveries.29 First, they found that on a lattice-like social 
network, a disease never gets very far. For large populations, the 
fraction of people infected only reaches about one percent. 
However, on social networks like the Watts-Strogatz model, the 
fraction infected depends on the number of rewired vertices 
(those with long-distance relationships). When the percentage of 
such rewired vertices is ten to twenty percent, there is a sudden 
and dramatic transformation, a tipping point. At this point the 
disease can spread to as much as 30 percent of the population. 
These results were encouraging news for public health officials:  
they suggested that by keeping a disease below its tipping point 
(such as by mass immunization), a disease can be contained. 
 

                                                      
29 See “Small world effect in an epidemiological model” in M.E.J. Newman, et al. (2006), pages 489-492. 
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E.  PRACTICAL APPLICATIONS CONTINUED 

Unfortunately, worse news came in 2001. The physicists Pastor-
Satorras and Vespignani found that in a social network that follows 
a Barabasi-Albert model, with hubs and connectors, there is no 
tipping point.30 Diseases on such a network will spread to a large 
percentage of the population, period. Such is the situation with 
AIDS. It turns out that the social sexual network of most societies 
is one of preferential attachment, with hubs and connectors having 
large numbers of edges (sexual contacts). On such a network, in 
the absence of a cure, AIDS cannot be stopped from spreading; it 
will never disappear. However, together with this sobering news 
comes a potential solution:  as with the airline network, the way 
to solve the problem is to change the type of network. Random 
‘vaccination’ (i.e., for AIDS, education and medical treatment) 
won’t work, but targeted ‘vaccination’ will. If we can identify and 
‘vaccinate’ the hubs in the sexual network, AIDS could eventually 
die out. 
 
Pastor-Satorras and Vespignani also studied computer viruses on 
the World Wide Web, and found the same result. Because the 
World Wide Web is a small world network with a power-law 
degree distribution, there is no epidemic threshold for computer 
viruses. No matter how short a time computers spend in an 
infected state, or how little they pass on the virus, the virus 
remains endemic. This result has been borne out by empirical 
research. 

                                                      
30 See “Epidemic spreading in scale-free networks” in M.E.J. Newman, et al. (2006), pages 493-496 
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E.  PRACTICAL APPLICATIONS CONTINUED 
2. Network resilience 
Speaking about the evolution of the world financial network, in a  
recent speech Andrew Haldane, Executive Director for Financial 
Stability of the Bank of England, said, “This evolution in the 
topology of the network meant that sharp discontinuities in the 
financial system were an accident waiting to happen. The present 
crisis is the materialisation of that accident.”31 (See the sidebar for 
details.) 
 
Just as we saw with the airline network, networks such as the 
worldwide financial network, the Internet, and the World Wide 
web – all with high-degree hubs – are resilient to random system 
distress, but fail rapidly when the hubs fail. 
 
Since the world financial system is integral to much of actuarial 
work, keeping track of the financial network’s topology may 
become an important concern for you. And what about the 
topology of the health insurance sector, the life insurance sector, 
the reinsurance sector? Do these have high-degree hubs? How 
fragile and susceptible to failure are they? 
 
Similarly, in the domain of enterprise risk management, mapping 
the topology of communication and management relationships 
within an organization (perhaps by mapping email traffic) could 
help you understand its resilience. But as well, what you’ve 
learned about networks can be applied to operational actuarial 
work. For example, a health insurance actuary might employ 
networks to explore the potential for catastrophic disease spread 
among members, the potential efficacy of targeted vaccinations 
and other disease management efforts, and the structure of 
physician referral networks. What other applications can you 
think of for your organization? 
 
Unfortunately, it appears that the specific application of networks 
to actuarial problems is currently unknown. In the literature 
search for this report, I used the search terms “network science” 
and “network theory” to find relevant resources on the major 
actuarial web sites. There was not a single relevant hit.32 

                                                      
31 See Haldane (2009), and especially see the charts used in his speech. 
32 See the section titled Finding the essential resources in this report. 

 
An unholy trinity 

 
In his speech, Andrew Haldane noted that over 
the past 20 years the world financial network 
has become: 
 more dense (more vertices) 
 more complex (more edges) 
 more asymmetrical (more skewed degree 

distribution) 
 a less separated “small world” (lower mean 

geodesic) 
 
He further says, “So based on evidence from a 
sampled international network, the past twenty 
years have resulted in a financial system with 
high and rising degrees of interconnection, a 
long-tailed degree distribution and small-world 
properties. That is an unholy trinity. From a 
stability perspective, it translates into a robust-
yet-fragile system, susceptible to a loss of 
confidence in the financial hubs and with rapid 
international transmission of disturbances.” 
 
He suggests three policy prescriptions: 
 Putting in place a system to map the global 

financial network and communicate to the 
public about its dynamics. 

 Increasing regulation to better manage 
fragilities within the financial network, 
especially high-degree hubs. 

 Restructuring the network to reduce the 
chances of financial collapse. 
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F.  EXERCISES 
1. Make sure you can reproduce each of the figures in this 
chapter, and verify each of the chapter’s numerical and formulaic 
results. For this exercise, review the chapter’s footnotes. 
 
2. Solve the following crossword puzzle. 
           1  2       

                    

        3            

               4     

   5    6             

 7              8     

9                    

                  10  

11                    

                    

         12           

      13              

              14      

     15               

                    

    16                

  17                 18 

              19      

                    

                    

                    

                    

ACROSS 
3 In a graph, the representation of a relationship 
6 Characteristic of graphs that follow a power law 

distribution 
8 A representation of a network 
9 In a graph, the representation of an agent 
11 Mixing by vertex degree (extra credit) 
12 A graph with low mean geodesic and transitivity higher 

than a comparable random graph 
15 When the friend of a friend is a friend 
17 An island of vertices 
19 Equivalent to power law 
 
 

DOWN 
1 What differentiates Barabasi-Albert graphs 
2 He mailed packages and discovered the small world 

effect 
4 The number of edges attached to a vertex 
5 A real-world system of agents connected by 

relationships 
7 Ratio of the number of edges to the possible number 
10 Shortest path length 
13 An edge with arrows 
14 A directed graph 
16 A high-degree vertex 
18 An edge for a vertex connected to itself 
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F.  EXERCISES CONTINUED 

3. What is the maximum number of edges in an undirected graph 
with N vertices? Such a graph is called a ‘complete N-graph’. 
 
4. In the Package ‘igraph’ reference manual, look up “grg.game” 
(geometric random graphs), and write an R function to generate a 
geometric random graph with 1000 nodes and a radius of 0.0575 
(with the remaining arguments left at their defaults). Save the 
graph to a cvs file. Then, using PlotGraph(), plot it interactively, 
experimenting with different layouts. What does its plot look like 
to you in the ‘FR’ layout? Next, analyze the graph using 
AnalyzeGraph(). How does your graph compare to the random 
graph example with 1000 vertices shown in the report? Can you 
explain the differences? 
 
5. The definition of a small world network involves two 
measures: one comparing a network’s transitivity to that of a 
random network, and one comparing a network’s mean geodesic 
to that of a random network. Can you develop one measure to 
determine whether a network is a small world? Using the table on 
page 10 of the paper “The structure and function of complex 
networks” by Newman33, test your new measure. You should also 
test various random networks, to make sure that your measure 
differentiates a small world from a random world. 
 
6. Think of a project within your firm for applying what you have 
learned in this chapter. Then, using your new tools and 
knowledge, carry out the project. If you like the results, please let 
me know what you did and what you discovered. 

G. TO LEARN MORE 
To learn more about networks, you may first enjoy watching the 
video “Connected: the power of six degrees”.34  Then, read Linked 
by Albert-Laszlo Barabasi, one of this report’s Top ten complexity 
science books.35 
 
After that, you may find it interesting to read M.E.J. Newman 
(2008), M.E.J. Newman (2003), M.E.J. Newman, et al. (2006) – 
another of this report’s Top ten Complexity Science books – and 
Barrat, Barthelemy, & Vespignani (2008), perhaps in that order. 

                                                      
33 M.E.J. Newman (2003) 
34 See Discovery Channel (2008), a five-part video on “www.youtube.com”. 
35 See the book’s annotation in the section of this report titled Top ten Complexity Science books. 
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H.  REVIEW AND A LOOK AHEAD 
This chapter introduced the first of four archetypal Complexity 
Science model types:  networks. You learned what networks are 
and how they are represented by graphs. You also learned their 
basic terminology, four basic graph types (random, lattice, Watts-
Strogatz, and Barabasi-Albert), network statistical measures such 
as the mean geodesic, transitivity, and correlation coefficient, 
different types of degree distribution, how the network topology 
of real-world networks affects our lives, and why real-world 
networks are often complex systems. You also learned how to use 
‘R’ and ‘igraph’ to develop and analyze graphs. 
 
I hope you enjoyed the introduction, and are sufficiently intrigued 
to consider applying what you have learned about networks in 
your work. 
 
Next we will look at the archetypal Complexity Science model 
type that, upon an underlying network structure, adds agent 
behavior. 
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CHAPTER FIVE:  CELLULAR AUTOMATA 
I did what is in a sense one of the most elementary imaginable computer experiments:  I took a sequence of simple 
programs and then systematically ran them to see how they behaved. And what I found – to my great surprise – was 
that despite the simplicity of their rules, the behavior of the programs was often far from simple. Indeed, even some of 
the very simplest programs that I looked at had behavior that was as complex as anything I had ever seen. 

Stephen Wolfram1 
A. INTRODUCTION 
Stephen Wolfram is a genius. He published his first physics paper 
at age 15, and two years later published another that caught the 
attention of Nobel prize winning physicist Murray Gell-Mann, 
who invited Wolfram to join his group at Caltech. Wolfram 
obtained a PhD in theoretical physics from Caltech at age 20 (the 
youngest person ever to receive such a degree), joined its faculty, 
and soon received one of the first MacArthur Foundation ‘genius’ 
grants. A couple of years later, he joined the prestigious Princeton 
Institute for Advanced Study. 
 
About the time that Wolfram was finishing his PhD, he became 
interested in ‘cellular automata’ (see the sidebar). Since then, 
he has spent most of his professional life studying them. At first 
blush, cellular automata seems a queer subject for one of the 
world’s most brilliant physicists to bother about at all, much less 
for most of his life. (As you will see, the subject is not even 
remotely like the typical physics topics.) Yet, speaking about his 
work with one of the most simple cellular automata – what he 
calls the ‘rule 30’ cellular automaton – he says this was “probably 
the single most surprising scientific discovery I have ever made”.3 
Indeed, Wolfram now thinks that cellular automata hold the key 
to understanding our universe. His 2002 book A new kind of science 
– one this report’s Top ten Complexity Science books – is a 1200-page 
paean to cellular automata that details how they enlighten most 
areas of human inquiry, even philosophy. 
 
This chapter introduces cellular automata, our second model 
archetype, which includes agents, agent relationships, and agent 
behavior. You will learn how simple agent behavior can lead to 
complex system-wide results. You will also learn what cellular 
automata are, the basics of behavior rules, four common model 
types, and how they are applied. Along the way, perhaps you too 
will become entranced by them, or at least see how they can 
enlighten actuarial work.  
                                                      
1 Wolfram (2002), page 2. This book is one of this report’s Top ten Complexity Science books. 
2 Von Neumann, J. Theory of self-reproducing automata (edited and compiled by A. W. Burks). Urbana: University of 

Illinois Press, 1966. 
3 Wolfram (2002), page 27. 

 
Cellular automata 

 
In the 1950s, John von Neumann, another 
genius, began wondering if a self-operating 
robot-like machine (an ‘automaton’) could 
manufacture itself. At that time, the idea of 
robots – especially self-replicating robots –  
was entirely new. 
 
Von Neumann suspected that self-replicating 
robots were possible, but with the technology 
then available, he thought building one would 
be impractical. Mathematician Stanislaw Ulam 
suggested an alternative:  that Von Neumann 
experiment with such machines in an abstract 
universe, a two-dimensional grid of cells with 
various states representing machine parts. 
 
Von Neumann liked Ulam’s idea, and thus 
‘cellular automata’ were born. He created a 
cellular automaton that could not only 
reproduce itself (thus proving the possibility 
of self-replicating robots), but could also 
reproduce any pattern placed on a two-
dimensional cellular grid. He also showed that 
his self-reproducing automaton was a 
universal Turing machine.2 
 
But it was not until Stephen Wolfram began 
his studies, some thirty years later, that 
cellular automata became recognized as a 
vitally important subject. It is now an 
established scientific discipline with 
applications spanning nearly every field of 
science.  Referencing Wolfram’s early work 
are now more than 10,000 published papers. 
 



Complexity science – an introduction (and invitation) for actuaries 

Chapter five:  Cellular automata continued 

FIVE:  CELLULAR AUTOMATA     78 

t = 1 t = 2 t = 3 t = 4 t = 5 t = n…

B. BASICS 
Let’s first define a ‘cellular automaton’ (abbreviated ‘CA’; 
plural ‘cellular automata’). Consider a graph with: 
 vertices that can each assume two or more ‘states’ (think of 

various colors representing the states), with the state of each 
vertex depending on its previous states and on the states of 
other vertices in a local neighborhood, and 

 a ‘behavior rule’ governing how each vertex’s state is 
updated. 

 
A CA is such a graph, incorporating the allowable vertex states, 
and the behavior rules governing the CA’s evolution.4 
 
For example, following is the evolution of a CA over n time steps. 
For each of this CA’s vertices, there are two possible states, 
represented by colors blue and white. Its global behavioral rule is: 
 If a vertex was blue at the previous time step, it remains blue. 
 If at the previous time step, a next neighbor (a vertex within a 

radius of one edge) of a white vertex was blue, the vertex 
turns blue. 

 
 
 
 
 
 
For the CA above, if we represent the white state by 0 and the 
blue state by 1, the behavioral rule can be written: 
 

if  � vt-1  
i

i∈N

≥  1   then   vt
x =  1;   else vt

x  =  0 

 
where N is the set of all vertices within a radius of one edge from 
vertex x, and vt

i is the state of vertex i at time t. 
 
The example above is a ‘first-order CA’, because its behavior 
rule for time step t only depends on states at the previous time 
step t-1. The behavior rule of a ‘second-order CA’ depends on 
states at time steps t-1 and t-2. Also, the example’s behavior rule 
has a radius of 1. Behavior rules with higher radii are also possible, 
but generally the behavior rule radius is much less than the graph’s 
diameter.  

                                                      
4 Although CA are typically defined on regular lattice graphs (such as 1-, 2-, and higher-dimensional grids) here we 

are introducing a more general definition that encompasses newer model types. 
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B. BASICS CONTINUED 

In the example above, the behavior rule is deterministic; chance 
doesn’t play a role. However, the second part of the rule could 
have been changed to “If at the previous time step, a next 
neighbor of a white vertex was blue, the vertex turns blue with a 
probability of 0.50. Otherwise, it remains white”. Such a behavior 
rule is stochastic; it depends on chance. 
 
In the example above, the behavior rule is applied to each vertex 
at each time step. Such updating is called ‘synchronous 
updating’. If, however, at odd time steps only half of the 
vertices were updated, and at even time steps the other half were 
updated, such an updating scheme would be an example of 
‘asynchronous updating’. 
 
As you learned in Chapter two, behavior rule algorithms can 
range from simple if-then statements to complicated optimization 
algorithms. 
 
The following table summarizes the characteristics of the four CA 
model types that we will explore in this chapter. 

 
A CA ‘boundary’ is applicable only to CA on a lattice graph. It 
refers to how cells at the edge of the lattice are related to other 
cells. Later examples will make this concept clear. 
 
That’s it. Those are the CA basics. That is, in essence, what 
Wolfram has spent his life studying. However, if you think that so 
few basics can hardly lead to anything interesting, prepare yourself 
for quite a surprise.  

                                                      
5 ‘1D’ is an abbreviation for ‘one-dimensional’. 

  
Graph 

 
Behavior rule 

   vertex     
Model type type boundary states type radius order updating 

        
1. Simple 1D5 1D lattice periodic 2 deterministic 1 1 synchronous 
2. Simple 2D 2D lattice periodic 2 deterministic 1 1 synchronous 
3. Sandpile 2D lattice cliff 5 stochastic 1 1 synchronous 
4. Forest fire 2D lattice periodic 4 stochastic 1 1 synchronous 
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1 2 3 4 5 6 7 8 9 10 11
Agents

Time
step 1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6

Agents

C. CA MODELS 
There are four common CA model types: ‘Simple one-
dimensional CA’, ‘Simple two-dimensional CA’, the ‘Sandpile 
model’, and the ‘Forest fire model’. This section describes each of 
these model types. 

1. Simple 1D-CA 
The simplest CA model type, called a ‘simple one-
dimensional CA’ (1D-CA), is a graph whose vertices all have 
exactly two nearest neighbors (ie, neighbors within a ‘radius’ of 
1). As you saw in the last chapter about networks, such a graph 
can be drawn in many layouts. 
 
 
 
 
 
But the layout most commonly used for 1D-CA is a linear grid 
where each cell is a vertex (in the CA field more commonly called 
a ‘cell’ or an ‘agent’ – we will call it an agent), and where the first 
and last cells are understood to connect (a so-called ‘periodic 
boundary’). 
 
 
 
 
To show the evolution of a simple 1D-CA over time, a two-
dimensional grid is used, where a column of the grid represents 
the series of states for an agent, and a row represents the graph’s 
‘configuration’ at a particular time step. The grid arrangement 
makes it easy to visualize the pattern of the graph’s configurations 
as it evolves. 
 
 
 
 
 
 
 
 
Thus, the grid above shows the evolution of 11 agents over 6 time 
steps, where each agent can have two states (represented by the 
white and dark colors).  
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 

The first class of simple 1D-CA that we will study has the 
following characteristics: 
 the graph is a one-dimensional lattice with a periodic 

boundary, including vertices (agents) with two states 
 behavior rules are deterministic, first order, with a radius of 

1, and with synchronous updating. 
 
For these CA, the behavior rule to determine the state of an agent 
at time t is based on the state of three agents at time t-1: the agent 
itself and its two neighbors. There are eight, 23, possible 
arrangements of these three agents: 
 
 
 
(Note that these states from left to right are the negative images of 
the states from right to left.) 
 
A clear way to show the behavior rule is to show the state of an 
agent underneath the eight possible states of its neighbors at the 
previous time step: 
 
 
 
 
Thus, the behavior rule above provides that an agent changes its 
state for four of the previous state configurations; otherwise, the 
agent doesn’t change its state. This is the behavior rule for the 
example CA with 6 time steps shown on the previous page. Can 
you verify that the behavior rule produces the example CA? 
 
A second way to represent this behavior rule is a ‘transition 
table’, where ‘1’ represents the dark color, ‘0’ represents white, 
and at

i   represents the state of agent i at time t:  
 

at-1
i-1  at-1

i  at-1
i+1 at

i  
    
1 1 1 1 
1 1 0 1 
1 0 1 1 
1 0 0 1 
0 1 1 1 
0 1 0 0 
0 0 1 1 
0 0 0 0 

  

𝒂𝒂𝒕𝒕−𝟏𝟏
𝒊𝒊−𝟏𝟏 𝒂𝒂𝒕𝒕−𝟏𝟏

𝒊𝒊  𝒂𝒂𝒕𝒕−𝟏𝟏
𝒊𝒊+𝟏𝟏 

 𝒂𝒂𝒕𝒕
𝒊𝒊   
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
And a third way to represent the behavior rule is a ‘rulestring’, 
a string of 1’s and 0’s corresponding to the last column of the 
transition table. The rulestring for the behavior rule given above is 
thus ‘11111010’ (the last column of the transition table, from top 
to bottom), which in base 2 arithmetic equals the decimal number 
250: 
 
250 = 1*27+1*26 +1*25+1*24+1*23+0*22+1*21+0*20 
 
We can therefore refer to the behavior rule for our example CA 
as the ‘rule of 250’. Even more simply, the CA as a whole can be 
referred to as the ‘1D-CA-250’. 
 
Below are 50 time steps of 1D-CA-250 with 100 agents, and with 
only the central agent (agent number 51) initially in the ‘on’ state 
(ie, with a state of 1). To make the CA’s pattern easier to see, 
grid lines around the lattice cells are turned off.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
6 Created with the Excel one-dimensional CA model, with the following parameters:  behavior rule: 250; number of 

agents: 100; number of time steps: 50; agents initially ‘on’: one agent – center. 
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Let’s continue to explore the 1D-CA-250. Following are two 
charts analyzing its behavior:7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The top chart shows the number of agents in the ‘on’ and the ‘off’ 
states at each time step (there are 50 time steps), together with 
the difference in these numbers. The second chart shows the total 
numbers of ‘on’ and ‘off’ states, and their difference, for each 
agent over the 50 time steps (there are 100 agents). Can you 
verify these results? 
 
 
  

                                                      
7 These charts are found on the Analysis sheet of the Excel workbook used to create the CA. 
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Below are two additional analysis charts. They test whether the 
results for agent number 101 are random.8 Expressed in binary 
form, agent 101 has the following states over the 50 time steps of 
1D-CA-250 shown above: 
“10101010101010101010101010101010101010101010101010” 
 
The first chart shows the number of binary search strings of 
lengths 1, 2, 3, and 5 that are found in the agent’s results, and 
shows the 80 percent/120 percent confidence interval of the 
expected number of such search strings if the agent’s results were 
random. Clearly, because the agent’s results fall far outside the 
confidence interval, its results are far from random. 
 
The second chart shows the relationship between the agent’s chi 
square (sum of variances from expected values for each search 
string of a particular length) and the 80 percent confidence 
interval for random chi square (because of the chart’s scale, the 
confidence interval looks very narrow). Again, it is clear that the 
agent’s results are not random. 
 
 
 
 
 
 
 
 
 
 
 
 
 
1D-CA-250 turns out to be rather uninteresting. It produces a 
pattern that is simple and regular, decidedly non-random. Do you 
think similar CA produce such simple and relatively uninteresting 
patterns? 
  

                                                      
8  These charts are also found on the Analysis sheet of the Excel workbook used to create the CA. For more information 

about tests for randomness, see Wolfram (2002), pages 1084-1085. 
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Following is 1D-CA–90, for 560 agents and 256 time steps.10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Even though its behavior rule is again quite simple, this CA is 
more interesting. Perhaps most striking is its nested ‘fractal’ 
pattern, made up of triangular areas each of which is a smaller 
copy of the whole pattern. (It is one case of the so-called 
Sierpinski triangle.) But, as the charts show, even though the 
number of ‘on’ states at each step is rather volatile, its pattern is 
again highly regular, not at all random.  

                                                      
9 Clarke (2008). You may also enjoy the beautiful book Mandelbrot (1983). 
10 Created with the Excel one-dimensional CA model, with the following parameters:  behavior rule: 90; number of agents: 

560; number of time steps: 256; agents initially ‘on’: one agent – center; individual agent to analyze: 281. 

 
Fractals everywhere 

 
In the 1970s Benoit Mandelbrot, French-
American mathematician, pondered the 
clouds, snowflakes, mountain ranges, trees, 
coastlines and similar forms that make up our 
everyday experience, and wondered if there is 
a way to describe them mathematically. 
Clearly, they are not made of regular circles, 
triangles, or squares. But what are they? 
 
To his great surprise he found that most 
complex forms of nature could be described 
by very simple recursive mathematical 
formulas that he called fractals (because they 
produce shapes that are ‘fractured’, like in the 
real world). An example is the formula for the 
famous Mandelbrot set:  Z = z2 + c 
 

 
 
He also made another important discovery:  
that such fractal forms, like many forms in 
nature, are ‘self-similar’, that they look 
generally the same at different scales of 
magnification, but that they exhibit new detail 
at all scales. No matter how closely you 
magnify a fractal, you see details that you did 
not see before. And, importantly, such details 
are not predictable. Thus, in the completely 
deterministic world of fractals, prediction is 
not possible. 
 
For a fascinating overview of fractals, see the 
video narrated by Arthur C. Clarke, with 
Benoit Mandelbrot, Stephen Hawking and 
others: Fractals – the colors of infinity.9 
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“And what I found – to my great surprise – was that despite 
the simplicity of their rules, the behavior of the programs was 
often far from simple. … It took me more than a decade to 
come to terms with this result, and to realize just how 
fundamental and far-reaching its consequences are. … it
yields a resolution to what has long been considered the single
greatest mystery of the natural world: what secret it is that 
allows nature seemingly so effortlessly to produce so much
that appears to us so complex.”

Stephen Wolfram
A new kind of science

page 2

C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Now let’s look at 1D-CA–30 for 400 agents and 200 time steps.11  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is the CA that, when he first saw it, was “the single most 
surprising scientific discovery” that Wolfram had ever made. 
Given the regular patterns of the preceding CAs, and our intuitive 
expectations about the effects of simple rules, this CA is indeed 
startling. Its pattern is anything but regular. In fact, it is perfectly 
random, so much so that Wolfram patented its use as part of a 
pseudo-random number generator.   

                                                      
11 Created with the Excel one-dimensional CA model, with the following parameters:  behavior rule: 30; number of agents: 

400; number of time steps: 200; agents initially ‘on’: one agent – center; individual agent to analyze: 201. 
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Perhaps the most interesting one-dimensional CA is 1D-CA-110, 
shown below.14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In 1998, Matthew Cook, a research scientist working with 
Wolfram, presented a proof that this CA is a ‘universal 
computer’. That is, it can reproduce any computation your 
computer can do, and more. It is perhaps the simplest universal 
computer. This characteristic of rule 110 is the basis for 
Wolfram’s Principle of Computational Equivalence, perhaps the 
greatest achievement of A new kind of science (see sidebar).  

                                                      
12 Wolfram (2002), page 715. 
13 Wolfram (2002), page 719. 
14 Created with the Excel one-dimensional CA model, with the following parameters:  behavior rule: 110; number of 

agents: 250; number of time steps: 250; agents initially ‘on’: one agent – right; individual agent to analyze: 240 for time 
steps 10-250. 

 
A new law of nature 

 
Wolfram says that the Principle of 
Computational Equivalence is a new law of 
nature: “Among principles in science the 
Principle of Computational Equivalence is 
almost unprecedentedly broad – for it applies 
to essentially any process of any kind, either 
natural or artificial. And its implications are 
both broad and deep, addressing a host of 
longstanding issues not only in science, but 
also in mathematics, philosophy and 
elsewhere.”12 
 
The Principle states that: 
1. Everything is a computation. Nature 
is a computer following simple rules, and the 
outcomes we see – complex as they may seem 
– are merely the result of nature’s 
computational process. 
2. Nature’s computations are 
equivalent. Almost all processes that are not 
obviously simple are computations of 
equivalent sophistication. 
3. Universal computers are 
equivalent to nature. Universal 
computers, such as rule 110, are equivalent to 
the most complex computations in nature.  
 
“And what this suggests is that a fundamental 
unity exists across a vast range of processes in 
nature and elsewhere:  despite all their 
detailed differences every process can be 
viewed as corresponding to a computation 
that is ultimately equivalent in its 
sophistication.”13 
 
Although this new law is abstract in the 
extreme, it – if true (there is no consensus yet 
about the law’s truth, or even its meaning) – 
has serious practical consequences for 
actuaries (turn the page to find out). 
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Let’s take another look at 1D-CA-110, this time with the initial 
‘on’ agents at the first time step being uniformly randomly 
distributed, rather than simply starting with one ‘on’ agent.15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the CA’s evolution looks much more random and 
unpredictable. Indeed, if you were given the state history of any 
one agent and did not know the underlying behavior rule, you 
could not predict its future (ie, you could not find an algorithmic 
shortcut to the process of rule 110 itself). Under the Principle of 
Computational Equivalence (if true) this implies that our attempts 
to predict complex social phenomena may be futile. The only way 
to find out the future is to watch the process unfold.  

                                                      
15 Created with the Excel one-dimensional CA model, with the following parameters:  behavior rule: 110; number of 

agents: 250; number of time steps: 250; agents initially ‘on’: many agents – randomly distributed; individual agent to 
analyze: 240 for time steps 10-250. 
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C. CA MODELS CONTINUED 
1. Simple 1D-CA continued 
Wofram suggests that the behavior of all CA (not just simple one-
dimensional CA) can be classified into four classes in increasing 
order of complexity: 
 
Class 1:  The behavior of these CA is very simple, with almost all 
initial conditions evolving to a uniform final state. 
Class 2:  The behavior of these CA leads to simple structures 
that, although not uniform, are highly regular, either remaining 
the same forever, or repeating every few steps. 
Class 3:  These CA have more complicated behavior. They lead 
to configurations that are largely random, but with some islands of 
regularity (such as triangles). 
Class 4:  These CA combine order and randomness:  their 
behavior produces some structures that are simple but that move 
around and interact with one another. They are poised between 
perfect organization (Class 2) and perfect randomness (Class 3), 
an important region sometimes called ‘the edge of chaos’ or 
‘critical’, where many complex systems reside, and where 
universal computation, power laws, and catastrophic surprises are 
found. 
 
Below are one-dimensional CA in each of these classes, with 
randomly distributed initial ‘on’ agents:16 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  

                                                      
16 Created with the Excel one-dimensional CA model, with the following parameters:  500 agents, 250 steps, “many agents-

randomly distributed”, random number seed = 2, and rules 250, 108, 90, and 110. 
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C. CA MODELS CONTINUED 
2. Simple 2D-CA 
A ‘simple two-dimensional CA’ (2D-CA) is a graph whose 
vertices all have either exactly four (von Neumann neighborhood) 
or exactly eight (Moore neighborhood) nearest neighbors. Such a 
graph can be drawn in many layouts. For example, a von 
Neumann 2D-CA with 9 vertices might be drawn as: 
 
 
 
 
 
 
 
But the layout commonly used for 2D-CA is a two-dimensional 
grid where each cell is a vertex (or, an ‘agent’), and where 
opposite edges (east/west and north/south) are understood to 
connect to form a torus (a so-called ‘periodic boundary’). 
 
 
 
 
 
 
 
 
The grid for a 2D-CA shows the CA’s configuration at one point 
in time. To show the evolution of a 2D-CA over time would 
require a three-dimensional figure. 
 
The first class of 2D-CA that we will study has the following 
characteristics: 
 agents have a von Neumann neighborhood and two states 
 behavior rules are deterministic, of first order, with a radius 

of 1, and with synchronous updating 
 
For these 2D-CA, the behavior rule to determine the state of an 
agent at time t is based on the state of five agents at time t-1: the 
agent itself and its four neighbors. There are 32, 25, possible 
arrangements of these five agents at time t-1. These are 
commonly reduced to 10 combinations, as in the following 
transition table. 
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C. CA MODELS CONTINUED 
2. Simple 2D-CA continued 

 
 
 
 
 

at-1
i  

 
Number of 
‘on’ agents 

in the 
neighborhood 

 
 
 
 

at
i  

   
1 4 0 
0 4 1 
1 3 1 
0 3 1 
1 2 0 
0 2 0 
1 1 1 
0 1 1 
1 0 1 
0 0 0 

 
The rulestring for the CA shown in the transition table is 462: 
462 = 0*29 +1*28+1*27+1*26+0*25+0*24+1*23+1*22+1*21+0*20 
 
Therefore, we can refer to this CA as 2D CA-462. Below on the 
left is the 44th time step of 2D-CA-462 with 88x88 agents, and 
with only the central agent initially in the ‘on’ state. (To make the 
CA’s pattern easier to see, the grid’s lines around cells are turned 
off.)17 To the right is the time series of a cross section through the 
CA’s middle row, together with analytic charts of the cross-
section and of the center agent of the cross section. Does the cross 
section appear to be random? 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
17 Created with the Excel 2D CA model, with the following parameters:  behavior rule: 462; number of rows: 88; number 

of columns: 88; number of time steps: 44; agents initially ‘on’: one agent – centered; row to analyze: 44; column to 
analyze: 44. This is almost the same as the 2D-CA-462 on page 174 of Wolfram (2002), except that this 2D-CA would 
have to run one more time step to be exactly the same (because Wolfram counts his first time step as time 0, whereas I 
count it as time 1). 
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C. CA MODELS CONTINUED 
2. Simple 2D-CA continued 

The 2D-CA above is an example of a CA following a behavior rule 
with a von Neumann neighborhood. Following is an example of a 
CA with a Moore neighborhood. 
 
 It is 2D-CA-1,119,275,885,101,440, shown at intervals over 200 
time steps.18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This sequence of CA configurations demonstrates that, even 
though CA evolve in many discrete steps, their overall pattern can 
evolve slowly in a manner that appears continuous. And it again 
demonstrates the impossibility of predicting how a CA will 
evolve. 
 
It also shows how CA can self-organize out of a chaotic pattern 
into a structure that has almost life-like features and movements. 
We will next explore a 2D-CA that for more than 30 years has 
entranced people with its life-like patterns – The Game of Life. 
 
  

                                                      
18 Created with the Excel 2D CA model, with the following parameters:  behavior rule: 1,119,275,885,101,440; number 

of rows: 80; number of columns: 80; number of time steps: 200; agents initially ‘on’: “Many ‘on’ agents – randomly 
distributed”; initial distribution percent: 50; random number seed: 2. This is the 2D-CA shown on p. 336 of Wolfram 
(2002). Wolfram’s rule number for this 2D-CA is 976, because he uses a highly aggregated rulestring algorithm for 2D-
CA with Moore neighborhoods. 
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C. CA MODELS CONTINUED 

2. Simple 2D-CA continued 

The Game of Life is actually not a game; rather, it is a 2D-CA 
with a simple behavior rule (see sidebar) that can evolve into a 
virtual world as rich as our own. The following sequence of CA 
configurations shows how the Game of Life (2D-CA-
3,235,963,104) evolves from a 5 percent starting density of 
randomly distributed ‘on’ agents.19 One of the first surprises is 
that some Life objects move. Even though some don’t move (the 
so-called ‘still-lifes’ such as the ‘blocks’ and ‘beehives’ in the 
sequence below), and some simply alternate their states (such as 
the ‘blinkers’ below), some move or even explode, such as the 
exploding constellation in the upper right of the configurations 
below that produces a ‘glider’ taking off in the NE direction. 
Conway showed that it is possible to construct a universal 
computer simply out of ‘gliders’ and ‘blocks’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inherent in Life is mystery. Predictable as it is cell-to-cell and 
step-to-step, its overall pattern of evolution defies both our 
intuition and our forecasting mathematics. It is another example 
of a complex phenomenon arising from a simple rule, for which 
the only way to predict its evolution is to simply let it run.20  

                                                      
19  Created with the Excel 2D CA model, with the following parameters:  behavior rule: 3,235,963,104; number of 

rows: 100; number of columns: 100; number of time steps: 100; agents initially ‘on’: “Many ‘on’ agents – randomly 
distributed”; initial distribution percent: 5; random number seed: 2. 

20 For a riveting exploration of The Game of Life and its implications, you may enjoy reading Poundstone (1985). To 
see hundreds of varieties of ‘life forms’ in the Game of Life, you may enjoy visiting 
www.EricWeisstein.com/encyclopedias/life. You may also enjoy Conway’s presentation at Conway (2007a). 

 
The rule of Life 

 
The Game of Life’s behavior rule is simple: 
 An ‘off’ or ‘dead’ agent (state = 0) becomes 

‘on’ or ‘alive’ if exactly three of its eight 
neighbors (in a Moore neighborhood) were 
alive during the last time step. 

 A live agent (state = 1) stays alive if either 
two or three of its neighbors were alive 
during the last time step. Otherwise it dies. 

 
In anthropomorphic terms, agents are born from 
ménages á trois. If they have only one companion, 
they die of loneliness, and if they have more than 
three they die from overcrowding. 
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C. CA MODELS CONTINUED 
3. Sandpile 
In the late 1980s, the Danish physicist Per Bak became interested 
in systems that are in what physicists call a state of ‘criticality’, a 
state where a system is way out of balance, but not yet chaotic. It 
is in this state when systems experience ‘phase transition’ (such 
as ice turning to water, or non-magnetic material turning 
magnetic) and where their attributes exhibit fractal or power-law 
scale-invariance. Per Bak wondered how nature attains such 
criticality. 
 
At that time, physicists thought that, in order to reach criticality, 
systems had to be manipulated, finely tuned. For example, the 
temperature of water had to be exactly 100o C or above for it to 
transition to steam, and the temperature of metals had to be 
below the ‘Curie point’ to transition to a magnetized state. 
 
Contrary to this prevailing wisdom, Per Bak discovered something 
quite different. He found that systems will self-organize to a 
critical state, without outside manipulation, and he called his 
discovery ‘self-organized criticality’. During the ten years 
after Bak published the paper introducing this result, it was the 
most cited paper in physics. But this concept is also important 
outside of physics:  it has profound implications for the social 
systems in which actuaries work. 
 
Self-organized criticality is demonstrated by Bak’s Sandpile 
model. The Sandpile model is a 2D-CA on a lattice with a ‘cliff’ 
boundary; that is, the lattice is finite, like a table top:  agents at 
the edges are connected to only three or two (for agents at the 
corners) other agents in a von Neumann neighborhood, not to 
four. Each agent on the lattice has one of five states:  0, 1, 2, 3, or 
4. 
 
The behavior rule is first order with radius one, but includes an 
element of chance (see the sidebar). 
 
 
 
  

 
The Sandpile model behavior rule 

 
When the Sandpile model starts, at each time 
step a randomly-selected agent’s state is 
increased by one. For example, if the agent’s 
previous state was 2, it is increased to 3. This 
process continues until one agent’s state is 4. 
This is like dropping a grain of sand on a table-
top grid. 
 
At the next time step, any agent with a state of 4 
(ie, with a stack of four grains of sand) ‘topples’; 
it resets itself to a state of 0, and adds one to each 
of its von Neumann neighbors. Thus, when an 
agent’s stack of sand grains becomes too high, it 
transfers them to its neighbors, and settles back 
to a ground state of zero. During this step, no 
more grains of sand are randomly dropped on the 
table. 
 

 
 
The previous step is repeated until there are no 
more agents with a state of 4 (ie, with four grains 
of sand). 
 
After all agents with four grains of sand have 
been reset to zero, a grain is again randomly 
dropped on the table and the process 
recommences. 
 
 

1 2 3 4 5 1 2 3 4 5
1 1
2 1 1 1 2 1 2 1
3 1 4 1 3 2 0 2
4 1 1 1 4 1 2 1
5 5

Agents Agents
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C. CA MODELS CONTINUED 
3. Sandpile continued 

A key characteristic of the Sandpile model is an ‘avalanche’. The 
following sequence of model steps shows the progress of an 
avalanche: 
 
 
 
 
 
 
 
 
At step 1, a grain of sand is added to the central agent, making it 
critical. In step 2, it topples, but makes three other agents critical. 
This domino, or avalanche, effect continues to step 4, at which no 
agents are critical, and another grain can again be randomly 
added. The shaded areas in the sequence trace the avalanche’s 
impact. This avalanche lasted four time steps and involved eight 
critical agents. 
 
The following sequence shows the evolution of the Sandpile 
model with 400 agents over 5000 time steps, after starting from a 
random distribution of states 0, 1, 2, and 3 among the agents.21 
State 0 corresponds to the color white, states 1-3 are successively 
darker hues of blue, and state 4 is red. 
 

 
 
As you can see, over the 5000 steps, the agents are subtly 
organizing themselves:  at step 5000 there are fewer contiguous 
agents in state 0, and the pattern is beginning to look more like a 
quilt than a random collection of colors. This is an example of 
Stuart Kauffman’s ‘order for free’, also known as ‘spontaneous 
order’ and ‘self-organization’ (see Chapter one).  
                                                      
21 Created with the Excel Sandpile model, with the following parameters:  number of rows: 20; number of columns: 

20; number of time steps: 5000; initialization option: “Randomly distributed 0, 1, 2, and 3”; random number seed: 
3. 

Step 1 Step 100 Step 1000 Step 5000
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C. CA MODELS CONTINUED 
3. Sandpile continued 

The following charts analyze the 5000 steps of the Sandpile 
simulation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The bottom two log-log charts demonstrate that the distribution 
of the model’s avalanches are close to a power law. (Interestingly, 
one of the avalanches involved 56 agents at state 4, a result that in 
a normally-distributed world of avalanches – governed by the laws 
of dice – simply would not happen.) Per Bak concluded that the 
model is therefore at, or at least close to, a state of criticality, a 
place between perfect randomness and perfect structure, a place 
some have called the ‘edge of chaos’. 
 
The point to emphasize is that the model achieved this state on its 
own, without outside manipulation or fine-tuning. 
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C. CA MODELS CONTINUED 
3. Sandpile continued 

But does the Sandpile correspond to reality? In 1995, researchers 
at the University of Oslo carefully investigated, and video-taped, 
Bak’s Sandpile model using piles of long-grain rice (grains of sand 
were too sticky). The experiment lasted for more than a year, and 
involved five scientists. They found that the rice pile behavior 
conforms closely to the Sandpile model. And, on a grander scale, 
sand slides in the Nepal Himalaya mountains have also been shown 
to conform to the Sandpile model.22 
 
The Sandpile model also suggests a reason why we find the power 
law ubiquitously in nature and in social systems: Just as a steady 
trickle of sand drives a sand pile to organize itself into a critical 
state, a steady input of energy, work, or money drives many 
systems to organize themselves to a state of criticality – with 
avalanches rearranging their structure just often enough to keep 
them poised on the edge. Thus, self-organized criticality may be 
one of the mechanisms that give rise to complex systems. 
 
Per Bak also claims that his model applies to sediment deposits, 
earthquakes, solar flares, the demise of dinosaurs, the brain, 
traffic jams, and even social economies (more about this in Section 
D – Practical applications, below). 
 
But self-organized criticality and the Sandpile model only describe 
the mechanism and overall statistics of avalanches in aggregate; 
they say nothing about individual avalanches. In fact, a corollary of 
self-organized criticality is that large avalanches – catastrophes – 
within a critical complex system are unpredictable. 
 
As we conclude this exploration of the Sandpile model, it  may 
interest you that Per Bak demonstrated that the Game of Life 
operates at or near a state of criticality, but not self-organized 
criticality. Amazingly, after examining millions of other simple 
2D-CA behavior rules with Moore neighborhoods like the Game 
of Life, scientists did not find even one other that was critical. The 
Game of Life is so exceedingly rare that it cannot be self-
organized; John Conway worked hard to fine-tune it.23 
 
  

                                                      
22 Accounts of these two experiments are in Bak (1996), pages 69-78. 
23 Bak (1996), pages 105-112. 
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C. CA MODELS CONTINUED 
4. Forest fire 

In 1990, Per Bak introduced another model of self-organized 
criticality, the Forest fire model. The Forest fire model is a 2D-
CA on a lattice with a periodic boundary. Each agent represents a 
plot of forest ground, and has four states: 
 

 State 0:  a plot without a tree (represented by blue) 
  
 State1:  a plot with a fully-grown tree 
  
 State 2:  a tree on fire 
  
 State 3: a burned plot 

 
The Forest fire model’s behavior rule is first order with radius 
one, and applies to von Neumann neighbors: 
1. Fully grown trees (state 1) are initially randomly distributed 

according to a fixed probability. 
2. Trees initially on fire (state 2) are also randomly distributed 

according to a fixed probability. 
3. At each time step after the first, a tree can grow from an 

empty plot with a fixed probability. A tree sprouts and 
becomes fully grown (state 1) in one time step. 

4. At each time step after the first, lightening can set a tree on 
fire (state 2) with a fixed probability. (This feature was not in 
Bak’s original model. It was added later to allow the model to 
evolve to criticality.) 

5. A fire spreads to its nearest neighboring trees (in a von 
Neumann neighborhood) at the next time step. 

6. A tree burns down completely in one time step and becomes 
a burned plot in the next time step (state 3). 

 
For example, the following sequence shows the evolution of two 
fires until they burn out. 
 
 
 
 
 
 
The sequence is simplified, because at steps 2-4, a new tree could 
grow, or lightening could strike a tree and set a new fire. 
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C. CA MODELS CONTINUED 
4. Forest fire continued 

Each row of the following shows Forest fire model results at time 
steps 1, 10, 20, 30, 40, and 50 for a particular initial tree density. 
For example, the first row shows the results for an initial density 
of 70 percent. The last frame of each sequence gives the number 
of trees that survived the fire. (eg, for the fire in the first row, 
only 0.2 percent survived). For each set of results, one percent of 
the trees are on fire at step one, and after step one there is no new 
tree growth and no lightening to set new fires.24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the population of trees becomes more dense, a small initial fire 
will have more devastating consequences. Once again we see the 
structure of agent relationships has a dramatic impact on a 
system’s behavior. 
  

                                                      
24 Created with the Excel Forest fire model, with the following parameters: rows: 75; columns: 75; number of time steps: 

50; growth probabilities: initial: .40, .50, .60, .70; on unburned plot: 0.0; on burned plot: 0.0; fire probabilities: initial: 
0.01; subsequent: 0.0; action if no fire: “Let it remain burned out”; random number seed: 2. 
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C. CA MODELS CONTINUED 
4. Forest fire continued 

Following are remarkable results for 1000 steps of a Forest fire 
model with a growth probability of 0.005 on burned and 
unburned forest plots, and a lightening probability of 0.00001.25 
The four sequential diagrams show the agents’ states at times 1, 
300, 500, and 1000. Their patterns look like fluid turbulence. (In 
fact, Per Bak’s initial paper introducing the Forest fire model was 
titled “A forest-fire model and some thoughts on turbulence”.) 
 
As the two line plots show, the number of trees, burned plots, 
and fires all exhibit periodic variation with steep slopes. Perhaps 
most remarkable, the log-log scatter plot (lower right) shows that 
the system has nearly self-organized into a critical state, with the 
number of fires nearly following a power law. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
25  Created with the Excel Forest fire model, with the following parameters: rows: 100; columns: 100; number of time 

steps: 1000; growth probabilities: initial: .50; on unburned plot: 0.005; on burned plot: 0.005; fire probabilities: initial: 
0.0005; subsequent: 0.00001; action if no fire: “Start one new random fire.”; random number seed: 2. 
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C. CA MODELS CONTINUED 
5. Other CA 
Beyond the relatively simple models introduced in this section, 
the CA concept can be broadly extended: 
 
 The number of agents and agent states can be 

expanded. For example, von Neumann’s original proof of 
the CA universal computer employed 29 states per agent, and 
about 200,000 agents. 

 The behavior rules can be more complex. They can be 
of higher order (incorporating information from periods 
earlier than the last time step); they can extend past 
immediate neighbors with longer radii; and they can even 
involve learning and adaptation, subjects we explored in 
Chapter two and will encounter again in the next chapter. 

 The graph can be more realistic. Although 1D and 2D 
lattices simplify computations and visualization, they are not 
particularly realistic. As we saw in the network chapter, real 
networks, and particularly the social networks with which 
actuaries work, usually have more interesting graphs. Many 
social networks have agents that connect with more than an 
average number of other agents, and most social networks 
have agents with a few connections reaching beyond a local 
neighborhood. 

 
In the next section (practical applications) you will learn many 
ways to extend the CA concept. 
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D. PRACTICAL APPLICATIONS 
As with networks, it appears that in actuarial work, cellular 
automata are virtually unknown. In the literature search for 
this report, I looked in the major actuarial databases for 
resources with either of the terms ‘cellular automata’ or 
‘cellular automaton’. There was not a single relevant hit.27 
 
Cellular automata have been applied to many other disciplines. 
For example, in A new kind of science, Wolfram shows that 1D-
CA and 2D-CA help explain many phenomena that were 
previously unexplained or misunderstood, including the 
growth of snowflakes and crystals, fracture patterns of solid 
materials such as rocks, fluid flow, growth of plants and 
animals, biological pigmentation patterns, financial markets, 
the limitations of mathematics, irreversibility and the Second 
Law of thermodynamics, the discrete nature of the universe, 
gravity, space, and time.28 
 
Starting with modeling of financial market behavior, this 
section will describe eight applications of CA that actuaries 
may find interesting and useful. Many of these applications 
employ advanced techniques that will expand your 
understanding of what CA models can do. 
 

1. Financial market behavior 
Why do the prices of financial instruments (stocks, bonds, 
currencies, etc.) often fluctuate with apparent randomness, 
and sometimes with catastrophic swings? Per Bak and Stephen 
Wolfram offer two similar explanations. 
 
Bak uses his Sandpile model to suggest that such fluctuations 
are inevitable and perhaps even desirable (see sidebar). And 
Wolfram suggests that simple 1D-CA provide an explanation. 
To model a financial market, he suggests using a 1D-CA where 
each agent corresponds to a single trading entity, and its two 
states are ‘buy’ and ‘sell’. The behavior rule (how it decides 
whether to buy or sell) is based on the states of its immediate 
neighbors in the previous time step: 
 
  

                                                      
26 Bak (1996), pages 191-198 
27 See the section titled Finding the essential resources in this report 
28 Wolfram (2002), pages 363-546. 

 
Sandpiles and economics 

 
Per Bak concludes his book How nature works with 
the following observations about economics: 
 
“Our conclusion is that the large fluctuations 
observed in economics indicate an economy 
operating at the self-organized critical state, in 
which minor shocks can lead to avalanches of all 
sizes, just like earthquakes. The fluctuations are 
unavoidable. There is no way that one can 
stabilize the economy and get rid of the 
fluctuations through regulations of interest rates 
or other measures. Eventually something 
different and quite unexpected will upset any 
carefully architectured balance, and there will be 
a major avalanche somewhere else in the system. 
… 
If economics is indeed organizing itself to a 
critical state, it is not even in principle possible 
to suppress fluctuations. Of course, if absolutely 
everything is decided centrally, fluctuations 
could be suppressed. In the sandpile model, one 
can carefully build the sandpile to the point 
where all the heights are at their maximum 
value, Z=3. However, the amount of 
computations and decisions that have to be done 
would be astronomical and impossible to 
implement. And, more important, if one indeed 
succeeded in building this maximally steep pile, 
then any tiny impact anywhere would cause an 
enormous collapse. The Soviet empire eventually 
collapsed in a mega-avalanche (not predicted by 
Marx). But maybe, ... the most efficient state of 
the economy is one with fluctuations of all sizes. 
… 
Maybe Greenspan and Marx are wrong. The 
most robust state for an economy could be the 
decentralized self-organized critical state of 
capitalistic economics, with fluctuations of all 
sizes and durations. The fluctuations of prices 
and economic activity may be a nuisance (in 
particular if it hits you), but that is the best we 
can do.”26 
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Financial market behavior continued 

Thus, when both neighbors either bought or sold, the agent sells; 
and when only one neighbor bought, the agent buys. 
 
Wolfram further suggests that, for one time step, the difference 
between the total number of buy states and the total number of 
sell states provides an adequate proxy for the market price. Over 
the model’s many time steps, this difference represents the 
market’s price movement. The plot below shows such movement, 
over 250 time steps for such a 1D-CA with random initial 
assignment of buy and sell states: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Its movement is random, like the apparent random movement of 
real financial markets. In fact, the plot is one we explored earlier, 
because the behavior rule of Wolfram’s market model is simply 
Rule 90 (in disguise).29 
 
In 2003, following Wolfram’s idea, Yi-ming Wei et al developed 
a 2D-CA model of investment behavior in a stock market. In their 
model, each agent represents a stock market investor. Each agent 
has three states:  ‘buy’, ‘sell’, and ‘hold’. The behavior rule 
depends on the states of the agent and its Moore neighbors in the 
previous time step, an ‘imitation’ or ‘contrarian’ probability for 
each agent, and a system-wide variable representing positive or 
negative information about stocks. 
 
  

                                                      
29 See Wolfram (2002), pages 429-432. 
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Financial market behavior continued 

The authors conclude: 
 The evolution of the stock market cannot be predicted. 
 Stronger investor imitative behavior corresponds to greater 

market instability. 
 “According to these primitive results of simulation of 

investment behavior in the stock market, we can see that 
cellular automata, an important tool for probing the 
complexity of systems, manifest huge potential in the research 
on the complexity in stock markets.”30 

 

2. Disease propagation 
Recognizing the limitations of conventional epidemiological 
models, in 1996 Anders Johansen employed a Forest fire model 
(with lightening) to simulate disease propagation. His model is 
different from the classic Forest fire model in two respects: 
 the fire (disease) spreads to neighbors with a fixed probability 

(whereas, in the classic model, the probability is unity) 
 each agent has a fixed probability of being immune from the 

disease. 
 
After discussing his model’s results, he writes, “In conclusion, it 
seems plausible from the simulations that a spatial organization of 
infectious individuals on fronts will give sustained temporal 
oscillations of infectious individuals no matter the specific manner 
in which new susceptible individuals are introduced. 
Furthermore, it seems likely that a sufficient condition for such a 
behavior is simply a n.n. (ie, neighbor-to-neighbor) interaction 
transmitting the disease. Given the extreme simplicity of the 
model, n.n. interactions and one parameter determining the 
(mean) input of susceptible individuals, we believe the model 
provides new insight into the sufficient conditions for obtaining 
recurrent epidemic behavior.”31 
 
The fronts and oscillations that Johansen observed are the same as 
the areas of cyclic turbulence that we saw in the classic Forest fire 
model. 
 
  

                                                      
30 Wei, Ying, Fan, & Wang (2003) 
31  Johansen (1996) 
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D. PRACTICAL APPLICATIONS CONTINUED 

2. Disease propagation continued 

Building on Johansen’s work, in their 1997 article, Rhodes et al 
demonstrate how the Forest fire model (again with lightening) 
accurately simulates outbreaks of measles, whooping cough, and 
mumps on the Faroe Islands (Danish islands for which there are 
long-running and detailed epidemiological records). Their model 
accurately captures the observed power-law and cyclical dynamics 
of the disease outbreaks, aspects that conventional epidemiology 
cannot capture. 
 
They conclude, “Finally, we believe that this study illustrates how 
ideas developed to understand critical phenomena in the physical 
sciences can be used to gain insight into the dynamics of real 
epidemic diseases. It illustrates that biological systems can also 
exhibit critical phenomena, that the conditions for critical 
behavior to occur can arise quite naturally and that simple models 
which capture the essential interactions can explain the dynamical 
behavior of a number of different diseases in a human 
population.”32 
 

3. Opinion dynamics 
In 2006, Tony Wragg, member of a Command and Control 
Division of the Australian Department of Defense, developed a 
CA model to demonstrate the power of agent-based modeling to 
simulate how people form their opinions, and how well-deployed 
information can shape that formation.33 His goal was to address 
the following questions: 
 
 How well can an information campaign be represented by a 

computer simulation? 
 What effect do the media have on a population’s opinion? 
 Does the population density of a population affect the level 

and rate of opinion change? 
 
His model and its results have obvious implications for military 
propaganda campaigns, but, perhaps less obviously, are also 
relevant to marketing strategies for all types of organizations, 
including actuarial organizations. 
  

                                                      
32  Rhodes, Jensen, & Anderson (1997) 
33  Wragg (2006) 
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D. PRACTICAL APPLICATIONS CONTINUED 

3. Opinion dynamics continued 

His model simulates opinion dynamics among people of a 
northeastern province of Inida, Uttar Pradesh, concerning the 
issue of polio vaccination. Since 1988, the World Health 
Organization has tried to eradicate polio in India. The model uses 
data obtained as part of that effort. 
 
The model is a 2D-CA with 150 columns and 150 rows. Each 
agent has three states: empty (no family occupies it), a family 
whose opinion favors polio vaccination (blue), or a family whose 
opinion rejects vaccination (red). The following image shows the 
initial agents states, superimposed on a map of Uttar Pradesh. 
Many of the agent states are empty, because that part of the grid 
lies over the neighboring country of Nepal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relative distribution of opinions and clustering of agents are 
based on actual data. 
 
In addition to its state, each agent has the following attributes: 
 Social influence = S (a normally distributed value, with mean 

5 and variance 4) 
 Resistance to change = B (a constant, equal to 2) 
 Susceptibility to media influence SM (a normally distributed 

value, with mean 5 and variance 4) 
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D. PRACTICAL APPLICATIONS CONTINUED 

3. Opinion dynamics continued 

Each agent’s behavior rule determines whether it has an opinion 
supporting (blue) or rejecting (red) vaccination. The rule depends 
on the state and other attributes of its neighbors in a Moore 
neighborhood with radius 32. The graphics at right show two 
Moore neighborhoods, one with a radius of 1, and one with a 
radius of 3. So, the neighborhood of radius 32 that influences an 
agent is quite large. However, the greater distance a neighbor is 
from the central agent, the less its impact. 
 
When an agent is influenced by other agents, a theory called 
‘social impact theory’ asserts that the level of social influence 
experienced by the agent is represented by:34 

𝐼𝑖 =  −𝑆𝑖  𝐵 −  𝑂𝑖  𝑂𝑀  𝑆𝑀𝑖  − �
𝑆𝑖  𝑂𝑗  𝑂𝑖

𝑑𝑖,𝑗
𝛼

𝑁

𝑗=1,𝑗≠𝑖

 

where: 
 Ii is the amount of social pressure upon agent i (-∞ < Ii < ∞) 
 Oi is the agent i’s opinion. It takes the values 1 (supporting 

vaccination) and -1 (rejecting) 
 OM is the opinion of the media (± 1) 
 Si is agent i’s strength or influence (Si > 0) 
 SMi is the influence of the media on i (SMi > 0) 
 B is agent i’s resistance to change (B > 0; for this model 2) 
 dij incorporates both the grid distance and religious distance 

between agents i and j (dij ≥ 1) 
  α is the distance decay exponent (α ≥ 2, for this model 2) 
 N is the total number of agents in i’s neighborhood of 

influence 
 
Each agent’s behavior rule is then given by: 

𝑂𝑖(𝑡 + 1) =  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑂𝑖(𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   
exp (− 𝐼𝑖

𝑇)

exp �− 𝐼𝑖
𝑇� +  exp (𝐼𝑖

𝑇)

−𝑂𝑖(𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   
exp (𝐼𝑖

𝑇)

exp �− 𝐼𝑖
𝑇� +  exp (𝐼𝑖

𝑇)

� 

 
where T is a variable representing the volatility of individual 
decision making. Higher T reduces the probability that an agent 
will change its opinion for a given level of social influence.  

                                                      
34 For more information about this approach, see Wragg (2006), Nowak & Lewenstein (1996), and Sobkowicz (2003). 
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D. PRACTICAL APPLICATIONS CONTINUED 

3. Opinion dynamics continued 

The images below show the impact of not having any mass media 
messages about polio vaccination. The first image shows an initial 
opinion distribution with 50 percent of families supporting 
vaccination, and the second shows the opinion distribution, 
without mass media messages, after reaching equilibrium (after 
about 200 time steps). 
 
 
 
 
 
 
 
 
 
 
 
 
 
At equilibrium, it is clear that like opinions tend to cluster, 
especially in areas of high population density. 
 
The images below show the impact of mass media. The first image 
shows an initial 50 percent opinion distribution, and the second 
shows the opinion distribution at equilibrium after delivery of 
mass media messages to only part of the population. 
 

 
 
Clearly, media coverage has a profound impact on opinion 
dynamics, particularly in areas of high population density.  

 
Conclusions 

 
The author of the simulation study found that the 
model demonstrated the typical characteristics of 
real-world opinion dynamics, namely similar-
opinion clustering, polarization, and non-
linearity of opinion change over time. Thus, he 
concluded that an information campaign could be 
represented by an agent-based computer 
simulation. 
 
His model also provided useful answers to the 
author’s initial questions about the impact of 
media and population density on opinion 
dynamics. 
 
He made the following useful comments about 
such models: 
 Validation of simulation results is 

challenging, because of the difficulty of 
running controlled experiments with large 
populations. 

 “Obtaining the requisite data to enable the 
models to accurately represent a given 
society represents the biggest hurdle in 
social simulation today. Nevertheless, 
simulation always has a valuable role in 
helping to clarify ideas and theories even if 
complete validation cannot be carried out.” 

 “Agent-based computer simulations have 
become the most powerful tool in studying 
the dynamics of social theories. … Agent-
based simulations enable the dynamic and 
emergent properties of social influence 
campaigns, such as polarization and 
clustering, to be reproduced and analyzed. 
Although the phenomenon of social change 
is very complex, applying and extending 
theories such as the theory of social impact 
enabled the most critical factors of social 
influence to be isolated and varied 
systematically within a very simple model.” 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Distribution of surgical volume 
U.S. healthcare is largely inefficient and often ineffective. A case 
in point is complex surgical procedures. Extensive research over 
30 years has conclusively demonstrated an inverse relationship 
between provider case volume and postoperative mortality and 
complications. That is, the more complex surgeries of a particular 
type (such as pancreatic resections) that a surgeon performs, the 
better the outcome. Common sense. Yet, because of the way the 
U.S. health system is structured, often there are many surgeons 
who perform complex surgeries at low volume. For example, in 
2004 there were 1,000 pancreatic resections performed in 
Florida. About 300 surgeons and 85 hospitals contributed to this 
volume, and more than half of the surgeons performed fewer than 
2 such procedures. Mortality and complication rates for these 
surgeons were 2-3 times higher than for their peers. 
 
In 2008, James Studnicki et al wanted to study the potential 
impact of informed patient choice on this state of affairs.35 They 
developed a CA model with the following characteristics: 
 
 Agent types:  Patients, hospitals, surgeons, and payers 

(insurance companies). Only patients have behavior rules to 
make decisions. 

 Patient attributes:  Geographical location. Each patient has 
a condition that requires complex surgery. 

 Hospital attributes:  Geographical location, cumulative 
patient satisfaction with the hospital. 

 Surgeon attributes:  Age (normal distribution with mean 
47.5 and standard deviation 5.0, constrained to be between 
age 30 and 60; at age 60 a surgeon is removed), geographical 
location, number of procedures performed, cumulative 
patient satisfaction with the surgeon. 

 Relationships:  Each patient subscribes to one payer. 
Hospitals are related to surgeons in a random network 
generated from an input parameter for the network’s density, 
and payers are related to hospitals in a similarly-generated 
random network. 

 Time step:  The number of days represented by each time 
step is an input parameter. 

  

                                                      
35  Studnicki, Eichelberger, & Fisher (2009). 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Distribution of surgical volume continued 

 Patient behavior:  The behavior rule determines what 
hospital-surgeon pair the patient chooses to perform the 
surgical procedure. The patient evaluates each eligible pair in 
the payer’s network. The pair that has a maximum ‘fitness’ is 
selected. To be eligible, the surgeon must satisfy the 
following criteria: 
Proximity:  The surgeon must be located within a specified 
distance from the patient (an input parameter). 
Workload:  The surgeon must not have exceeded a given 
number of surgeries per time period (an input variable). 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐶𝑊𝐶  × 𝐸𝑊𝐸  × 𝑆𝑊𝑆 
where: 

𝐶 =  
1

log (1 + 𝑑𝑖𝑠𝑡(𝑝𝑎𝑡𝑖𝑒𝑛𝑡, ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙) +  𝑑𝑖𝑠𝑡(𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝑠𝑢𝑟𝑔𝑒𝑜𝑛))
 

 
dist(patient, x) is the patient’s travel distance. 
 

𝐸 =  
𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑠(𝑠𝑢𝑟𝑔𝑒𝑜𝑛) ≮ 10

100
 

 
The floor of 10 procedures per surgeon reflects the inability 
of patients to distinguish among low-volume surgeons. 
 

𝑆 =  
1

1 +  𝑒−(0.8 ×𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑢𝑟𝑔𝑒𝑜𝑛)+ 0.2×𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙)) 
 
Each time a surgery is performed, the satisfaction score is 
updated: 
 
𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑡 + 1) = 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) +  𝑜𝑢𝑡𝑐𝑜𝑚𝑒(𝑡)  
 

where  𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =  �
0.5 𝑖𝑓 𝑐𝑜𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

0.1 𝑖𝑓 𝑑𝑒𝑎𝑡ℎ
1.0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

 
The weights WC, WE, and WS are input parameters. 
 
Output:  Number of high-volume surgeons (surgeons who 
performed more surgeries than average), average surgeon 
age, procedures per year per surgeon, death and complication 
rates (in total and per surgeon). 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Distribution of surgical volume continued 

At each time step, the model: 
 Randomly generates  new patients requiring surgery. 
 Invokes each patient’s behavior rule to select a surgeon and 

hospital. 
 Determines the surgical outcome based on outcome rates 

built into the model. 
 Increments variables to reflect the outcome, and increments 

the time step. 
 
Each simulation was run for 10,000 time steps. 
 
The model produced several interesting results. For example, 
according to the model, a payer that allows patients to select only 
surgeons and hospitals from within its network actually increases 
the number of expected complications. At first this result may 
seem counter-intuitive, but the reason is that networks can 
restrict the number of cases that potentially high-volume surgeons 
can perform, thus limiting their experience and increasing their 
rate of negative outcomes. 
 
The authors conclude, “This exploratory model suggests multi-
agent simulation methods can be helpful in understanding the 
complex interactions which are operative within the U.S. 
healthcare industry. We have focused upon the relationship 
involved in the performance of complex surgeries, especially 
those for which there is a significant likelihood of an adverse 
outcome in the form of a post surgical complication, or even 
death. Our model activated only the patient agent and determined 
passive roles for other agents. Future developments will involve 
activation of the other agents. Surgeons, for example, are likely 
revenue maximizers who determine the composition of their 
surgical caseload based, at least partially, upon the revenue 
received from each case. In that context, various ‘complexity 
mixes’ will result in a range of incomes. Modeling surgeon choice 
based upon revenue, workload, convenience, career phase and 
other factors will enable a more valid portrait of patient/surgeon 
interaction. Similarly, the hospital is interested in revenue 
maximization consistent with the best outcomes, i.e., minimizing 
deaths and complications. Since hospitals offer administrating 
privileges to physicians, they should be interested in minimizing 
the number of low volume surgeons who hold privileges.” 
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D. PRACTICAL APPLICATIONS CONTINUED 

5. Retirement incidence 
In 1961, the U.S. Congress reduced the minimum Social Security 
retirement age from 65 to 62. Yet, it took many more years than 
originally anticipated for the average retirement age to approach 
62. To policy makers and economists alike, this result was 
puzzling. 
 
Robert Axtell and Joshua Epstein created a CA model to solve the 
puzzle. The model is a 2D-CA, but with several interesting 
modifications that differentiate it from the classic simple 2D-CA.36 
Their 2D grid is 100 columns by 81 rows, representing 8,100 
agents. All the agents in one row are in one age group. Thus, 
there are 81 annual age groups, from age 20 to age 100. As the 
simulation progresses, each time step represents one year, and the 
agents in one row at one time step move to the next row at the 
next time step. Also, at each new time step, the previous age-100 
cohort is removed from the grid, and a new age-20 cohort is 
added. 
 
Each agent has three attributes related to how it makes its 
retirement decision:  ‘rational’, ‘random’, or ‘imitative’. Rational 
agents all retire at the earliest possible age allowed by government 
policy (this age is arbitrary, but for the model, it is assumed to be 
65). Random agents retire at any eligible age, with probability 
0.5. Imitator agents base their decision on the decisions of their 
social network (explained more fully below). On the grid, 
rational agents are represented by the color pink, random agents 
by yellow, and imitator agents by blue (see the grid to the right). 
 
Each agent also has three states:  ‘working’, ‘retired’, or ‘dead’. 
Retired agents are represented by the color red, and dead agents 
by the color white. In the model’s simulation runs, these colors 
are laid over the colors representing the decision types, and only 
the rows for ages 55 to 100 are displayed (see the grid below 
right).  
 
The key to the model is that an imitator’s behavior rule for 
deciding to retire is based on the fraction ƒ of agents in its social 
network who have already retired. The imitator agents have a 
randomly assigned ‘imitation threshold’ t; if at any time ƒ ≥ t, 
the agent retires.   

                                                      
36  Epstein (2006), Chapter 7: Timing of retirement. This book is one of this report’s Top ten Complexity Science books. 
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D. PRACTICAL APPLICATIONS CONTINUED 

5. Retirement incidence continued 
Rather than base each agent’s social network on a classic von 
Neumann or Moore neighborhood, Axtell and Epstein assign each 
agent its own network. For each agent, the number of other 
agents in its network is a uniform random number between the 
two parameters ‘minimum network size’ and ‘maximum network 
size’. For example, these two parameters might be 10 and 25. 
Then, the model randomly selects a number of agents between 10 
and 25, within an age range of ± 5 years. Thus, in its network one 
agent age 60 might have 15 other agents ranging in age from 55 to 
65, while another agent age 60 might have 25 ranging in age from 
59 to 63. 
 
Following is a sequence of model results for a minimum 
retirement age of 62, 10 percent rational agents, 5 percent 
random agents, and 85 percent imitative agents. The model 
demonstrates that it can take a long time for agents to adopt a 
legislated retirement age.37 
 
 
 
 
 
 
 
 
 
 
 
 
As the authors point out, aside from offering a solution to the 
puzzle of slow adoption, this result is interesting because, even 
though the vast majority of agents are not rational (as in real life), 
the system as a whole reaches a rational decision. Thus, aggregate 
rationality arises from a system comprised of mostly boundedly 
rational agents, a surprising emergent property. 
 
Perhaps more interesting, if the percent of rational agents is 
reduced to 5 percent, the time to arrive at a rational decision is 
much longer, and the route to aggregate rationality is not a 
smooth progression. 

                                                      
37  This sequence was created using the model supplied on CD with Epstein (2006). Model settings were: Fraction random: 

0.05; Fraction rational: 0.1; Min network size: 10; Max network size: 25; Retirement eligibility age: 62. 

Step 1 Step 20 Step 40

Step 60 Step 80 Step 100
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D. PRACTICAL APPLICATIONS CONTINUED 

5. Retirement incidence continued 
In concluding, the authors write, “While we have interpreted this  
model as applying to retirement, it could be applied to a wide 
range of settings in which social interactions mediate purely 
rational behavior. Obvious candidates include contagion behavior 
in markets, migration to different health plans, or the diffusion of 
technological innovations. In reality, these phenomena occur in 
social networks, while most existing models treat them either as 
occurring in ‘perfectly mixed’ environments or via local 
interactions on regular lattices or other highly specialized 
topologies. The agent-based computational approach is well suited 
to studying such processes with any topology of interactions.” 
 

6. Policyholder lapse behavior 
In the late 1990s, Ernst & Young created a strategic alliance with a 
company called the BiosGroup headed by Stuart Kauffman (see 
sidebar). One of their joint projects was to build a model of 
policyholder lapse behavior for guaranteed income variable 
annuity products, using Complexity Science concepts. The 
motivation for developing such a model was that such variable 
annuity products were just being introduced. So, there was no 
real-world experience to draw on for pricing, making statistical 
modeling techniques inapplicable.38 
 
They constructed a proof-of-concept CA model, with the 
following characteristics: 
 
 Agent types:  policyholders (customers) and brokers 

(sellers). The model can simulate millions of customers and 
thousands of sellers. 

 Customer attributes:  Age (uniformly distributed from 55 
to 65), gender (randomly assigned), annuity type (uniformly 
distributed between 50 percent and 100 percent variable), 
and policy duration (each agent holds one policy, which can 
have any duration). 

 Relationships:  Each agent is related to one broker (in a 
skewed distribution, with the top 50 percent of brokers 
controlling 75 percent of the business), and to a group of 
‘friends’ that it may canvass to make a lapse decision. 

 Time step:  Each time step is one year. Each customer makes 
a lapse decision every year.  

                                                      
38 See Shumrak, Greenbaum, Darley, & Axtell (1999) and Shumrak & Darley (1999). 

 
Santa Fe Institute progeny 

 
The Santa Fe Institute has spawned so many 
business-oriented organizations that the area 
around Santa Fe is now known as the Info Mesa. 
Among its progeny are: 
 
BiosGroup was founded in 1997 by Stuart 
Kauffman. Its goal was to commercialize 
Complexity Science software to help companies 
manage projects and supply chains. Its clients 
included Southwest Airlines, P&G, Ford, 
Boeing, Texas Instruments, and the Internal 
Revenue Service. At its peak, it employed about 
150 people in offices in Santa Fe, Boston, 
London, Bulgaria, and Washington DC. In 2003, 
its consulting operations were acquired by 
NuTech Solutions. 
 
Complexica was founded in 2001 by Roger 
Jones and John Casti. Its spinoff Assuratech, 
Inc. developed the model called Insurance World 
that we’ll explore in Chapter seven.  In 2004, 
both companies were absorbed by CommodiCast 
Inc. 
 
Prediction Company was founded in 1991 by 
Doyne Farmer and Norman Packard. It builds 
advanced financial market trading systems that 
incorporate Complexity Science-inspired 
forecasting techniques. In 2005, it was purchased 
by Union Bank of Switzerland. 
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D. PRACTICAL APPLICATIONS CONTINUED 

6. Policyholder lapse behavior continued 

 Customer behavior:  The customer behavior rule 
determines whether a policyholder agent will lapse its annuity 
policy. A certain percentage (1 percent in the model) will die. 
Another percentage (2 percent) will lapse for random 
reasons, such as needing money to build a house. Another 
group receives advice from their sellers and will make a 
rational lapse decision by comparing the advice to the current 
financial performance of their annuity contracts. Another 
group will not receive any advice. 40 percent of these will 
make a rational lapse decision by comparing the performance 
of competitive products to the current financial performance 
of their annuity contract. The remaining group (the imitators) 
will base their decision on the decisions of their friends. 

 Seller behavior:  Sellers are motivated to move their 
customers into new products. Each time step, each seller 
sends out advice to a random percentage of its customers. The 
seller’s advice is based on market scenarios, and provides an 
optimistic assessment of returns that customers could obtain 
from competitive products. The degree of optimism varies by 
broker. There are three market scenarios: a flat market, an 
inflationary market in which real returns are low, and a low-
inflation market in which returns are good. 

 Output:  The model’s primary output is annual lapse rates by 
policy duration. These results can be easily incorporated into 
actuarial pricing and risk analysis models. 

 
In his article about the model, Michael Shumrak concludes, 
“…ABM (ie, agent-based modeling) provides a more robust 
approach to the real interaction of factors driving policyholder 
behavior. Effective use of these techniques can be applied to 
develop policy behavior dynamics for pricing product benefit 
designs, evaluating policyholder conservation programs and 
evaluating the impact of economic scenarios not seen before. 
Also, after constructing the behavior model, sensitivity tests can 
be performed to establish confidence intervals on the output. If 
we do so, we can immediately see to which of those parameters 
the new predictions are especially sensitive, and on which they 
depend weakly. This is tremendously important in situations for 
which there is no historical data.”39 
 
  
                                                      
39  Shumrak, et al. (1999), pages 4 and 5. 
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D. PRACTICAL APPLICATIONS CONTINUED 

6. Policyholder lapse behavior continued 

In 2002, Charles Boucek and Thomas Conway, both actuaries, 
developed another CA model of policyholder lapse behavior. 
Their goal was to determine the impact that a rate change would 
have on policyholder retention and on a company’s resulting 
profitability.41 
 
Following are characteristics of their model: 
 Agent types:  Policyholders, the company changing its 

rates, competitors of the company, brokers. In order to 
conform to any company’s book of business and its 
competitive environment, the number of agents is variable. 

 Policyholder attributes:  Age, gender, marital status, 
rating factors (such as driving record and vehicle usage), and 
policy factors (such as deductibles and liability limits). 

 Relationships:  each policyholder has a broker and a 
current insurance company. 

 Time step:  Each time step is one year. Each customer 
makes a renewal decision every year. 

 Policyholder behavior:  The behavior rule determines 
whether the policyholder will switch to a new insurance 
company or not. It is a two-tier decision:  first, based on the 
premium increase from the insurance company, the 
policyholder decides whether to shop for new insurance; 
second, based on potential premium savings from 
competitors, the policyholder decides whether to switch. 
Associated with each level of premium increase and premium 
savings is a likelihood of a policyholder shopping and 
switching, respectively. The policyholder’s decision is also 
influenced by its broker, but this behavior was not described. 

 Output:  The model tracks the distribution of policyholders 
across all rate classes before and after a rate change. It then 
uses this information to estimate total profitability and the 
volume of business that will be written. 

 
The model is run for multiple iterations until its results converge 
to an equilibrium level of retention and profitability. 
 
As with all the practical models in this report, the point of the 
model is to understand, not to predict.  

                                                      
40  Boucek & Conway (2003), pages 162 and 165. 
41  For a detailed description of the model, see Boucek & Conway (2003). 

 
Why Complexity Science? 

 
In justifying why they used a bottom-up 
Complexity Science approach for their model, 
Boucek and Conway write: 
 
“Companies often have a number of ‘rules of 
thumb’ for determining the amount of a rate 
change that the market will bear, but very few 
rigorous models exist that attempt to estimate 
the likely customer reaction to a rate change. An 
approach to pricing that considers not only the 
impact of the new rates on the average premium 
charged, but also on the renewal behavior of 
policyholders can thus be a significant step 
forward for determining appropriate prices and 
likely future profitability. … 
 
The current ‘rules of thumb’ approach may have 
been good enough at one time. It may also be 
true that this approach will be acceptable today 
in a situation where the rate change is simple. An 
example would be a rate change that only applies 
to the base rates. However, one of the trends for 
virtually all lines of business is that rate 
structures have become more refined over time. 
Using automobile insurance as an example, the 
number of different possible combinations of rate 
classes is so great that it is not possible to assess 
all of the changes that individual policyholders 
will experience in a rate change where base rates, 
territorial factors, driver classification factors and 
accident surcharges all change at the same time. 
… 
Another advantage of the ABM (ie, agent-based 
modeling) approach is that it allows for the 
modeling of emergent behavior. These are 
behavioral impacts, which may seem irrational at 
an individual level but are exhibited when the 
behavior of a group is analyzed as a whole. An 
example of this phenomenon is the observed 
behavior of groups of insured to leave when they 
are presented with a rate decrease.” 40 
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E. EXERCISES 
1. For the class of 1D-CA, how many first-degree behavioral rules 
are there with a radius of one (rules that only relate to the states 
of next neighbors in the previous time step)? Now, after 
considering that a rule such as 10000011 is equivalent to the rule 
11000001 (left-right symmetry), and that a rule such as 10100101  
is equivalent to the rule 01011010 (‘on’-‘off’ equivalence) how 
many truly unique behavior rules are there? It may help to put 
these rules in the Excel one-dimensional CA model to see their 
effects. Does the number of unique rules surprise you? 
 
2. Consider CA-30 with one initial ‘on’ agent. Even though the 
sequence of states of the initial ‘on’ agent is perfectly 
deterministic, if you were simply given its state sequence from 1 
to 200, and not given any other information, could you predict its 
state at time 300? Could you confidently predict how many ‘1’s 
there would be between time 500 and 600? What does this say 
about our ability to predict such things as next quarter’s health 
expenditure trend rate or next year’s interest rate levels? 
 
3. Per Bak’s classic Sandpile model has ‘cliff’ boundaries. 
Implement a Sandpile model with periodic boundaries, and 
compare the resulting avalanche patterns with the two boundary 
types. Why do you think Per Bak preferred ‘cliff’ boundaries? 
 
4. In the classic Sandpile model, sand grains are added to 
randomly-chosen cells (agents). Develop a Sandpile model that 
only adds sand grains to the center cell. Do results from this 
model differ from the classic model. 
 
5. How would you create a one-dimensional Forest fire model? 
(Hint:  you don’t need to develop a new model to do this.) 
 
6. To measure the randomness of simple 1D-CA and 2D-CA, the 
1D and 2D models use a chart to compare the number of binary 
search strings of lengths 1, 2, 3, and 5 that are found in the agent’s 
results, to the 80 percent/120 percent confidence interval of the 
expected number of such search strings if the agent’s results were 
random. The models use a simplistic definition of confidence 
interval (see columns E and F of the sheet Analysis_SingleAgent). 
A more advanced approach would employ a binomial confidence 
interval reflecting p successes in n trials: 

𝐶𝐼 = 𝑛 × 𝑝 ±  𝑧1−𝛼
2� × �𝑝(1−𝑝)

𝑛
 with 𝑧1−𝛼

2�  = 0.84 
Using this approach, would the results be materially different?  
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F. TO LEARN MORE 
To learn more about cellular automata, you may first enjoy 
watching Stephen Wolfram’s presentation of A new kind of science 
at the University of California, San Diego.42 Then read the 
recommended pages of A new kind of science, one of this report’s 
Top ten Complexity Science books.43  
 
Then, you may find it interesting to read Schiff (2008) and Barrat, 
et al. (2008). 

G. REVIEW AND A LOOK AHEAD 
This chapter introduced the second of the four archetypal 
Complexity Science models:  cellular automata. CA models add 
behavior rules to the Network archetype, and so can trace the 
evolution of networks as component agents change their states 
based on behavior rules. 
 
You learned about four types of cellular automata, 1D-CA, 2D-
CA, the Sandpile, and the Forest fire; their terminology; how they 
are constructed and employed; and some examples of how they 
are applied. You also worked with four Excel CA models, and 
started to learn about agent-based modeling. 
 
Next, we will explore a type of Complexity Science model that 
includes an environment. With an environment, agents can move 
around and interact with the environment. You will see that this 
model type becomes quite realistic. 
 
There is a common misconception about CA, a mistake that even 
authors of CA books make. Many believe that an agent can move 
around on a 2D-CA grid, and so they classify models such as 
Schelling’s segregation model (where agents move around on a 
grid) as CAs. This is not strictly correct. Because CA do not 
include an environment, CA agents cannot move. This 
misconception probably arose due to the appearance of motion in 
CA like The Game of Life. However, such motion is due to 
patterns of the changing states of stationary agents, not to agents 
who are moving. We will meet agents who can move in the next 
chapter. 

                                                      
42 Wolfram (2008), a YouTube.com video that lasts about 90 minutes. 
43 See the book’s annotation in the section of this report titled Top ten complexity science books. You will find 

recommended sections for the book at the top of the annotation. 



Complexity science – an introduction (and invitation) for actuaries 

SIX:  ARTIFICIAL SOCIETIES     119 

CHAPTER SIX:  ARTIFICIAL SOCIETIES 
Today’s universities and think tanks are full of analysts who use multivariate equations to model the effects of 
changes in tax rates or welfare rules or gun laws or farm subsidies. I can easily envision a time, not long from 
now, when many of those same analysts will test policy changes not on paper but on artificial Americans that 
live and grow within computers all over the country, like so many bacterial cultures or fruit-fly populations. 
The rise and refinement of artificial societies is not going to be a magic mirror, but it promises some hope of 
seeing, however dimly, around the next corner. 

Jonathan Rauch1 

A. INTRODUCTION 
Joshua Epstein is a self-styled ‘generativist’, a colorful character 
(see sidebar), and largely responsible for changing the perspective 
of social science and economics from top-down to bottom-up. 
 
Skipping high school, Epstein entered Amherst college to study 
piano and music composition. But there he fell in love with 
mathematics, and switched to study math and political economy 
instead. In 1981, he earned a PhD in political science from MIT, 
and soon thereafter began work at the Brookings Institution, 
Washington DC’s oldest think tank. 
 
In the early 1990’s, he attended a conference at the Santa Fe 
Institute that changed his world view. Always enamored with 
models, at the conference he discovered models unlike any he had 
seen:  models that grew lifelike artificial trees, flocks of birds, and 
schools of fish, from simple rules, from the bottom up. Inspired to 
try such models with human societies, Epstein returned to 
Bookings, and, in the cafeteria, told his colleague Robert Axtell 
about his idea. Together, on a napkin, they sketched such a 
rudimentary society, with agents moving around an artificial 
world, gathering its only resource – sugar. They called their 
artificial society Sugarscape, and spent the next few years working 
on it. In 1996, they published their paradigm-shattering book 
about Sugarcape, titled Growing artificial societies.3 
 
This chapter introduces artificial societies (also called 
microworlds, surrogate worlds, virtual worlds, would-be worlds, 
sim-worlds, and even ‘peasants under glass’), our third model 
archetype, which includes agents, agent relationships, agent 
behavior, and an environment. You will learn about two artificial 
society model types – Schelling’s segregation model and 
Sugarscape – and how artificial society models are applied.  
                                                      
1 Rauch (2002), a fascinating article in The Atlantic Monthly about artificial societies, page 48. 
2 Rauch (2002) 
3 Epstein & Axtell (1996), one of this report’s Top ten Complexity Science books. 

 
Epstein and Axtell 

 
“Epstein is tall and portly, with a wild tuft of 
graying hair above each ear, a round face, and 
the sort of exuberant manner that brings to 
mind a Saint Patrick’s Day parade more readily 
than a Washington think tank. ‘No foam!’ he 
roared, grinning to a Starbucks server one day 
when we went out for coffee. ‘Keep your damn 
foam!’ 
 
Anyone who notices Epstein is soon likely to 
encounter Robert Axtell, his collaborator and 
alter ego. A programming wizard with training 
in economics and public policy, Axtell is of 
medium height, quiet, and as understated as 
Epstein is boisterous. When he speaks, the 
words spill out so quickly and unemphatically 
that the listener must mentally insert spaces 
between them.” 

Jonathan Rauch2 
 
Today, Epstein is the Director of the Brookings 
Institution Center on Social and Economic 
Dynamics, and a member of the External 
Faculty of the Santa Fe Institute. Axtell left 
Brookings in 2007 and is currently a professor at 
George Mason University. 
 



Complexity science – an introduction (and invitation) for actuaries 

Chapter six:  Artificial societies continued 

SIX:  ARTIFICIAL SOCIETIES     120 

B. BASICS 
The distinguishing feature of our third model archetype, artificial 
societies, is an environment. An environment is a space on which 
agents move (such as a city), resources with which agents interact 
(such as groceries on shelves), or external events (such as the 
weather). With the addition of environments, the artificial society 
archetype closely resembles our real world. 
 
In an artificial society model, an environment can be represented 
in many ways. It can be anything from a simple grid on which 
agents are located and move, to realistic 3D displays incorporating 
actual geographic coordinates and real-world features. 
 
Although they may sometimes appear similar, artificial societies 
are quite different from our second model archetype, cellular 
automata (CA). To see this, consider the following two grids, 
where the grid on the left is a 2D artificial society model and the 
one on the right is a 2D-CA model: 
 
 
 
 
 
 
 
 
 
In the CA model (on the right), because the grid represents the 
network of agent relationships, each of its cells is an agent. Thus, 
the CA grid includes 25 agents, with one agent in a blue state, two 
in a red state, and 22 in a white state. 
 
By contrast, the grid on the left is an artificial society 
environment, with only three agents. The three agents can move 
around on the grid to any of the unoccupied 22 environment 
spaces. 
 
To help distinguish the two model types, in this chapter, we will 
generally represent artificial society agents by round colored 
disks, rather than by colored cells. 
 
  



Complexity science – an introduction (and invitation) for actuaries 

Chapter six:  Artificial societies continued 

SIX:  ARTIFICIAL SOCIETIES     121 

C. ARTIFICIAL SOCIETY MODELS 
There are two common artificial society model types that we will 
explore: the ‘Schelling segregation model’ and ‘Sugarscape’. This 
section describes each. 

1. Schelling segregation model 
Thomas Schelling is an American economist and political scientist 
who was awarded the 2005 Nobel Memorial Prize in Economic 
Sciences for enhancing our understanding of conflict and 
cooperation. One of his most famous results is the Schelling 
segregation model. 
 
Developed in the 1960s and 1970s, the Schelling segregation 
model is one of the earliest Complexity Science models, with 
implications far beyond segregation. Because of his profound 
insight that a social system’s aggregate behavior may be quite 
different from what might be expected from extrapolating 
individual behavior, Thomas Schelling is sometimes called the 
father of agent-based modeling (see sidebar). 
 
In the Schelling segregation model, the environment is a two- 
dimensional grid with periodic boundaries. An agent may be 
located in any cell of the grid, but each cell can contain only one 
agent. Agents have two states, blue and red, corresponding to the 
agents’ race (or, alternatively, its class, age, religion, language, 
sexual preference, income level, or any other distinction that may 
give rise to social segregation). 
 
For example, the environment below contains eight agents, three 
red and five blue. 
 
 
 
 
 
 
 
 
 
In this model, as you shall see, the network of relationships among 
agents is not a simple static lattice; rather it is complex and ever-
changing, as in the real world. 
  

                                                      
4  Rauch (2002) 

 
Complicated social patterns 

from simple rules 
 
Written in 2002 about Thomas Schelling: 
 
“Today Schelling is eighty years old. He looks 
younger than his age and is still active as an 
academic economist, currently at the University 
of Maryland. He and his wife Alice live in a 
light-filled house in Bethesda, Maryland, where 
I went to see him one day not long ago. 
Schelling is of medium height and slender with a 
full head of iron-gray hair, big clear-framed 
eyeglasses, and a mild, soft-spoken manner. 
Unlike most other economists I’ve dealt with, 
Schelling customarily thinks about everyday 
questions of collective organization and 
disorganization, such as lunch-room seating and 
traffic jams. He tends to notice the ways in 
which complicated social patterns can emerge 
even when individual people are following very 
simple rules, and how those patterns can 
suddenly shift or even reverse as though of their 
own accord. Years ago, when he taught in a 
second-floor classroom at Harvard, he noticed 
that both of the building’s two narrow stairwells 
– one at the front of the building, the other at 
the rear were jammed during breaks with 
students laboriously jostling past one another in 
both directions. As an experiment, one day he 
asked his 10:00 A.M. class to begin taking the 
front stairway up and the back one down. ‘It 
took about three days,’ Schelling told me, 
‘before the nine o’clock class learned you should 
always come up the front stairs and the eleven 
o’clock class always came down the back stairs’ 
– without, so far as Schelling knew, any explicit 
instruction from the ten o’clock class. ‘I think 
they just forced the accommodation by changing 
the traffic pattern,’ Schelling said.” 

Jonathan Rauch4 
 



Complexity science – an introduction (and invitation) for actuaries 

Chapter six:  Artificial societies continued 

SIX:  ARTIFICIAL SOCIETIES     122 

C. ARTIFICIAL SOCIETY MODELS CONTINUED 

1. Schelling segregation model continued 

 
Agent relationships 
At any time step, an agent is related to other agents to which it is  
connected through contiguous locations on the environment. The 
definition of contiguous includes agents located in neighboring 
north, south, east, or west cells, as well as agents located in 
diagonally contiguous locations. 
 
For example, agent 1 below is related to agent 2 (because they 
have a common immediate neighbor), but not to agent 3. And, of 
course, the environment location 4 is not an agent at all. 
 
 
 
 
 
 
 
 
Agent behavior 
An agent’s behavior rule determines whether it will move from 
one location on the environment to another. The rule depends on 
the agent’s preference for like-colored neighbors, quantified by a 
‘neighbor preference percentage’. If the fraction of the agent’s 
like-colored immediate neighbors (within a Moore neighborhood 
of radius one) is greater than or equal to its neighbor preference 
percentage, the agent is happy and doesn’t move. However, if the 
fraction is less than the preference percentage, the dissatisfied 
agent moves to a random location that meets its preference 
threshold.6 The behavior rule is synchronously applied to all 
agents at every time step, and the time steps continue until all 
agents are satisfied and there is no more movement. 
 
For example, if the neighbor preference percentage is 0.5, agent 1 
in the diagram above would move, because it has 5 total 
immediate neighbors, but only 1 red neighbor. The fraction of its 
like-colored neighbors is 1/5 = .20, which is less than 0.5. 
 
  

                                                      
5  Schelling (2006), page 14. Note that this was originally written in 1978. 
6  The classic Schelling segregation model has a slightly different behavior rule:  if an agent is dissatisfied, it moves to the 

nearest location where it will be happy. 

 
Surprising aggregate results 

 
Writing about the unexpected aggregate 
behavior of social systems, Thomas Schelling 
wrote: 
 
“These situations, in which people’s behavior or 
people’s choices depend on the behavior or the 
choices of other people, are the ones that usually 
don’t permit any simple summation or 
extrapolation to the aggregates. To make that 
connection we usually have to look at the system 
of interaction between individuals and their 
environment, that is, between individuals and 
other individuals or between individuals and the 
collectivity. And sometimes the results are 
surprising. Sometimes they are not easily 
guessed. Sometimes the analysis is difficult. 
Sometimes it is inconclusive. But even 
inconclusive analysis can warn against jumping 
to conclusions about individual intentions from 
observations of aggregates, or jumping to 
conclusions about the behavior of aggregates 
from what one knows or can guess about 
individual intentions.”5 
 
 

4

1

2

3
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

1. Schelling segregation model continued 

Each row of the following set of Schelling segregation model 
results shows the agent configuration at time steps 0, 1, and 5 for 
a particular neighbor preference percentage. For example, the 
first row shows the results for a neighbor preference percentage 
of 25 percent.7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
7 Created with the Repast Shelling segregation model accompanying this report, with the following parameters: rows: 50; 

columns: 50; number of blue agents: 1,000; number of red agents: 1,000; neighbor preference percentages: 0.25, 0.30, 
0.35, and 0.50; random number seed: 10. 

30%

35%

Preference percent: 25%

50%
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

1. Schelling segregation model continued 

What is remarkable about the model results shown above is that 
people who want only 50 percent of their neighbors to be like 
themselves – that is people who are quite tolerant – produce 
pronounced segregation. Indeed, people who only desire 25 
percent like neighbors produce considerable segregation. 
 
The degree of the population’s overall segregation bears little 
resemblance to the modest biases of its members. Had someone 
shown you any of the model results above at step 5, would you 
have guessed the low level of individual bias that gave rise to it? 
 
One might wonder if the model’s counter-intuitive result is 
simply a product of its lattice environment, or perhaps the 
homogeneity of neighbor preference percentages among all 
agents. Interestingly, on other environment topologies, and with 
asymmetrical distributions of neighbor preference percentages (ie, 
the preference percentage of blues is different from that of reds), 
researchers have found that the segregation propensity is even 
greater. Thus, the result appears to be robust over a wide range of 
parameters.8 
 
 
The Schelling segregation model is the first model in this report 
that was developed using the powerful agent-based modeling 
platform Repast Simphony. To become more comfortable with 
Repast Simphony, you may enjoy tinkering with the Schelling 
segregation model (see sidebar). To begin programming agent-
based models in Repast Simphony, follow the set-up instruction 
for Repast Simphony in this report’s accompanying section titled 
“Getting started with modeling platforms” (located on the report’s 
SOA web page). You may also find it helpful to read Chapter two: 
Agent-based modeling. 
 
 
 
 
 
 
 
 
  

                                                      
8 Miller & Page (2007), pages 163-164, and 145-146. 

 
Exploring the model 

 
To become more comfortable with Repast 
Simphony models, start by exploring the 
Schelling segregation model: 
 
 Explore the control buttons at the top of the 

Repast Simphony environment (hover over 
the buttons to see a description of what they 
do). Start by initializing a run, then step 
through a simulation by clicking on the ”step 
run” button. Notice the successive time step 
(‘tick’) counts in the upper right-hand corner. 

 To move and resize the Schelling segregation 
environment within its window, right click 
and drag it into place, then use the wheel on 
your mouse to expand or contract it (or, 
alternatively, for a more dramatic effect, hold 
downs the Alt key on your keyboard, hold 
down the right mouse button, and move the 
mouse). 

 Click on the “toggle info probe” button to 
hover over any agent and see information 
about it. Alternatively, double-click on an 
agent, and its information will appear in a 
window. 

 Click on the “stop run” button to stop the 
simulation, then click on the “reset” button to 
reset the simulation. Then go to the  
‘parameters’ tab to enter parameters for a 
new simulation, and click on the “initialize 
run” button to start another simulation. 
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape 
Now let’s explore the artificial society called Sugarscape, where 
agents can not only move around on an environment, but can also 
interact with it.  
 
Environment 
In the simplest version of Sugarscape, the environment consists of 
a 50 x 50 grid on which there are two mountains of sugar, with 
higher elevations of sugar represented by darker colors: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The highest elevation is 4 sugar units (the darkest color), followed 
by terraces of three units, two units, and one unit. Some 
locations, colored white, have no sugar. 
 
Agents 
Into this sweet world are introduced agents at random locations 
(the blue disks): 
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape continued 

Agent attributes 
Each agent has the following attributes: 
 Metabolic rate: The number of sugar units it must consume 

each time step in order to stay alive. 
 Vision: The distance that it can see, measured by a number 

of grid cells. Agents can only see in north, south, east, and 
west directions; they cannot see diagonally. For example, the 
diagram at right highlights the grid cells that an agent with a 
vision of one can see. 

 Death age:  The age at which the agent dies and is removed 
from the environment. 

 Location: Its row and column on the grid (there can be only 
one agent per location). 

 Wealth: The amount of sugar units that an agent 
accumulates. 

 
When the simulation starts, each agent is given a random 
metabolic rate, vision, and death age (all within limits specified by 
the modeler). These attributes can be thought of as its genetic 
endowment. At the start, each agent is also given a random 
location and a random accumulation of sugar units. So, some 
agents begin at the top of a sugar hill with much wealth, and some 
begin in the lowlands with no wealth. The agents are thus 
‘heterogeneous’; for all their attributes, they can have different 
values. 
 
Agent behavior rule 
At each time step, each agent follows a simple behavior rule: It 
looks out as far as its vision permits, moves to the nearest 
unoccupied cell with the most sugar, adds all the sugar units in the 
cell to its store of sugar wealth, and consumes an amount of sugar 
equal to its metabolic rate.9 If at any time step, the agent does not 
have enough sugar wealth to satisfy its metabolic rate, it starves to 
death and is removed from Sugarscape. 
 
For example, consider the agent shown in the upper grid at right. 
It has a metabolic rate of 1, vision of 2, and – before it moves – 
wealth of 10. In the next time step, it moves to the location 
shown (not to location ‘1’, because this location is diagonal), 
gathers the 4 sugar units, eats 1, and increases its wealth to 13.   
                                                      
9 In the behavior rule, there are two random elements:  Each time step, agents are selected in random order to follow 

the behavior rule. Also, if the agent identifies two or more cells to which it could move, it chooses one randomly. 

1

1
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape continued 

Environment behavior rule 
The environment also has a behavior rule:  At each time step, the 
amount of sugar in each cell on the sugar mountain increases by a 
number of units specified by the modeler (the sugar ‘growth 
rate’), but the amount in each cell cannot exceed its initial sugar 
level (4 units at the top, 3 at the next level, etc.). 
 
For example, let the sugar growth rate be 3. If at time step 1 an 
agent takes all the sugar from a cell at the top of a mountain, at 
the start of time step 2, the amount of sugar in the cell will grow 
back to 3. 
 
First Sugarscape simulation 
Let’s run our first Sugarscape simulation. If we randomly assign 
metabolic rates from 1 to 4 inclusive, vision from 1 to 6 inclusive, 
initial wealth from 5 to 25 inclusive, allow the agents to only die 
from starvation (not from old age), and set the sugar growth rate 
to 4 (sugar grows back to its full capacity immediately), can you 
guess what will happen when we randomly release 400 agents on 
Sugarscape? Following is the answer, at time steps 0 
(initialization), 1, 10, and 50.10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
10 Created with the Repast Simphony Sugarscape model accompanying this report, with the following parameters: Number 

of initial agents: 400; maximum vision: 6; maximum metabolic rate: 4; minimum death age: 1000; maximum death age: 
1000; minimum initial wealth: 5; maximum initial wealth: 25; sugar growth rate: 4; replace dead agents?: unchecked 
(no); default random seed: 10. 

Step 0 Step 1

Step 10 Step 50
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape continued 

First Sugarscape simulation continued 

Two features of the first simulation are immediately striking: 
 
 The agents gravitate to terrace edges, and there they stay. 

Upon reflection, this behavior makes sense:  Because the 
environment immediately replenishes the sugar supply to full 
capacity, once agents reach the edge of a terrace, most cannot 
see any cells with more sugar, and so they don’t move. 
 

 Many agents die of starvation. For agents who are born with 
high metabolism and low vision, and who had the misfortune 
to be born at lower elevations, life on Sugarscape is hard. In 
fact, as the chart below shows, the number of agents drops 
dramatically from 400 to about 250, and then stays at this 
level. Under the first simulation’s assumptions, this is 
Sugarscape’s ‘carrying capacity’.11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
11 This chart was automatically produced by the Repast Simphony Sugarscape model. 
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape continued 

First Sugarscape simulation continued 

The chart below shows the evolution of the mean vision and 
metabolic rate over the course of the first simulation. Not 
surprisingly, evolution favors better vision and a lower metabolic 
rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
And the chart below is a histogram of agents’ sugar wealth 
distribution at time step 50. Again, there is nothing particularly 
surprising.12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
12 These charts are automatically produced by the Repast Simphony Sugarscape model. 
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape continued 

 
Second Sugarscape simulation 

Now let’s explore the second Sugarscape simulation. Parameters 
and behavior rules for the second simulation are the same as those 
for the first, with the following exception:  Rather than 
immediately growing back to full capacity, the environment’s 
sugar only grows back at the rate of one sugar unit per time step. 
What impact do you think this change makes? 
 
Following is the second simulation at time steps 0, 1, 10, and 
250.13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                      
13 Created with the Repast Simphony Sugarscape model accompanying this report, with the following parameters: Number 

of initial agents: 400; maximum vision: 6; maximum metabolic rate: 4; minimum death age: 1000; maximum death age: 
1000; minimum initial wealth: 5; maximum initial wealth: 25; sugar growth rate: 1; replace dead agents?: unchecked 
(no); default random seed: 10. 

 
Exploring the model 

 
As with the Schelling segregation model, you 
will learn a lot, and become more comfortable 
with Repast Simphony, by exploring the 
Sugarscape model: 
 
 Double-click on agents to see their attributes 

and how the attributes change over time. In 
this way, as a simulation progresses, you can 
follow the attributes of many agents. 

 Change the parameters. For example, explore 
what happens with just one agent as you vary 
the parameters. 

 Run the simulations for thousands of time 
steps to see whether simulation results 
converge or diverge. 

 Generate new charts by right-clicking on 
“Charts” under Environment, and supplying 
appropriate parameters. 

 As we will do in the third Sugarscape 
simulation, create new output by right 
clicking on “Outputters” under Environment, 
and supplying appropriate parameters. Then 
analyze the output using Excel or R. 

 Experiment with parameters on the “Run 
Options” screen, to see how they can make it 
easier for you to use the model. For example, 
you may need to increase the tick delay, in 
order to slow down the simulation (have you 
noticed that Repast Simphony models are 
much faster than Excel models?) 

 Move the windows of the display to different 
areas of the screen to create a configuration 
that makes it easy for you to view model 
results. 

 Click on the camera or camcorder images to 
export images or movies. Try importing the 
images and movies into PowerPoint for a 
presentation. 

 

Step 0 Step 1

Step 10 Step 250
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C. ARTIFICIAL SOCIETY MODELS CONTINUED 

2. Sugarscape continued 

 

Second Sugarscape simulation continued 

In this simulation, the agents evolve into two colonies, one atop 
each mountain. What is perhaps most intriguing:  by step 10, the 
elevation of Sugarscape has been leveled; there are practically no 
more cells with 4 or even 3 sugar units. Without centralized 
direction, the agents have evolved into a surprisingly efficient 
harvesting machine. 
 
As in the first simulation, here the vision increased from about 3.5 
to about 3.9, the metabolic rate dropped from about 2.5 to about 
1.8, and the number of agents dropped from 400 to 235. 
 
In this overview of Sugarscape, we have only touched its surface. 
Epstein and Axtell’s work went much further, addressing social 
networks, pollution, effects of inheritance, genealogical networks, 
cultural dynamics, war, trade, competition, and disease 
transmission, all of which can be modeled with Repast Simphony. 
 
In the next section, we’ll explore two practical applications of 
Sugarscape relating to wealth distribution and non-equilibrium 
economics. 
 
  

                                                      
14 Epstein & Axtell (1996), pages 153 and 158. 

 

The point 
 
In the conclusion of Growing artificial societies, 
Epstein and Axtell write: 
 
“The main point of the preceding chapters  is 
simply this:  A wide range of important social, 
or collective, phenomena can be made to 
emerge from the spatio-temporal interaction of 
autonomous agents operating on landscapes 
under simple local rules. … 
 
As we have demonstrated, in an agent-based 
model each individual can have a variety of 
behavioral rules, and these can all be active 
simultaneously. When such multifaceted agents 
are released into an environment in which (and 
with which) they interact, the resulting society 
will – unavoidably – couple demography, 
economics, cultural change, conflict, and public 
health. All these spheres of social life will 
emerge – and merge – naturally and without 
top-down specification, from the purely local 
interactions of the individual agents. Because the 
individual is multifaceted, so is the society. The 
fixed coefficients of aggregate models – such as 
fertility rates or savings rates – become 
dynamic, emergent entities in bottom-up 
models.”14 
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D. PRACTICAL APPLICATIONS 
As with networks and cellular automata, my search of actuarial 
databases for applications of artificial societies came up empty. In 
fact, it appears that applications of artificial societies that are 
relevant to the actuarial domain are relatively rare. Following are 
three such applications, one from Sugarscape regarding wealth 
distribution, another from Sugarscape regarding non-equilibrium 
economics, one about epidemic dynamics that may interest health 
actuaries, and one called Archimedes about healthcare decision 
making that is sure to interest both health and non-health 
actuaries. 
 

1. Wealth distribution 
In 1895, Vilfredo Pareto collected income data from a number of 
countries, and found that their frequency distribution followed an 
unusual pattern, what we now call the Pareto distribution, or 
power-law distribution. Rather than the normal distribution of 
income that one might expect, income is highly skewed:  many 
people have relatively low income, while the income of a very few 
is vast. Since then, traditional economists have confirmed that 
both income and wealth follow a power-law distribution. But, 
despite considerable work, they could never figure out why. The 
simple agents of Sugarscape provide an explanation. 
 
For this application of Sugarscape, we introduce death and birth:  
We set the minimum and maximum ages of natural death at 60 
and 100, and when an agent dies from natural death or starvation, 
we replace it with a newborn agent who has a random initial 
genetic endowment (vision and metabolic rate), a random death 
age (between 60 and 100), and a random initial location. 
Otherwise, the parameters are the same as for the second 
simulation. At right are results at time steps 1, 10, 50, and 100. 15 
 
There is nothing obviously new in these visual results. As well, 
analysis of agent counts and attributes are not surprising: the 
number of agents stays steady at 250 (because we replace each 
dead agent with a newborn), and the genetic attributes of vision 
and metabolic rates again evolve to favor survival. 
  

                                                      
15 Created with the Repast Simphony Sugarscape model accompanying this report, with the following parameters: Number 

of initial agents: 250 (the carrying capacity of Sugarscape); maximum vision: 6; maximum metabolic rate: 4; minimum 
death age: 60; maximum death age: 100; minimum initial wealth: 5; maximum initial wealth: 25; sugar growth rate: 1; 
replace dead agents?: checked (yes); default random seed: 10. 

Step 0 Step 10

Step 50 Step 100
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Wealth distribution continued 

 
But there is a new phenomenon – a result that blasted traditional 
economists awake – illustrated by the following charts of agent 
wealth distribution at time steps 1, 10, 50, and 95:16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now that you know all the rules of Sugarscape, how would you 
explain why its inhabitants end up with a skewed distribution of 
wealth? How would you explain why two agents – both with 
average vision, metabolic rate, death age, and initial location – 
end up on opposite ends of the wealth spectrum? How would you 
help to develop a policy to reduce such wealth inequality? 
 
Would you apply a traditional method such as regression analysis, 
and determine the combination of factors that correlate most 
strongly with wealth, in an attempt to discover cause-effect 
relationships? Would you data-mine the results to find an answer, 
or apply predictive analytics? 
 
  

                                                      
16 These charts are automatically produced by the Repast Simphony Sugarscape model. 

Step 95Step 50

Step 1 Step 10
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Wealth distribution continued 

Unfortunately, such traditional methods would fail. Because agent 
attributes (genetic endowments, initial wealth, and location) are 
initially distributed randomly and uniformly, if the wealth 
distribution were dependent on attributes alone, one would 
logically find wealth roughly evenly distributed by attribute. Thus, 
no attribute mining or analysis will discover a linear cause-effect 
relationship. Nor are simplistic political views such as “the rich 
exploit the poor to get richer” or “it’s the stupid lazy people who 
are poor” accurate or useful. 
 
The true explanation is deeper. The cause of the skewed wealth 
distribution is the system as a whole; it is everything. It is 
Sugarscape’s structure, the agent endowments, and the behavior 
rules all together; and, perhaps most interestingly, it is luck. The 
skewed wealth distribution is simply an emergent property of the 
system (see sidebar), and cannot be reduced to simple cause-effect 
explanations. 
 
The reason for horizontal inequality – why two agents with 
similar initial endowments end up on opposite ends of the wealth 
distribution –  is simply luck:  one agent happened to turn south 
toward an area of low sugar, whereas the other turned north to 
riches. 
 
This understanding has important implications for policy 
formation. Simulation models such as Sugarscape would enable 
regulators and other policy makers to understand which changes 
in environmental structure or behavior rules can have the most 
potent effects. In fact, in the area of energy regulation such 
models are beginning to enter the regulatory process:  To avoid 
repeating the 2000 disaster when Enron and other companies 
manipulated energy supplies and prices, several US states now use 
agent-based models to test complex electricity market designs 
before implementation.18 The point of these models is not 
prediction, but understanding. 
 
  

                                                      
17 Epstein & Axtell (1996), pages 34-35. 
18 Economist Leigh Tefatsion of Iowa University (in Ames, Iowa) has led the development of the agent-based model known 

as the Ames wholesale power market test bed. 

 
Emergence of wealth 

 
Epstein and Axtell write about the distribution 
of wealth on Sugarscape: 
 
“In the sciences of complexity, we would call 
this skewed distribution an emergent structure, a 
stable macroscopic or aggregate pattern induced 
by the local interaction of the agents. Since it 
emerged ‘from the bottom up,’ we point to it as 
an example of self-organization. Left to their 
own, strictly local, devices the agents achieve a 
collective structuring of some sort. This 
distribution is our first example of a so-called 
emergent structure. 
 
The term ‘emergence’ appears in certain areas 
of complexity theory, distributed artificial 
intelligence, and philosophy. It is used in a 
variety of ways to describe situations in which 
the interaction of many autonomous individual 
components produces some kind of coherent, 
systematic behavior involving multiple agents. 
To our knowledge, no completely satisfactory 
formal theory of ‘emergence’ has been given. A 
particularly loose usage of ‘emergent’ simply 
equates it with ‘surprising’ or ‘unexpected’, as 
when researchers are unprepared for the kind of 
systematic behavior that emanates from their 
computers. A less subjective usage applies the 
term to group behaviors that are qualitatively 
different from the behaviors of individuals 
composing the group. 
 
We use the term ‘emergent’ to denote stable 
macroscopic patterns arising from the local interaction 
of agents. One example is the skewed wealth 
distribution; here, emergent structure is 
statistical in nature.”17 
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2. Non-equilibrium economics 

Traditional economics is elegant theory, but in key areas it doesn’t 
square with reality. For example, contrary to what traditional 
economic theory predicts, in the real world there is horizontal 
inequality, multiple prices in a market (rather than a ‘law of one 
price’), and relatively high levels of price volatility and trading 
volume (rather than equilibrium). To the amazement – and 
consternation – of traditional economists, not only does 
Sugarscape reproduce fundamental economic results such as the 
law of supply and demand and welfare gains from trade, it also 
explains key real-world phenomena that traditional economics 
cannot explain, all with simple boundedly-rational agents 
following simple behavior rules. Let’s see how Epstein and Axtell 
accomplished this. 
 
Environment 
To enable trade on Sugarscape, a second resource – spice – is 
added. In addition to two mountains of sugar, two similar 
mountains of spice are added, but on the SE-NW diagonal (see the 
diagram to the right). With this arrangement, most cells of 
Sugarscape now have units of both sugar and spice. 
 
Agents 
To the agent attributes are added: 
 Spice wealth:  the agent’s accumulation of spice. 
 Spice metabolism:  the units of spice that an agent must 

consume each time step in order to stay alive. Agents die if 
their sugar or spice accumulation falls to zero. 

 
Agent behavior 
Agents attempt to gather the resources (sugar or spice) they need 
to stay alive. As in the one-resource case, an agent looks around to 
the extent of its vision for a cell that maximizes its welfare. 
Specifically, an agent chooses the cell that maximizes the welfare 
quantity: 
 

(𝑤1 +  𝑥1
𝑐)( 𝑚1

𝑚1+ 𝑚2
 ) ×  (𝑤2 +  𝑥2

𝑐)( 𝑚2
𝑚1+ 𝑚2

) 
 

 
where 𝑥1

𝑐  and 𝑥2
𝑐  are the sugar and spice levels of cell c, 𝑤1 and 

𝑤2 are the agent’s wealth levels of sugar and spice, and , 𝑚1 and 
𝑚2 are the agent’s metabolism rates for sugar and spice.19  
                                                      
19  The quantity is a Cobb-Douglas functional form, widely used in economic theory. 

Spice Sugar
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2. Non-equilibrium economics continued 

Agent behavior continued 

To make sense of this welfare quantity, assume that the agent’s 
metabolic rate for sugar is twice that for spice (𝑚1 =  2𝑚2) , and 
that its wealth levels of sugar and spice are equal (𝑤1 =  𝑤2). 
Then, if the agent has a choice between two cells with the same 
level of spice, because the quantity would be larger for the cell 
with the higher sugar units, the agent would choose the cell with 
more sugar. 
 
As in the case of a single resource, if there are two cells that 
produce the same welfare quantity, the agent chooses the nearest 
cell. 
 
In addition, agents can now trade. At each time step, each agent 
randomly chooses one of its von Neumann neighbors as a trade 
partner. When two agents trade, each agent first computes the 
value of its sugar and spice stores as: 
 

𝑉 =  
𝑤2 𝑚2�
𝑤1 𝑚1�

 

 
which is the ratio of the time steps to death if the agent gathers no 
more spice to the time steps to death if it gathers no more sugar. 
 
If for two trading agents A and B this value is equal (𝑉𝐴 =  𝑉𝐵) 
they don’t trade. If 𝑉𝐴 >  𝑉𝐵, agent A buys sugar and sells spice. 
 
The trading price is 
 

𝑝 =  �𝑉𝐴  ×  𝑉𝐵 
 
If 𝑝 > 1, p units of spice are exchanged for 1 unit of sugar. If 
𝑝 < 1, then one unit of spice is exchanged for 1/p units of 
sugar. If such an exchange increases the welfare of both agents but 
does not change the initial relative relationship between VA and 
VB, they go ahead and trade. The agents then recalculate their V 
and continue trading until further exchange does not increase 
their mutual welfare. 
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2. Non-equilibrium economics continued 

Now, let’s see the impact of the new agent attributes, behavior 
rules, and environment. The following charts show supply and 
demand curves from Sugarscape, as well as the actual price and 
quantity at four times during a trade simulation.21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Contrary to traditional economic theory, the price and quantity 
traded do not correspond to the intersection of supply and 
demand curves. As the charts show, while the actual price moves 
around the general equilibrium price, the actual quantity traded is 
always less than what is necessary to ‘clear the market’ and attain 
optimum welfare. There is always some demand unfulfilled. 
 
The model demonstrates that the reason for mismatch between 
Sugarscape’s actual price and quantity, and the intersection of 
supply and demand curves, is timing. At each time step, agents 
produce (gather sugar and spice), consume, and trade. But, it 
takes time for the system as a whole to reach price equilibrium. 
By the time the society as a whole converges to price equilibrium, 
agents are in new positions of production and consumption, 
shifting the supply/demand curves intersection to a new place. 
The actual price and quantity forever trails the intersection point.  

                                                      
20 Buchanan (2009) 
21 From a video clip supplied with Epstein & Axtell (1996), based on 200 initial agents, initial endowments of sugar and 

spice between 25 and 50, vision between 1 and 5, and metabolism rates for sugar and spice between 1 and 5. 

 
Without presupposing the result 

 
“Financial regulators do not have the tools they 
need to predict and prevent meltdowns … They 
can do a good job of tracking an economy using 
the statistical measures of standard economics, 
as long as the influences on the economy are 
independent of each other, and the past remains 
a reliable guide to the future. But the recent 
financial collapse was a ‘systemic’ meltdown, in 
which intertwined breakdowns in housing, 
banking and many other sectors conspired to 
destabilize the system as a whole. And the past 
has been anything but a reliable guide of late:  
witness how US analysts were led astray by 
decades of data suggesting that housing values 
would never simultaneously fall across the 
nation. 
 
Likewise, economists can get reasonably good 
insights by assuming that human behavior leads 
to stable, self-regulating markets, with the 
prices of stocks, houses and other things never 
departing too far from equilibrium. But 
‘stability’ is a word few would use to describe 
the chaotic markets of the past few years, when 
complex, nonlinear feedbacks fuelled the boom 
and bust of the dot-com and housing bubbles, 
and when banks took extreme risks in pursuit of 
ever higher profits. 
 
In an effort to deal with such messy realities, a 
few economists – often working with physicists 
and others outside the economic mainstream – 
have spent the past decade or so exploring 
‘agent-based’ models that make only minimal 
assumptions about human behavior or inherent 
market stability. The idea is to build a virtual 
market in a computer and populate it with 
artificially intelligent bits of software – ‘agents’ 
– that interact with one another much as people 
do in a real market. The computer then lets the 
overall behavior of the market emerge from the 
actions of the individual agents, without 
presupposing the result.” 

Mark Buchanan20 
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3. Epidemic dynamics 
In the U.S., concern about bioterrorism has centered on 
smallpox. Smallpox is highly communicable and kills about 30 
percent of those infected. With the current low level of 
immunization against this disease in the U.S. (smallpox 
vaccinations ended in 1972) it poses a significant threat.  
 
In the wake of the September 11 attacks, there was considerable 
debate about an appropriate national strategy to counter smallpox 
bioterror. In 2003 and 2004, Epstein et al developed a virtual-
world model to help define such a strategy.22 
 
Agents 
The model consists of 800 agents, representing individuals who 
live and work in two towns, Circletown and Squaretown. The 
agents of Circletown are represented by circular disks, and those 
of Squaretown by squares. 
 
Each agent has the following disease states (represented by the 
following colors): 
 
 
 
 
 
 
 
 
Each also has the following attributes:  city ID, family ID, daytime 
role (worker, student, hospital worker), and workplace or school 
ID (depending on whether the agent is an adult or a child). 
  

                                                      
22 Toward a containment strategy for smallpox bioterror:  an individual-based computational approach, Chapter 12 of Epstein (2006). 

Healthy and susceptible
Infected, asymptomatic, noncontagious
Infected, mild symptoms, slightly contagious
Infected, severe symptoms, highly contagious
Recovered, immune
Dead
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3. Epidemic dynamics continued 

 
Environment 
The model’s environment, with its 800 agents is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the left are the two towns, Squaretown on top, and 
Circletown on bottom. It is currently night time, and all agents 
are at home with their families (each of which consists of two 
parents and two children). In the center are the workplaces and 
schools for the two towns, one of each per town. And on the right 
is the hospital and the morgue, serving both towns. 
 
Time 
Each time step represents one hour. There are 20 hours in each 
day, 10 of which are day time (when inhabitants are in school or at 
work if they are healthy), and 10 of which are night time (when 
inhabitants are at home). 
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3. Epidemic dynamics continued 

 
Agent behavior rules 
At the start of each day, all healthy agents go either to work or 
school. Each day, an agent’s location at work or school is 
randomly determined (and so its work and school neighbors vary 
from day to day). Ten percent of adults from each town commute 
to work in the other town, but all children go to school in their 
town. Five agents from each town work in the hospital. At night, 
all agents return home. 
 
At each time step, each agent (in a randomly-determined order) 
has an interaction with a randomly-selected neighbor in its Moore 
neighborhood (where at night the Moore neighborhood of an 
agent is understood to consist only of its family). Some of these 
interactions will result in a ‘contact’ (at work and school, 30 
percent of interactions result in a contact; in the hospital, 100 
percent do.) If an agent has contact with an agent in the slightly 
contagious phase of smallpox, the agent will contract the disease 
with a probability of 0.20. During the highly contagious phase, the 
probability is 0.40. 
 
For an infected agent, the slightly contagious phase lasts for days 
13 through 15 after contracting the disease, and the highly 
contagious phase lasts for days 16 through 23. At day 16, infected 
agents are hospitalized, and from then through day 23, they can 
die with cumulative probability of 0.30. Dead agents are placed in 
the morgue. 
 
 
 
 
 
 
 
The model’s parameters for disease transmission were obtained by 
calibrating model results to historical data from 49 instances of a 
single smallpox case being introduced into Europe during the 
period 1950-1971. To calibrate the data, the researchers ran 
about 10,000 simulations, sweeping through all the major model 
parameter combinations. For the model, they chose parameters 
that minimized the sum of squared deviations from historical data. 
 
  

Transferred to hospital Recovered, immune

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Infected, noncontagious Infected, Infected, highly contagious

slightly Dead
contagious
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3. Epidemic dynamics continued 

 
Simulation 
Starting with one infected agent, and without any vaccination 
strategy, the following sequence shows the simulation at times 0 
(day 10 of the initial agent’s infection), day 1, day 30, and night 
60. As you see, by night 60, the towns have been decimated by 
disease. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By introducing a variety of immunization strategies into such 
simulations, Epstein discovered one that was superior to those 
previously considered, namely: 
 Vaccination of 100 percent of hospital workers 
 Voluntary revaccination of healthy individuals successfully 

vaccinated in the past. 
 Hospital isolation of confirmed cases. 
 Vaccination of household members of confirmed cases. 
 
Again, the point is to understand, not to predict.  

Day 30

Day 1

Night 60
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4. Healthcare decisions 
The closest thing we have to a model of the US healthcare system 
is Archimedes. Twenty years and tens of millions in the making, 
Archimedes is an agent-based model that aids healthcare decision 
makers of every kind. Conceived and nurtured by David Eddy 
(see sidebar) and Leonard Schlessinger (PhD in physics), it gathers 
together myriad strands of evidence about human physiology, 
diseases, diagnoses, treatments, physician behavior, patient 
behavior, and healthcare organizational logistics, and weaves them 
into a quantitative tapestry to help decision makers see likely 
outcomes of their choices. 
 
This section describes the model and gives one example of its use. 
Because the model’s scope is wide, and its architecture deep, this 
description is longer than others in the report. Even if you are not 
a health actuary, you may find it enlightening, for Archimedes is 
an excellent example of how a complex social system model is 
conceived, developed, validated, and used. 

Scope 
Archimedes was designed to support a wide spectrum of US 
healthcare decisions, including: 
 Selecting new treatment combinations. Archimedes 

helps decision makers understand the potential impact of new 
treatment combinations. It can model the potential outcome 
of two treatments that have been researched separately but 
never implemented in combination. For example, in 2003 
Archimedes showed that a simple combination of aspirin and 
generic drugs to lower blood pressure and cholesterol would 
dramatically reduce the heart attacks and strokes that 
commonly accompany diabetes. David Eddy convinced the 
Kaiser Permanente health plan to change the treatment of 
diabetics to incorporate the new treatment combination, and 
thereby improved patient outcomes and reduced costs by 
hundreds of millions, just as Archimedes projected.24 

 Focusing data collection. Today much healthcare data is 
collected through research and clinical trials, but it is largely a 
hodge-podge. By organizing healthcare data in one model, 
Archimedes highlights important data gaps and focuses data 
collection efforts.  

                                                      
23 Carey (2006) 
24 Carey (2006) 

 
David and the US healthcare system 

 
David Eddy, an MD trained in heart surgery 
with a PhD in applied mathematics, is an 
iconoclast. He has devoted his career to 
exposing the darkest secret of the US healthcare 
system. About this secret, he says, “The 
problem is that we don’t know what we are 
doing. … I’ve spent about 25 years proving that 
what we lovingly call clinical judgment is 
woefully outmatched by the complexities of 
medicine.”23 His slingshot is Archimedes. 
 
The reason why so much of US health care is 
ineffective, Dr. Eddy claims, is that healthcare 
providers and decision makers cannot make 
sense of the vast complexities of human biology, 
diagnostic procedures, treatments, and 
cascading new medical knowledge in order to 
treat patients effectively and consistently. 
Consequently, they often rely on overly-
simplistic heuristics to make medical decisions. 
 
His PhD dissertation overturned two guidelines 
of the time. He showed that: 
 Annual chest X-rays are worthless. 
 Yearly Pap smears for women at low risk of 

cervical cancer are a waste of resources. 
 
He also showed that bone marrow transplants 
for breast cancer don’t work, and traced one 
common practice –  preventing women from 
giving birth vaginally if they had previously had a 
cesarean – to the erroneous recommendation of 
one lone doctor. 
 
He coined the term ‘evidence-based medicine’ 
in the 1980s, and has spent the last 20 years 
developing Archimedes to help healthcare 
decision makers make decisions based on 
evidence. He is deservedly proud of the model, 
and hopes that someday every decision maker 
will pause before making a healthcare decision 
and ask, “What does Archimedes say?”  
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4. Healthcare decisions continued 

Scope continued 

 Comparing effectiveness. Archimedes can compare the 
costs and effectiveness of various healthcare interventions 
such as diagnostic procedures, treatments, and preventive 
procedures. Such comparisons are useful to decision makers 
for developing guidelines, setting priorities and designing 
performance measures. 

 Developing incentives. The model can help decision 
makers develop incentives to improve provider performance 
and patient compliance. 

 Designing health plans. The model can help decision 
makers understand the potential cost and outcome impacts of 
various health plan designs. 

 Developing new care processes. The model can 
determine the impact on costs and outcomes of changing 
guidelines, logistics, and timing of healthcare processes. Such 
results are important to making decisions for disease 
management and quality improvement programs. 

 Extending research results. Archimedes can extend 
research results to populations that are different from the 
original research population, such as to people with more 
severe diseases or with different risk factors. It can also 
project results of short-term research into the future, and the 
results of a program observed in one setting to other settings. 

 
Archimedes supports decisions where controlled trials do not 
exist. Many decisions cannot be studied through controlled trials, 
because such trials would be too expensive, too time-consuming, 
or impossible. For example, the Archimedes results for diabetes 
screening discussed at the end of this section could not have been 
obtained through a controlled trial. Dr. Eddy emphasizes that no 
one has ever intended for Archimedes to replace controlled trials. 
 
Archimedes models the following diseases and conditions: 
 asthma  coronary artery disease (CAD)  lung cancer 
 breast cancer  diabetes (types I and II)  metabolic syndrome 
 colon cancer  dyslipidemia  obesity 
 congestive heart failure  hypertension  stroke 
 
The diseases it first modeled (and still its signature) are CAD and 
diabetes. Adding a new disease to the model takes six months to 
one year.  
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4. Healthcare decisions continued 

Agents 
For the diseases that Archimedes models, it includes all the types 
of agents and agent attributes that healthcare decision makers 
consider important:  all variables that physicians use in caring for 
patients, and all agents and variables that healthcare organizations 
consider in determining cost and efficacy. That’s a lot of agents 
(dozens in fact) and attributes (hundreds).25 
 
For example, Archimedes includes many types of providers, such 
as nurses, radiologists, and physicians; and within each type there 
are sub-types and sometimes sub-sub-types, such as surgeons and 
cardiac surgeons. It also includes operations personnel such as 
healthcare hotline operators. 
 
For provider agents it includes attributes such as salary, schedule, 
and skill level. For patients, it includes hundreds of attributes such 
as: 
 
Demographics Body measures Body chemistry Risk factors 
age height LDL smoking 
gender weight HDL family history 
race/ethnicity waist circumference total cholesterol genetic profile 
location hip circumference triglycerides alcohol 
education body mass index blood glucose exercise 
occupation artery occlusion % HbA1c stress 
    
Signs/symptoms Metabolism Vital signs Events 
fatigue insulin resistance blood pressure visits 
chest pain glucose production heart rate admissions 
thirst glucose tolerance temperature contacts 
blurred vision insulin production respiratory rate health outcome 
    
Procedures Diagnoses Treatments Lifestyle 
chest x-ray type 1 diabetes anti-hypertensives exercise 
mammogram asthma nitroglycerin diet 
heart surgery cancer aspirin sleep 
lab test stroke diuretics drug rehab 
    
    
The value of an agent’s attributes can be determined at any time 
during an agent’s life. For example, Archimedes tracks the 
percent occlusion of an agent’s coronary arteries throughout the 
agent’s life. To accomplish this, all time-dependent attributes are 
represented as continuous functions of time. 

                                                      
25 Much of the description of Archimedes is obtained from an excellent webcast presented by Dr. Eddy. To see the webcast, 

go to www.archimedesmodel.com/webinar and click on ‘download archive’. 
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4. Healthcare decisions continued 

Agents continued 
For example, the series of charts below illustrates how the agent 
attribute ‘percent occlusion of a coronary artery’ is developed and 
used. The percent occlusion is represented by a continuous 
function of time (age) from age 0 to any relevant age until death. 
The function in the charts below is represented by the blue curve. 
 
For example, an attribute function might be represented by the 
polynomial a + bt2 + ct3 + dt4 +et5, where a - e are constants and t 
represents time.26 The constants are generally derived from 
population research studies. For example, the percent occlusion 
function might come from US population studies of arterial 
occlusion, broken down by age, gender, race, and other 
population characteristics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Just as the histories of arterial occlusion are unique for people in 
the real world, the attribute function for each instantiation of an 
agent in an Archimedes simulation is unique, based on the agent’s 
other attributes and random perturbation. For instance, one 
person’s percent occlusion might remain below 50 percent, while 
another person’s might reach 100 percent at an early age. 
  
                                                      
26 Schlessinger & Eddy (2001), page 40. 

Chart 1 Chart 3

Chart 2 Chart 4
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4. Healthcare decisions continued 

Agents continued 
As Chart 1 on the previous page illustrates, if an agent’s percent 
occlusion is probed at any time, such as with an angiogram test, 
Archimedes returns the value of the agent’s attribute function at 
that time. As an interesting side note:  To make Archimedes as 
realistic as possible, its developers introduced real-world error 
into test results. So, the angiogram might result in a value for the 
attribute that is different than its actual value. 
 
As Chart 2 shows, an agent’s symptoms can be a function of other 
attributes. For example, angina (chest pain) for a certain agent 
could be defined to start when the percent occlusion reaches 70 
percent. Another agent might not experience angina until 
occlusion is 90 percent. 
 
Charts 3 and 4 show how an attribute function can be altered by 
treatment. Cholesterol lowering treatment reduces the rate of 
occlusion progression, while surgery produces an immediate drop 
in the occlusion percent. 
 
Because patient attributes are such a vital component of 
Archimedes, we will explore them more deeply. For this 
purpose, let’s look at attributes related to type 2 diabetes. (Type 
2 diabetes – also called ‘adult-onset diabetes’ – is a major 
worldwide health problem in which the body fails to properly use 
insulin to control blood glucose, causing it to rise to health-
threatening levels.)  
 
For the patient attributes related to type 2 diabetes, the diagram 
at right shows their interrelationships.27 The boxes are the 
attributes, and the lines are equations (generally continuous 
equations as a function of time) relating the attributes. For 
example, the attribute function for the diagnoses of type 2 
diabetes depends on the demographic attributes age, gender, and 
race/ethnicity, as well as on the agent’s family history of diabetes, 
its glucose tolerance, and its body mass index (BMI), which in 
turn depends on height and weight. Similarly, the agent’s 
symptoms (fatigue, thirst, etc.) and body chemistry (blood 
glucose and HbA1c – hemoglobin with glucose) depend on the 
type 2 diabetes attribute.28  
                                                      
27 The diagram is simplified. For a more complete diagram, see J. Kahn (2009). 
28 Eddy & Schlessinger (2003) 
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4. Healthcare decisions continued 

Agents continued 
As an example of a continuous attribute function in Archimedes, 
following is the type 2 diabetes attribute function:29 

(1 − exp �
−𝑎 × 𝐼𝐺𝑇

1 + 𝑒𝑥𝑝 �− 𝑡 − 𝑏
𝑐 �

�) × 𝐶𝐵𝑀𝐼(𝑡)/𝜀 

where: 
 t is time (age in days) 
 IGT is a random number between 0 and 2 representing the 

agent’s risk of impaired glucose tolerance 
 CBMI(t) is the contribution to diabetes progression due to 

BMI, as a function of time – another continuous function 
 𝜀 is a random number between 0 and 1, to reflect the 

randomness of diabetes development in real populations 
 a, b, and c are constants 
 
The constants are derived from population studies of type 2 
diabetes that produce tables such as that shown at right, which is 
based on the NHANES (National Health and Nutrition 
Examination Survey).30 
 
Four more points about patient attributes are noteworthy: 
 Archimedes excludes sub-clinical phenomena that do not 

interest decision makers. For example, the characteristics of 
sarcomeres in heart muscle tissue may be interesting to heart 
physiologists, but not healthcare decision makers. 

 Diseases are defined in terms of underlying physical attributes 
(signs, symptoms, and physiological attributes), as in reality. 
This feature allows Archimedes to reflect different definitions 
of disease and to incorporate new definitions. 

 Diagnostic procedures, treatments, and prevention activities 
operate on patient attributes the same way they do in reality. 
For example, the drug Metformin affects the body’s 
production of glucose, as in reality. 

 In general, the Archimedes equations that link patient 
attributes are not ‘laws of nature’. Rather, they are curves 
fitted to research data.  

                                                      
29 From the technical appendix for Eddy & Schlessinger (2003), found at www.archimedesmodel.com. 
30 From Harris MI et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults: the 

third national health and nutrition examination survey, 1988-1994. Diabetes Care 21:518-524, 1998. To learn more about 
how attributes are represented in Archimedes, see Schlessinger & Eddy (2001). 

Percentage of the US population with 
diagnosed diabetes 
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4. Healthcare decisions continued 

Agent behavior rules 
Patients 
In Archimedes, patient behavior can include: 
 seeking care for symptoms 
 adhering to treatment recommendations 
 taking actions that affect health-risk, such as drinking alcohol, 

exercising, smoking, etc. 
 responding to incentives 
 
This behavior is generally modeled with if-then behavior rules: 
 if receive prescription, then fill prescription with probability p 
 if fill prescription, then take drug with probability q (p and q 

can be functions of attributes such as age, symptom severity, 
co-payment levels, the number of minutes the physician spent 
to write the prescription, as well as random factors) 

 if chest pain > [pain threshold], then go to emergency room 
of nearest hospital (the pain threshold can be a function of 
age, gender, education, co-payment levels, public service 
announcements, and random factors) 

 
Physicians 
Physician behavior can include: 
 ordering diagnostic tests 
 prescribing treatments 
 recommending preventive procedures 
 responding to incentives 
 
Behavior is generally modeled with if-then flowcharts (see 
sidebar). Most of these are based on protocols from national 
guideline-setting organizations such as the American Heart 
Association, ATP III (Adult Treatment Panel guidelines for 
cholesterol treatment), the American Cancer Society, the 
American Diabetes Association, ICSI (Institute for Clinical 
Systems Improvement), and NGC (National Guideline 
Clearinghouse). 
 
How faithfully an agent follows recommended protocols can 
depend on many things such as the agent’s age, medical specialty, 
geographic location, skill level, compensation type (salaried or fee 
for service), and incentives, as well as on random factors. 

Treatment: aspirin

Treatment: nitroglycerin

Test: ECG

Test: lipid panel

Test: cardiac enzymes

Test: non-cardiac causes

ST elevation

Positive?

Diagnosis: ST MI
True

False

Diagnosis: Non-ST MI
True

ST 
depression

Diagnosis: Unstable 
angina

True

False

False

Simplified protocol for attending a patient 
with chest pain 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Healthcare decisions continued 

Agent behavior rules continued 

Physicians continued 
As electronic medical records are integrated with Archimedes, 
physician behavior can be automatically adjusted to correspond to 
actual current records. 
 
Others 
The behavior rules of other agents, such as hotline call operators, 
are generally if-then rules, based on established protocols. 

Environment 
The Archimedes environment can correspond to any particular 
geographical region. Incidence and prevalence of disease can vary 
by geographic region, as can the behaviors of patients and 
physicians. 
 
Time 
Time in Archimedes is continuous (because most biological 
variables vary continuously), and is organized as an ‘event queue’, 
a series of chronologically-ordered events. Events transpire as 
follows: 
1. For every agent, Archimedes calculates the time of the next 

event, t, that will affect one of the agent’s attributes. For 
example, in the example given in the sidebar, t might be the 
time that Joe’s chest pain starts. 

2. All attributes of every agent are calculated up to t. 
3. Archimedes carries out the event at time t, and returns to step 

one. 
 
The developers of Archimedes have worked hard to model the 
scheduling of patient visits and admissions as they occur in reality. 
For example, as in real life, Archimedes would schedule a 
patient’s visits for hypertension and diabetes evaluation on the 
same day at the same facility. 
 
 
  

 

Joe’s MI 
 
Consider an agent in an Archimedes simulation 
who is 40 years old and a miner. Let’s call him 
Joe. 
 
On day 14,700 of his simulated life, the percent 
occlusion in one of Joe’s coronary arteries 
reaches 90 percent, and he experiences a 
symptom of intense chest pain. For this level of 
pain, his behavior rule is to drive to the nearest 
hospital emergency room. 
 
Upon reaching the ER, at time 14700.60, Joe 
informs the staff of his chest pain. By 14700.65, 
the ER staff has followed its behavior rules and 
has given Joe aspirin, nitroglycerin, an ECG, 
and various blood tests.  
 
The physician in charge, following his behavior 
rules, diagnoses Joe with an acute MI 
(myocardial infarction – a heart attack), and 
immediately operates. By 14700.85 Joe is 
resting in his hospital room with a newly-
cleaned artery now occupied by a drug-eluting 
tube (stent) to keep the artery open. 
 
He stays in the hospital for 4 days, and is then 
discharged. His behavior rules then lead him to 
faithfully follow the physician’s recommended 
follow-up treatments, giving him a significantly 
longer life. 
 
Archimedes keeps a record of all of the ER staff 
actions, and relates them to medical codes such 
as Current Procedural Terminology (CPT), 
Relative Value Guide (RVG), and Diagnosis 
Related Group (DRG) codes. For each action, it 
also calculates the provider costs and associated 
health insurer reimbursements. 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Healthcare decisions continued 

Simulation 
Archimedes simulations run on a ‘farm’ of hundreds of 
computers, using distributed processing technology. 

Validation 
Archimedes has been rigorously validated against 50 clinical trials, 
and continues to be validated against 10-15 new trials every year. 
 
For example, the model was prospectively validated against the 
CARDS (Collaborative Atorvastatin Diabetes Study), a 
multicenter randomized placebo-controlled study of the impact of 
the drug Atorvastatin on cardiovascular outcomes among people 
with diabetes. For the validation, Archimedes forecast results 
were put in a signed sealed envelope before anyone knew the 
study results. The following chart compares the Archimedes 
forecasts (dotted lines) to actual results (solid lines). Archimedes 
hit two of the study’s four end points on the nose.31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each time the model is changed, it is automatically validated 
against about 20 representative studies that span the model’s 
capabilities. For more information about validating Archimedes, 
see the sidebar.  
                                                      
31 Trial result were reported in The Lancet 364: 685-696 (2004), and Archimedes validation results were published in an 

appendix to the paper Eddy AM, Schlessinger L, Kahn R (2005). Clinical outcomes and cost-effectiveness of strategies for 
managing people at high risk for diabetes. Ann Intern Med 2005; 143: 251-264. For one of the end points, stroke outcomes 
for people treated with Atorvastatin, Archimedes missed by a substantial margin. Atorvastatin reduced stroke incidence 
much more than expected from studies of other statins, and thus much more than projected by Archimedes. This result 
underscores what the Archimedes team itself stresses:  the model can never replace controlled trials. 

 
Validating Archimedes 

 
Each equation in Archimedes is validated against 
independent evidence (ie, evidence not used to 
develop the model) when it is available, and 
groups of equations are validated similarly. 
 
To find independent evidence for validation, 
Archimedes developers reviewed about 2000 
national data sets from clinical trials and 
epidemiological studies (many of which are used 
for calibration and verification). Four main data 
sets for validation are: 
 National health and nutrition examination 

survey (NHANES) 
 National ambulatory medical care survey 
 National hospital ambulatory care survey 
 National hospital discharge survey 
 
For validation, the following metrics are 
compared. 
 incidence and prevalence of diagnosed 

conditions (for about 40 conditions) 
 death rates from diagnosed conditions 
 number of visits (by location and by reason) 
 number of outpatient visits (by diagnosis) 
 number of tests and treatments 
 prevalence of prescribed interventions 
 prevalence of patients taking interventions 
 
Each metric is compared for several 
subpopulations: 
 males, females 
 age range (20-40, 40-65, 65+) 
 condition (diabetes, coronary artery 

disease) 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Healthcare decisions continued 

Output 
Common aggregate results for Archimedes include: 
 disease incidence and prevalence 
 symptom incidence and prevalence 
 health outcomes 
 utilization 
 costs and reimbursements 
 quality of life measures 
 
Archimedes keeps track of every attribute that affects a patient’s 
quality of life. For example, it tracks the time spent in every 
symptom and disease state, as well as the intensity of symptoms. 
To derive quality of life measures such as the Quality Adjusted 
Life Year (QALY), Archimedes applies weights from quality of life 
surveys. 
 
Archimedes keeps four kinds of records: 
 true values. It maintains the true values of all agent 

attributes at every time. For example, it tracks a person’s true 
blood glucose level at every point in time (as encoded in the 
patient’s series of blood glucose attribute functions). 

 medical record. It maintains the results that end up in a 
medical record. This includes errors, because medical records 
are frequently inaccurate representations of truth. For 
example, a woman receiving a mammogram can be 
misdiagnosed as having breast cancer; this inaccurate diagnosis 
ends up in the medical record. 

 provider’s knowledge. It tracks what is in a provider 
agent’s head. This can be different from what is in the medical 
record, because the provider can either misread the medical 
record or fail to read it (because the provider does not have 
access to it). 

 patient’s knowledge. It tracks what is in a patient agent’s 
head. This is often different from both the provider’s 
knowledge and the medical record, and can affect the 
patient’s behavior. 

 
It can report any value from these records, as well as any attribute 
value, as output. 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Healthcare decisions continued 

Application 
Type 2 diabetes – one of the world’s most serious diseases – is 
usually non-symptomatic in its early stages. By the time people 
are diagnosed, problems are far advanced. Therefore, early 
identification is vital. In a recent research project, Archimedes 
was employed to discover the best screening strategy to balance 
cost and effectiveness.32 
 
Previously, no clinical trial had compared type 2 diabetes 
sequential screening strategies (ie, strategies that start screening at 
different ages and repeat at different intervals). Indeed, one result 
of the Archimedes project suggests that randomized clinical trials 
of such strategies would be unfeasible:  it would require too many 
people and take too long to show significant difference among 
strategies. Archimedes compared eight screening strategies to one 
control (no asymptomatic screening): 
 

 
Start screening 

Screening 
interval 

Stop 
screening 

   
1. age 30 3 years age 75 
2. age 45 1 year age 75 
3. age 45 3 years age 75 
4. age 45 5 years age 75 
5. age 60 3 years age 75 
6. when blood pressure exceeds 140/90 1 year age 75 
7. when blood pressure exceeds 135/80 5 years age 75 
8. age 30 (maximum screening) 6 months age 75 
9. no asymptomatic screening (control) none never 
   

 

For the simulation, Archimedes followed 325,000 patient agents 
from age 30 (with no type 2 diabetes) to age 80 (or earlier 
death).33 When agents were diagnosed with diabetes, provider 
agents treated them following standard protocols. To assess the 
strategies, Archimedes compared their: 
 incidence of type 2 diabetes 
 incidence of myocardial infarction 
 incidence of stroke 
 incidence of microvascular complications 

 quality adjusted life years (QALY) 
 cost 
 cost per QALY 

  

                                                      
32 R. Kahn et al. (2010) 
33 Patient demographic characteristics are representative of the US population (they are based on people without diabetes in 

the 1999-2004 NHANES). 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. Healthcare decisions continued 

Application continued 

The charts below give two key results of the study. They show 
that earlier and more frequent screening increases the number of 
QALY, while incurring relatively modest cost per QALY. Based 
on these results, the project’s researchers concluded that 
screening for type 2 diabetes in the US population is most 
effective when started between the ages of 30 and 45, with 
screening repeated every 3-5 years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The researchers wrote, “We believe our results are applicable to 
real-life settings. The Archimedes model has been constructed to 
be as realistic as possible and the scenarios we studied were 
realistic, although some simplifications were necessary.” 
 
And the model promises to become even better (see sidebar). 
  

 

ARCHeS 
 
The Robert Wood Johnson Foundation (RWJF) 
helped solve Archimedes’s two major problems. 
First, because setting up and running an 
Archimedes simulation is extremely 
complicated, involving a highly-trained staff of 
scientists and mathematicians, it can take about 
six months to develop and run one analysis. The 
related second problem is that Archimedes is 
expensive:  one analysis can cost hundreds of 
thousands of dollars. 
 
In 2007, RWJF gave Archimedes a $15.6 
million award (the largest ever granted under its 
‘Pioneer’ program) to develop a Web-based 
interface and delivery platform that will make 
the model easier and more cost-effective to use. 
Instead of months and hundreds of thousands of 
dollars, a decision maker will now need only 
days and tens of thousands to run an analysis. 
The new platform will be called ARCHeS. 
 
Consistent with RWJF’s goal to transform the 
health and healthcare landscape, it envisions 
ARCHeS enabling organizations as varied as the 
Congressional Budget Office, CMS, state 
Medicaid offices, and the American Medical 
Association to apply Archimedes results to guide 
their decisions, thus greatly expanding the 
number of users and the breadth of decisions 
addressed.  
 
ARCHeS goes live in 2012. 
 

Number of additional QALYs from screening (per 1000 people)

Cost per QALY for screening
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E. EXERCISES 
1. With the Schelling segregation model, experiment with 
different numbers of blue and red agents, and different 
environment sizes. Does changing these make a difference in the 
model’s results? 
 
2. The Schelling segregation model in this report employs a 
Moore neighborhood for its behavior rule. Change the model so 
that it uses a von Neumann neighborhood instead (or, even better, 
include the neighborhood type – Moore or von Neumann – as an 
input parameter). Are the results different? 
 
3. In the Schelling segregation model of this report, a dissatisfied 
agent moves to a random open location where it will be happy. 
Modify the model so that the agent moves instead to the nearest 
open location where it will be happy. Are the results different? 
 
4. Modify the Schelling segregation model to include finite 
lifetimes for the agents. In the current model, agents live forever. 
As a result, once the model reaches an equilibrium state, it 
doesn’t change. In the modified model, include two new 
parameters, ‘minimum death age’ and ‘maximum death age’. 
Assign each agent a random death age that falls between these two 
parameters. When an agent is born, assign it age 0. Let it age one 
year for each time step (‘tick’), and when it reaches its death age, 
allow it to die. With this change, do you see any differences in the 
segregation patterns? 
 
5. Modify the Schelling segregation model to include a variety of 
neighbor preference percentages. Create two new parameters, a 
minimum preference percentage and a maximum preference 
percentage. Distribute random preference percentages between 
these two bounds to all agents. How does this change the results? 
 
6. In chapter two of their book Growing artificial societies, Epstein 
and Axtell also explore agent migration patterns. Instead of 
assigning 250 agents to random locations on Sugarscape, they 
assign them randomly to a 20 x 20 square in the southwest corner 
of Sugarscape. And instead of a maximum vision of 6, they 
increase it to 10. Then they run the simulation to see the 
migration patterns that evolve as agents move around Sugarscape. 
Modify the Repast Simphony Sugarscape model to reproduce this 
simulation. 
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F. TO LEARN MORE 
To learn more about artificial societies, you may enjoy watching 
videos of Joshua Epstein describing the smallpox model and his 
model of how organizations adapt to market changes.34 Then, you 
may enjoy reading one of Schelling’s original books about his 
approach to modeling35, Epstein and Axtell’s book about 
Sugarscape36, and a book about the way Complexity Science is 
changing the face of economics.37 

G. REVIEW AND A LOOK AHEAD 
This chapter introduced the third of the four archetypal 
Complexity Science models:  artificial societies. Artificial society 
models add an environment to the CA archetype, and so permit 
agents to move and interact with environmental resources. 
 
You learned about two artificial society models, the Schelling 
segregation model, and Sugarscape. You also learned how such 
models can be constructed using Repast Simphony, and how they 
can be applied to simulate both an economy, an epidemic and a 
healthcare system. 
 
Next, we will explore a type of Complexity Science model called 
‘serious games’ that includes a human player. Serious games 
enable people to learn from simulated realities. 
 
 

                                                      
34 J. Epstein (2008a) and J. Epstein (2008b). 
35 Schelling (2006) 
36 Epstein & Axtell (1996), one of this report’s Top ten Complexity Science books. 
37  Beinhocker (2006), one of this report’s Top ten Complexity Science books. 
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CHAPTER SEVEN:  SERIOUS GAMES 
In 1588, a thinking monk moved across the front of a room, lecturing as his students sat, watched, and 
listened. Occasionally he answered a question. In 1988, a thinking teacher moved across the front of a room, 
lecturing as his students sat, watched, and listened. Occasionally he too answered a question. In 1998, a 
teacher using an interactive computer game to teach students how to manage the insurance enterprise sat in the 
back of the room, listening and watching as her students, lost in thought, moved about the room as they 
interacted with their computers and with each other. Occasionally she too answered a question. 

Ronald Crabb and Arnold Shapiro, 19961 

A. INTRODUCTION 
Sid Meier, a pioneer in the game industry, defined a game as ‘a 
series of interesting choices’. A ‘serious game’ is a game whose 
primary purpose is more than pure entertainment. Often the 
purpose is training, education, or discovery. Serious games are 
also called ‘e-learning simulations’ and ‘simulation challenges’, 
terms that in a corporate setting may be more readily accepted. 
 
Serious games are a relatively new phenomenon. In 2002, the 
Woodrow Wilson International Center for Scholars in 
Washington DC started the Serious Games Initiative to encourage 
development of serious games addressing policy and management 
issues. In 2004, two additional related initiatives appeared:  
Games for Change, focused on social issues and social change, and 
Games for Health, focused on healthcare applications (see 
sidebar).2 
 
This chapter introduces serious games, our fourth and final model 
archetype, which includes agents, agent relationships, agent 
behavior, an environment, and human players. You will learn 
about two serious game model types – the participatory model 
and Second life – and how serious games are applied in actuarial 
work. 
 
  

                                                      
1 Crabb & Shapiro (1996) 
2  See www.seriousgames.org and ‘serious game’ at wikipedia.org. 

 
Games for Health 

 
Games for Health is an initiative sponsored by 
the Robert Wood Johnson Foundation for 
developing games to improve health and health 
care. 
 
As part of this initiative, games have been 
developed to: 
 Promote exercise (called ‘exergaming’) 
 Change health behavior 
 Provide nutrition education 
 Manage disease 
 Train medical personnel 
 Motivate people in physical therapy 
 Treat high blood pressure and depression 
 Better understand the shape and function of 

proteins 
 
Many companies, including CIGNA, Humana, 
and Kaiser, are investing in games to improve 
health and healthcare. 
 
Starting in 2005, Games for Health has held an 
annual conference in Boston. The two-day 2010 
conference included more than 400 attendees 
and 60 speakers. 
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B. BASICS 
Serious games incorporate all the characteristics of the previous 
three model archetypes, and then add a wild card:  human players. 
 
Serious games can include from one to many players. For 
example, one of the model types we will explore in the next 
section has more than 15 million potential players, of which more 
than 85,000 have played simultaneously. For Complexity Science 
applications, the multi-player capacity of serious games is one of 
its most powerful features, because it allows human players to 
represent systems with many agents. 
 
The most common technology for developing serious games in 
business environments is Adobe’s Flash software. Flash technology 
enables the development of serious games with sound, video, 
animation, sophisticated interactivity, and environments in 
pseudo-3D. 
 
When modern technology is combined with solid education 
methodologies, the result can be engaging and powerful: 
 By actively participating in a realistic game, players learn by 

doing. They can safely try out a variety of behaviors and 
experience the impact not only on themselves, but also on the 
system as a whole. 

 Multi-player serious games enable realistic social interaction, 
collaboration, and group problem solving. Players learn not 
only from the environment, but also from each other. 

 Serious games can transcend barriers of language, social 
status, power, race, gender, and physical ability, thus drawing 
out the best from all players.3 

 
Serious games appeal particularly to younger people, because they 
have grown up in a world where many of their social interactions 
are already virtual, and because they are already accustomed to 
using advanced technologies to play video games. 
 
 
 
 
  

                                                      
3 Purdy (2007) 
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C. SERIOUS GAME MODELS 
There are two common serious game model types that we will 
explore: the participatory model and Second Life. This section 
describes each. 
 

1. Participatory model 
Complexity Science agent-based models need not be restricted to 
computers. People can also take on the agent roles and, following 
either simple scripted rules or their own instincts, act out the 
evolution of a simulation in the real world. Such a model, played 
without the help of computers, is called a ‘participatory 
model’. 
 
Such models are relatively easy to implement, and enable 
participants to understand Complexity Science concepts 
viscerally. For example, through playing a participatory serious 
game, participants can learn about the often counter-intuitive 
emergent behaviors of complex systems. 
 
Icosystem, a Boston company that applies Complexity Science 
concepts to solve business problems, often introduces people to 
Complexity Science using a participatory model it calls ‘The 
Game’. To play ‘The Game’, ten or more participants are each 
asked to take on the role of an agent. Each agent is asked to 
randomly select two other agents from the group, agent A and 
agent B. Agent A is the ‘protector’. Each agent is then asked to 
move around a room, keeping its protector between itself and 
agent B. The resulting movement is simply random motion 
without any discernable pattern. 
 
In a second agent-based simulation, each agent becomes the 
protector, and is asked to move around the room, staying 
between agents A and B. The result is immediate, striking, 
emergent, and counter-intuitive:  everyone clusters together in a 
tight knot.4 
 
Another example of a real-world participatory model is the 
‘wave’:  thousands of spectators in a sports stadium following a 
simple rule to produce an emergent ‘wave’. Another common 
example is real-world war games, in which soldiers fight mock 
battles on real terrain.  

                                                      
4 For a Java implementation of ‘The Game’, go to www.icosystem.com/game.htm. 
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C. SERIOUS GAME MODELS CONTINUED 

2. Second life 
Our second serious game model type is Second Life, an Internet-
based pseudo-3D game where human players – represented by 
agents called avatars – can socialize, shop, work, learn, and 
explore unusual environments.5  
 
The environment of Second Life is a realistic world, with 
geographic features similar to the earth’s, including land masses, 
oceans, and  islands. In this world agents, or avatars, can take a 
myriad of forms, including human, animal, plant, and robotic. 
Avatars can do any of the things that living objects on earth can 
do, such as engage in trade. 
 
Trade in Second Life is denominated in a currency called the 
Linden dollar (Philip Linden is the avatar name of the game’s 
founder, Philip Rosedale). In Second Life, Linden dollars can be 
used to buy, sell, or rent goods and services. They can be 
purchased using real international currencies, at a current 
exchange rate. Second Life has many banks that support Second 
Life economies (many of the banks recently failed because of an 
‘in-world’ – ie, in the Second Life world – global economic 
meltdown). 
 
Trade in Second Life can be profitable, in real dollars. For 
example, in February 2009, over 60,000 players made a profit, a 
few of whom grossed more than US$ 1 million, money that can be 
transferred back into the real world. 
 
In Second Life are also found cultural pursuits: 
 Over 300 colleges, universities, libraries, and governments 

have established in-world educational institutions, teaching 
subjects like chemistry and foreign languages. For example, 
SciLands is devoted to science and technology education, with 
contributions from organizations such as NASA and NIH. 

 Eight countries - Sweden, Colombia, Philippines, Albania, 
Estonia, Serbia, Macedonia, and The Maldives - have opened 
official embassies in Second Life. 

 There is even a hospital and medical school in HealthLands. 
 
In January 2010, Second Life had 18 million avatars, and at one 
time in 2009, it hosted 88,000 concurrent players.  

                                                      
5 You can explore Second Life at secondlife.com. For more information see ‘Second Life’ in Wikipedia. 
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D. PRACTICAL APPLICATIONS 
This section presents four serious games relating to the work of 
actuaries, three about the property and casualty insurance 
industry, and one participatory healthcare model called CHAT. 
 

1. Catastrophe insurance industry 
In 1995, the author and mathematician John Casti became 
interested in the catastrophe insurance industry. He was asked to 
speak at a re-insurance conference exploring potential applications 
of science. At the conference, he was surprised to discover that 
most speakers focused narrowly on how science might improve 
the industry’s ability to forecast natural catastrophes. He recalled, 
“I didn’t believe that this was the most important problem that 
reinsurance would be facing or that science could shed some light 
on. Rather, I felt that a much more interesting and important 
question was:  ‘How do you understand your place as a firm 
within the overall industry?’” 
 
From that experience and his work with the Santa Fe Institute, 
Casti conceived the idea to develop an agent-based model of the 
catastrophe insurance industry. To fund the model’s development 
and to assemble subject-matter experts, he organized a 
consortium of fifteen companies that included Ernst & Young, 
Swiss Re, ItalRe, Winterthur, Marsh & McLennan, Los Alamos 
National Laboratory, and the Santa Fe Institute. Work on the 
model, named ‘Insurance World’, began in 1997 and was largely 
completed in 2002.6  
 
Although its developers did not advertise it as such, the model is 
in the form of a serious game. It enables its players (in the role of 
insurance and re-insurance company executives) to devise 
business strategies to react to varying environmental and 
competitive conditions, and then witness the systemic results of 
such strategies. The environmental conditions include random 
natural catastrophes and terrorism, changing economic 
conditions, and different consumer markets. As the game 
progresses, players can monitor the impact of their strategic 
choices through detailed quarterly financial statements and market 
share results, and can change their strategies. By the end of the 
game some companies have thrived, and some have failed. 
 
  

                                                      
6 For information about Insurance World and its origins, see Segre-Tossani (2003) and Gionta (2000). 
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Catastrophe insurance industry continued 

 
Insurance World consists of ten agents, a three-tiered 
environment, and players. Following is a description of these 
components. Because Insurance World was a commercial 
product, details about its operation were not published. 
Consequently, the following description is only an overview of 
the model. 
 
Agents 
The agents are five insurance companies and five re-insurance 
companies, the attributes of which include: 
 strategic goals, such as: 

– growth rate 
– cost of capital 
– net combined ratio (ratio of annual retained losses – ie, 

losses not re-insured – plus costs, divided by retained 
premiums) 

– ratio of premiums to total assets 
– ratio of premium reserves to the sum of annual retained 

losses plus costs 
– efficiency of capital use (subscribed capital/total assets) 
– portfolio diversification 
– level of investment in catastrophe bonds 

 market share 
 balance sheet items such as: 

– current assets 
– fixed assets 
– subscribed capital 
– premium reserves 
– outstanding loss reserves 
– debt 

 earnings statement items such as: 
– retained premiums 
– retained losses 
– costs 
– interest income 

 
The agents are related through their business interactions. For 
example, each of the five insurance companies might re-insure its 
risks with two of the five re-insurance companies. 
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Catastrophe insurance industry continued 

 
Environment 
In Insurance World, the environment consists of three sub-
environments with which the agents interact: 
 
 consumer market regions:  The international geographic 

regions in which the agents operate. Up to 10 market regions 
can be defined, including regions of the US, Europe, and 
Japan. 

 economy:  The economy in which the agents do business, 
with attributes including inflation rates, as well as quarterly 
values of short term bonds, long term bonds, three stock 
markets, real estate, and catastrophe bonds. 

 nature:  The source of natural catastrophes, including 
earthquakes, windstorms (such as hurricanes), and floods. 
Terrorism is also included in this sub-environment. 
 

Agent behavior 
Agents act in order to attain their strategic goals within the 
constraints of competition and solvency requirements. Their 
behavior includes receiving premiums, paying out losses, investing 
in the economy’s financial markets, and re-insuring risks, all in 
accord with their strategic goals. To re-insure risks, the insurance 
companies negotiate with re-insurance companies to determine 
the amount of risk that is ceded and its cost. Insurance companies 
with larger market shares wield greater clout in these 
negotiations. 
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D. PRACTICAL APPLICATIONS CONTINUED 

1. Catastrophe insurance industry continued  

 
Environment behavior 
In the model, each consumer market interacts with the agents 
through its solvency requirements, and its preferences for 
different types of insurance companies (some markets choose 
insurance companies based mainly on brand recognition, and 
some choose on the basis of price). 
 
The economy produces random fluctuations in financial market 
values and inflation rates. 
 
Nature generates random catastrophic events – such as floods, 
earthquakes, windstorms (hurricanes), and terrorist attacks – in 
each of the model’s markets. 
 
Time 
Insurance World simulations run for ten years, in quarterly time 
increments. 
 
Players 
The players define each agent’s strategy. As conditions change 
during a simulation, the players can revise their strategies. 
 
Output 
The model produces the following output (see charts at right)7: 
 The incidence and magnitude of catastrophic events 
 Each agent’s balance sheet, earnings statement, and financial 

ratios 
 Each agent’s market share in each consumer market 
 The values of each financial instrument (bonds, stock markets, 

etc.) 
 
 
In 2003, because of an argument about ownership rights, the 
model was withdrawn from the market. The only company now 
using it appears to be Swiss Re, in its risk management group. 
 
 
 
 
  
                                                      
7 The charts are from Gionta (2000). 
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D. PRACTICAL APPLICATIONS CONTINUED 

2. P&C re-insurance market price dynamics 
The US property and casualty (P&C) re-insurance market is 
unusual:  It has few major players (less than ten), almost no 
product differentiation, and prices that are highly cyclical (with a 
cycle time of about eight years). In 2005, Jens Alkemper and Don 
Mango (an actuary) developed an agent-based model to explore 
why its prices are cyclical.8 
 
Following is a description of the model’s characteristics. 
However, because the model is not publicly available and its 
published description is not complete, the following is only an 
overview: 
 
Agents 
The model includes three agents. Each is a P&C re-insurance 
company, with the following attributes: 
 a portfolio, consisting of multiple books of business, each with 

a number of exposure units, a price per exposure unit, and 
expected claims per exposure unit. It is assumed that claims 
are paid out over four years. 

 premium revenue (equal to exposure units * price per unit) 
 ultimate claim payments (equal to exposure units * expected 

claims per exposure unit) 
 reserve liability (equal to the total ultimate claim payments 

minus the cumulative amount of claim payments to date) 
 expenses 
 liability (equal to the sum of reserve liabilities for all books of 

business) 
 assets (equal to accumulated premiums for all books of 

business less expenses and claim payments) 
 reinsurance capacity available 
 capital (equal to assets minus liabilities) 
 required capital (implemented as factors multiplied by 

exposure units) 
 constraint ratio (a percentage that constrains the agent’s ratio 

of capital to required capital) 
 
At the start of the simulation, each agent is given an initial book of 
business and an amount of assets. Each agent is related to the 
others, because they all participate in one competitive market.  

                                                      
8 Alkemper & Mango (2005) 
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D. PRACTICAL APPLICATIONS CONTINUED 

2. P&C re-insurance market dynamics continued  

 
Agent behavior 
At each time step, based on its capital, required capital, and 
constraint ratio, an agent decides the additional number of 
exposure units it will underwrite, and bids that number. 
 
Environment 
The environment is the market in which the agents operate, and a 
source of catastrophes. 
 
Environment behavior 
Based on a simple demand curve (see the chart at right), at each 
time step the environment computes the market price as a 
function of the agents’ total bids. 
 
The environment also initiates a catastrophe at time step 60. The 
catastrophe absorbs approximately 20 percent of each agent’s 
capital. 
 
Time steps 
Each time step is a year, and the model is allowed to run for 60 
time steps for the system to reach equilibrium. The actual 
simulation is then from time step 60 to time step 80. 
 
Output 
The primary output is the market price. 
 
Players 
Each player assumes the role of an agent. Based on historical 
prices, and an agent’s historical financial results, at each time step 
a player submits a blinded bid for exposure units. 
 
As you can see from the chart at right, even with the model’s 
simple behavior rules, it produces dramatic price cycles with a 
cycle time of about five years. This result is robust:  The cycle 
time does not depend on the time period over which claims are 
paid for a given book of business, nor on the shape of the demand 
curve. The critical and counter-intuitive insight from the model is 
that the price cycles are an emergent property of the re-insurance 
system itself, apparently arising from the bidding strategies.9  

                                                      
9 This conclusion and the charts are from Alkemper & Mango (2005). 
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D. PRACTICAL APPLICATIONS CONTINUED 

3. Managing an insurance company 
In the early 1990s, Ronald Crabb and Arnold Shapiro (an actuary) 
developed a serious game to teach people how to manage a 
company that insures automobiles. Following is a description of its 
characteristics. However, because the model is not publicly 
available and its published description is not complete, the 
following is only an overview:10 
 
Agents 
There are four agents, each of which is an automobile insurer. Its 
attributes include: 
 strategic variables: 

– advertising budget 
– premium price for each consumer risk level 
– commission rate 
– education and training budget 
– claims policy 
– underwriting policy 
– percentage allocation of assets to cash, short-term 

investments, high-quality bonds, low-quality bonds, and 
common stock 

– level of desired risk for investing in common stock 
 assets 
 liabilities 
 expenses (the underwriting expense ratio is assumed to be 29 

percent, the combined ratio is assumed to be 111 percent, 
and the loss and loss adjustment expense ratio is assumed to 
be 82 percent) 

 surplus 
 unearned premium reserve account 
 loss reserves account 
 adjusted surplus (statutory surplus adjusted to reflect the 

equity in the unearned premium reserve account and in the 
loss reserves account) 

 
At the start of each simulation, each agent has the same allocation 
of policies, assets, liabilities, and surplus. 
 
Because they are competitors in one market, the agents are all 
related to one another.  

                                                      
10 Crabb & Shapiro (1996) 
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D. PRACTICAL APPLICATIONS CONTINUED 

3. Managing an insurance company continued  

Environment 
The environment consists of a consumer marketplace, and a 
financial marketplace. The consumer marketplace has a constant 
number of consumers with three levels of risk:  standard, 
substandard, and preferred. The financial marketplace consists of 
short-term investments, high-quality bonds, low-quality bonds, 
and common stock. 
 
Agent behavior 
At the start of the simulation, each agent establishes its company 
strategic policy by assigning a value to each strategic variable. It 
then writes policies, collects premiums, pays claims, and invests 
surplus. Policies are assumed to be written uniformly throughout 
each time step, and premiums paid semiannually.  
 
Environment behavior 
The environment determines the rates of return on financial 
instruments, each agent’s market share, and the incidence of 
claims. Less risky investments have lower rates of return and 
lower volatility. And the claims tail is limited to three years. 
 
The market share of the i-th insurer in the j-th consumer market 
risk level (standard, sub-standard, and premium) at time step t is: 
 
𝑀𝑆𝑖,𝑗,𝑡  ≈ �𝐴𝑊𝑖,𝑡��𝑃𝑊𝑖,𝑗,𝑡��𝐶𝑊𝑖,𝑡��𝐸𝑊𝑖,𝑡��𝐶𝑃𝑊𝑖,𝑡��𝑈𝑃𝑊𝑖,𝑗,𝑡� 
 
where: 
�𝐴𝑊𝑖,𝑡� is the advertising weight 
�𝑃𝑊𝑖,𝑗,𝑡� is the price weight 
�𝐶𝑊𝑖,𝑡� is the commission weight 
�𝐸𝑊𝑖,𝑡� is the education and training weight 
�𝐶𝑃𝑊𝑖,𝑡� is the claims policy weight 
�𝑈𝑃𝑊𝑖,𝑗,𝑡� is the underwriting policy weight 
 
The weights are functions of the agent strategic variables. For 
example, the price weight is larger for an agent that sets a lower 
price relative to competitors, and thus increases that agent’s 
market share. 
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D. PRACTICAL APPLICATIONS CONTINUED 

3. Managing an insurance company continued  

Environment behavior continued 

Similarly, relatively larger commissions increase market share (but 
increase the underwriting expense ratio), a looser underwriting 
policy increases market share (but increases the loss and loss 
adjustment expense ratio), a looser claim paying policy increases 
market share (but increases the loss and loss adjustment expense 
ratio), a larger advertising budget increases market share (but 
increases the underwriting expense ratio), a larger education and 
training budget increases market share (but increases the 
underwriting expense ratio and decreases the loss and loss 
adjustment ratio) 
 
As in the real world, the impact of variables on market share is 
lagged, in order to avoid a massive shift in market share in one 
time step. 
 
Time steps 
Each time step is one year. The number of time steps included in a 
simulation is not reported. 
 
Output 
At each time step, simulation output includes the following for 
each company: 
 adjusted surplus 
 loss ratio 
 expense ratio 
 investment earnings 
 
This output is presented graphically. 
 
Players 
Four human players assume the roles of the four agents. Each 
player establishes an agent’s initial strategy by assigning a value to 
each strategic variable. 
 
The player whose agent has the largest increase in its adjusted 
surplus is the winner. 
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D. PRACTICAL APPLICATIONS CONTINUED 

4. CHAT 
Choosing health plans all together (CHAT) is a participatory 
agent-based model in which a group of agents designs its own 
health insurance plan. It was developed in 1995 by physicians at 
the University of Michigan Medical School and the National 
Institutes of Health. The purpose of the model is to discover the 
health insurance plan that emerges from the bottom up, when 
each member of a community is involved in its design.11 The 
CHAT model was demonstrated for actuaries at the Health Spring 
Meetings in 2008 and 2009. Following are its characteristics:12 
 
Agents 
An agent is a person in a group that is deciding what healthcare 
benefit types (eg, hospital services, physician services, tests, 
drugs, home health care, dental care, etc.) and levels of coverage 
(usually three) to include in its health insurance plan. To purchase 
their plan, the group has a limited budget. 
 
Environment 
The environment includes the healthcare system of the 
community in which the agents live, health events that befall the 
agents, and actuaries to calculate the cost of benefits that the 
group chooses. 
 
Environment behavior 
At each time step, the environment provides a random health 
event for each agent, to enable the agent to test the reasonability 
of its budget allocation. Also, actuaries in the environment 
calculate the cost of each healthcare benefit, and the cost of each 
total health insurance plan that agents choose. 
 
Time steps 
Generally, there are four time steps. 
 
Agent behavior 
At each time step, agents allocate the group’s budget among the 
healthcare benefit choices. Generally, in the first time step each 
agent individually decides the allocation; in the second step, 
agents in groups of three decide the allocation; in the third, the 
whole group decides; and in the fourth, each agent decides again 
individually.  

                                                      
11 For an interesting video about the application of CHAT in rural India, see Microinsurance (2008). 
12 Danis (2003) 
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E. EXERCISES 
1. How would you recreate the Schelling segregation model using 
a participatory model type? 
 
2. Create an avatar and pay a visit to SciLands and HealthLands in 
Second Life. What facilities might you establish in Second Life to 
appeal to actuaries? How would you implement and monitor a 
complex adaptive system in Second Life? 
 
3. Identify an aspect of your work that you would like to explore 
with a serious game, and then design such a game. Describe the 
agents, agent relationships, agent behavior, environment, 
environment behavior, and players. 

F. TO LEARN MORE 
To learn more about serious games, you may enjoy watching a 
video about the Serious Games Institute,13 or reading the book 
titled, The complete guide to simulations & serious games.14 

G. REVIEW AND A LOOK AHEAD 
This chapter introduced the fourth of the four archetypal 
Complexity Science models:  serious games. Serious game models 
add  human players to the artificial society archetype, and so 
enable people to interact with virtual environments and each 
other to explore the workings of complex systems. 
 
You learned about two serious game models, the participatory 
model and Second Life. You also learned how such models can be 
applied to simulate aspects of the property and casualty insurance 
industry, as well as enable a community to design an appropriate 
health insurance plan. 
 
This chapter completes Part II of this report. In Part III, we will 
explore how actuaries can use Complexity Science to improve 
their work. 
 
 
 

                                                      
13 Serious Games Institute (2007) 
14 Aldrich (2009) 
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PART III:  AN INVITATION 
 
Like most people, actuaries prefer staying in their ‘comfort 
zones,’ or areas of familiarity, particularly when it comes to 
research, where most of our efforts are spent digging further 
into known models and topics. This is important, as a science 
needs to refine and extend its core knowledge base. But the 
tendency to stay close to home is fine for the health of a 
science only as long as the underlying environment itself is 
relatively stable. 
 
Unfortunately, we are in an unstable, complex, evolving 
environment. Our employers face serious problems that span 
insurance, finance, the capital markets, and the economy as a 
whole. These problems reach across multiple professions—
many comfort zones—and thus have no ‘owner profession.’ 
Being the professionals who, by our own proclamation, ‘make 
financial sense of the future,’ it is incumbent upon us to step 
up and play a leadership role in formulating research 
solutions to these problems. 

Shaun Wang and Donald Mango (actuaries)1 
 
 
 
 

                                                      
1 Wang & Mango (2003) 
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CHAPTER EIGHT:  THE COMPLEX SYSTEMS ACTUARY 
While Complexity Economics strips away our illusions of control over our economic fate, it also hands us a lever 
– a lever that we have always possessed but never fully appreciated. We may not be able to predict or 
direct economic evolution, but we can design our institutions and societies to be better or 
worse evolvers. 

Eric Beinhocker1 

A. INTRODUCTION 
In this chapter, I invite you to change the way you work. 
 
Actuaries tend to work in special niches. You are a pension 
actuary, a reinsurance actuary, a property-casualty actuary, a life 
insurance actuary, or a health actuary. And there are sub-
specialties:  you are a reserving health actuary or a trend health 
actuary or a pricing health actuary. Each niche has its special 
actuarial methods, handed down from actuary to actuary, guild-
like, over decades, with actuaries from one guild often 
understanding little of the others. 
 
Yet, today’s great problems do not lie in niches. Today’s 
challenges are systemic:  How do we ensure the viability of 
pension systems? How do we design an affordable health system? 
How do we prevent the collapse of financial systems? 
 
When niche-ensconced actuaries cannot address such systemic 
societal problems, society finds solutions on its own. The result? 
The solutions are often suboptimal, and actuaries disappear. This 
happened in the US in the 1970s when actuaries did not address 
systemic pension problems. Society found a solution – ERISA – 
and pension actuaries disappeared or were marginalized to 
implement Byzantine regulations. It happened again in the US in 
2010:  for decades health actuaries fussed with their reserves and 
trends and pricing, unable to address systemic healthcare 
problems. Society found its own solution – healthcare reform – 
and soon, just as in the UK and Canada, US health actuaries may 
disappear or be marginalized. 
 
As you have learned, all actuaries work in complex systems, and 
all complex systems have common characteristics. This chapter 
invites you to step out of your niche, to become what I call a 
‘complex systems actuary’.  

                                                      
1 Beinhocker (2006), page 324. 
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A. INTRODUCTION CONTINUED 
A complex systems actuary is a professional who addresses 
problems in complex systems of all types, not just pension, 
insurance, and healthcare systems, but also financial systems, city 
and state systems, and corporate systems – any complex system 
where people, money, and contingency intersect. A complex 
systems actuary is a professional who finds potential solutions to 
systemic problems ranging from efficiency and allocation issues, 
to issues involving strategic risk management, a professional who 
effectively communicates the potential solutions and helps to 
change social policy. 
 
This chapter describes complex systems actuaries:  their work, 
clients, employers, knowledge and skills, competitors, and social 
impact. At the chapter’s end are exercises to sharpen your 
understanding. 

B. WORK 
Complex systems actuaries improve how complex social systems 
work. Such systems range from small businesses to multi-national 
conglomerates, from local investment clubs to international 
banking systems, from small cities to multi-state regions. 
 
To do their work, complex systems actuaries: 
 Define the system. Using Complexity Science tools, the 

actuary determines the system’s agents, relationships, 
behavior rules, and environment. 

 Construct an agent-based model. The actuary builds an 
agent-based model to simulate the system and its problem. 

 Generate potential solutions.  By varying system 
components (agents, relationships, behavior rules) the actuary 
finds combinations that promise to solve the problem. The 
actuary may incorporate learning algorithms in the model to 
efficiently sort through the design space and improve the 
system’s location on its fitness landscape.2 

 Communicate the results.  Using the agent-based model, 
the actuary communicates potential solutions to stakeholders. 
To facilitate communication, the actuary may construct a 
serious game for the stakeholders to play.  A key advantage of 
agent-based models is that they facilitate communication. 

 Implement a solution.  The actuary helps to implement 
the solution stakeholders choose, and then monitors the 
results.  

                                                      
2 To review the concepts of ‘design space’ and ‘fitness landscape’, see Chapter one. 
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B. WORK CONTINUED 
For example, suppose a state approaches you, a complex systems 
actuary, to solve its problem of unsustainable healthcare 
expenditure increases. What do you do? 
 
You first define the system’s agents (its physicians, patients, 
hospitals, medical suppliers, insurance companies, etc.), and their 
relationships, behavior rules, and environment. To define the 
behavior rules, you search the literature to find what is known, 
and then you may perform interviews or even controlled 
behavioral experiments to get the rest (see Chapter two). 
 
Perhaps using Repast, you construct an agent-based model to 
simulate the system and its problem. Perhaps you even construct 
your model as a serious game, allowing humans to play agent 
roles. Next, you and others play with the model, to find new 
behaviors and relationships that solve the problem. You present 
potential solutions to state stakeholders, and encourage them to 
also play with the model, see solutions for themselves, and choose 
a preferred solution. To help stakeholders sell their chosen 
solution, you may even put the model on a public website and 
encourage the state’s inhabitants to play with it. Finally, you help 
implement the chosen solution, and monitor its effects. 
 
Other potential clients, and problems they might bring you, are: 
 
Business firms (including insurance organizations) 
 Find the causes of business cycles, and ways to dampen them 

(see sidebar) 
 Find business and investment strategies that are robust 
 Determine organizational structures that lead to long-term 

fitness 
 Determine the potential impact of new products or policies 
 Find sources of supply and demand fluctuation and ways to 

manage them 
 Test validity of business assumptions about the environment 
 Identify synergistic opportunities among stakeholders 
 Determine human resources required to address market needs 
 Design strategies to manage enterprise risk 
 Determine the causes of certain fat-tailed risks, and ways to 

manage them 
 Identify potential loss from specified emerging risks  

                                                      
3 Mango (2005) 

 
Great opportunity for collaboration 

 
“Scientists are realizing that collective systems 
exhibit interaction effects that cannot be 
predicted from the behavior of the individual 
elements. J. Doyne Farmer of Santa Fe Institute 
has published several papers showing that capital 
market price volatility can in part be explained 
by the interaction of competing trading 
strategies among different types of traders. … 
Avinash Persaud of Gresham College has written 
repeatedly on the paradoxical impact of market-
sensitive risk management policies on banking 
system stability. His premise, ‘Introduction of 
market-based risk based capital requirements 
leads to uniformity of risk appetite among 
participants, and therefore uniformity of 
response to market volatility.’ The uniformity 
compounds and reinforces itself as participants 
react to each others' reactions, leading to 
market crises. Applying similar logic to the 
insurance market, it is likely that strategic 
interaction plays a material role in insurance 
pricing cycles. 
 
When studying such systems, researchers must 
be wary not to extrapolate incorrectly from 
local conditions. These systems are non-linear, 
and the strategy assessment is multilateral not 
unilateral. Theories and policy 
recommendations may only be testable using 
nontraditional scientific approaches and media. 
Examples include simulated economies and 
agent-based models. Possible worthwhile 
research goals include strategy robustness 
testing - which plan works best, factoring in all 
the possible things others could do? - and policy 
recommendations - how should regulators 
monitor and control the system to maximize 
stability?. This is a great opportunity for 
collaboration outside insurance and retirement 
systems.” 

Don Mango (an actuary)3 
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B. WORK CONTINUED 
Regulatory bodies 
 Determine the potential impact of proposed regulations and 

policy changes 
 
Health insurers 
 Find the drivers of healthcare expenditure trends and a way to 

manage them 
 Determine robust strategies for provider negotiations 
 Determine the potential impact of pricing, reimbursement, 

and policy changes 
 
States and countries 
 Determine the potential impact of policy changes 
 Design a social security policy that works 
 Design a healthcare system that works 

C. CLIENTS 
Potential clients for complex systems actuaries include: 
 business firms, to help with any of their systemic problems 

involving people, money, and contingency; not just 
traditional actuarial problems. 

 cities, states, countries, and international regions 
 regulatory bodies, such as the NAIC 
 insurance and reinsurance sectors 
 financial sectors 
 
This report has described many examples where Complexity 
Science has been employed to solve problems for all these entities. 

D. EMPLOYERS 
The complex systems actuary might work for: 
 a think tank like the Brookings Institution 
 a research institute like the Santa Fe Institute 
 a consulting firm 
 a large business enterprise 
 an insurance or reinsurance company 
 a government entity 
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E. KNOWLEDGE AND SKILLS 
Complex systems actuaries apply the following knowledge and  
skills: 
 Complexity Science concepts and tools 
 agent-based modeling 
 actuarial concepts, methods, and tools 
 risk management concepts and tools 
 general business knowledge 
 communication skills 
 
Although many actuarial concepts and tools (such as time value of 
money, contingencies, and financial concepts) are useful to 
complex systems actuaries, some get in the way:  Most actuarial 
models are based on projection of aggregate historical data 
patterns, and provide no insight into behavior rules or agent 
relationships. To simulate complex systems, they are not useful 
(see sidebar). Complex systems actuaries will not need most 
traditional actuarial methods; instead they will use bottom-up 
agent-based methods. 
 
But complex systems actuaries will need excellent communication 
skills, because changing social policy requires effective 
communication with a variety of stakeholders. Traditional 
actuaries have found communication to be difficult, partly because 
actuarial concepts are often abstruse, rigid, and remote from 
business reality, but also because actuaries do not receive adequate 
training in communication arts. Complexity Science makes 
communication easier:  its results are more visual and intuitive, 
and people easily relate to agents, relationships, and behavior 
rules. 

F. COMPETITORS 
Competitors are few, because few have the combination of 
knowledge and skills necessary to solve complex social system 
problems. For example: 
 Economists and management consultants generally lack the 

knowledge of Complexity Science and the ability to construct 
agent-based models. 

 Complexity scientists generally lack the business knowledge 
of actuaries. 

  

                                                      
4 Miller & Page (2007), page 15. 

 
Bees on average 

 
In their book Complex adaptive systems, Miller and 
Page describe how bees keep their hives at 
constant temperature: 
 
“For honey bees to reproduce and grow, they 
must maintain the temperature of their hive in a 
fairly narrow range … When the hive gets too 
cold, bees huddle together, buzz their wings, 
and heat it up. When the hive gets too hot, bees 
spread out, fan their wings, and cool things 
down. 
 
Each individual bee’s temperature thresholds for 
huddling and fanning are tied to a genetically 
linked trait. Thus, genetically similar bees all 
feel a chill at the same temperature and begin to 
huddle; similarly, they also overheat at the same 
temperature and spread out and fan in response. 
… 
Hives with genetic diversity produce much 
more stable internal temperatures. As the 
temperature drops, only a few bees react and 
huddle together, slowly bringing up the 
temperature. If the temperature continues to 
fall, a few more bees join into the mass to help 
out. A similar effect happens when the hive 
begins to overheat. … 
 
In this example, considering the average 
behavior of the bees is very misleading. The hive 
that lacked genetic diversity – essentially a hive 
of averages – behaves in a very different way 
than the diverse hive. Here, average behavior 
leads to wide temperature fluctuations whereas 
heterogeneous behavior leads to stability. To 
understand this phenomenon, we need to view 
the hive as a complex adaptive system and not as 
a collection of individual bees whose differences 
cancel out one another.”4 
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G. SOCIAL IMPACT 
The potential social impact of complex systems actuaries is great. 
For example, had complex systems actuaries constructed models 
of the US healthcare system, and identified solutions to its 
expenditure and coverage problems, the healthcare reform debate 
could have been more rigorous and fact-based, less emotional and 
political. 
 
Some hold that a model of the extremely complex US healthcare 
system is impossible to construct and validate. I, and others, 
disagree.5 

H. EXERCISES 
1. Consider a real-world complex system problem, and describe 
how you, as a complex systems actuary, would solve it and help to 
change social policy. 
 
2. Think of an important complex system problem of your 
current employer. Prepare a proposal to solve the problem, using 
the knowledge and skills of a complex systems actuary. Present 
the proposal to your manager and obtain feedback. (And please let 
me know if you carry out the project.) 

I. TO LEARN MORE 
To learn more about communicating the results of complex 
system simulations, see works by Edward Tufte, such as The visual 
display of quantitative information, Beautiful evidence, and The cognitive 
style of Power Point:  pitching out corrupts within. 6 You may also enjoy 
the paper titled Design guidelines for agent-based model visualization.7 

J. REVIEW AND A LOOK AHEAD 
This chapter presented a vision of the ‘complex systems actuary’, 
including this new professional’s work, clients, employers, 
knowledge and skills, competitors, and potential social impact. 
The next chapter presents a plan to develop such actuaries. 
 
 
 
 
 
 

                                                      
5 For example, see Strip, Backus, Strickland, & Schoenwald (2005). 
6 Tufte (2001), Tufte (2006a), and Tufte (2006b). 
7 Kornhauser, Wilensky, & Rand (2009) 
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CHAPTER NINE:  NEXT STEPS 
Progress will come not by refining existing models, but by breaking barriers 
and incorporating new classes of models and their associated estimation 
and checking methods. 

James Hickman (actuary)2 
 
This short chapter suggests several steps to nurture the 
development of complex systems actuaries: 
 
1. Form a development oversight team 
Assemble a group of interested actuaries to flesh out these steps, 
and oversee their implementation. 
 
2. Implement a discussion forum 
Implement a wiki, LinkedIn group, email discussion list, or 
other mechanism for actuaries interested in Complexity Science 
to exchange ideas. 
 
3. Hold Complexity Science workshops 
Hold a series of workshops at Society of Actuary (SOA) and 
Casualty Actuary Society (CAS) meetings about applications of 
Complexity Science in actuarial work. 
 
4. Promote Complexity Science research 
Encourage SOA and CAS special interest sections to fund basic 
Complexity Science research, promote agent-based models as a 
research product (see sidebar), and offer prizes for research that 
demonstrates how Complexity Science more effectively 
addresses the problems actuaries face today, and expands the 
scope of problems they can face tomorrow. 

 
5. Establish outside relationships 
Establish relationships with institutes that perform Complexity 
Science research, such as 
 Santa Fe Institute 
 Brookings Institution 
 New England Complex Systems institute 
 Center for the Study of Complex Systems (University of 

Michigan) 
 Center for Social Complexity (George Mason University) 
 Institute on Complex Systems (Northwestern University) 
For example, actuaries can become visiting scholars at these 
institutions, or co-author articles with complexity scientists.  

                                                      
1 Mango (2004) 
2 Hickman (1997) 

 
The agents are coming 

 
“If you have seen the enormously popular 
software The Sims, you were probably intrigued, 
but you may not have realized that you were 
looking at part of a scientific revolution 
involving adaptive agents. Adaptive agents are 
software entities that, when placed in a 
computer environment, monitor the state of 
that environment, and, armed with rules of 
behavior, interact with it. In the case of The 
Sims, the agents are people of various types, 
placed in a house or hotel or city, interacting in 
ways both mundane and hilarious. One of the 
key elements to the popularity of The Sims is its 
complete unpredictability. There is literally no 
way to predetermine the aggregate result of 
placing a certain set of Sims in a certain 
environment with certain initial conditions. The 
only way to find out what will happen is by 
watching the situation unfold. 
 
The adaptive agent paradigm (AAP) is gaining 
momentum in many areas of science:  financial 
markets, water policy, organizational and 
network theory, and the military. … 
 
What might this mean for our science? Here are 
some speculations: 
1. Forced group interaction (similar to 
multiplayer gaming): the days of the isolated 
practitioner are limited. 
2. Software as research product: software 
will have formal recognition as a 
communication medium. …  
3. Policy analysis:  regulators could use this as a 
means of testing the impact of policy changes 
(eg, fair value accounting). 
4. Test impact of changes:  allow testing of the 
aggregate effects of changes in rates, class plans, 
laws, or agent compensation in order to 
determine beforehand the likely impact of 
changes.”1 

Donald Mango (actuary) 
 



Complexity science – an introduction for actuaries 

Chapter nine:  Next steps continued 

NINE:  NEXT STEPS     179 

6. Include Complexity Science in actuarial education 
Include the concepts and tools of Complexity Science on the 
actuarial exams, perhaps as part of an ASA module. 
 
7. Establish a Complexity Science special interest section 
Because the work of complex systems actuaries cuts across all 
traditional actuarial areas, establish a new SOA special interest 
section devoted to Complexity Science. 
 
8. Establish a complex systems actuarial research institute 
Establish a complex systems actuarial research institute, similar to  
the Santa Fe Institute. The institute should: 
 Maintain an agent-based model archive, where actuaries can 

view and share models, documentation, and supplemental 
files. As you have seen, actuaries have made sporadic efforts 
to use agent-based models to solve complex system problems. 
But, there has been no cumulative progress. By maintaining a 
model archive, the Institute will foster cumulative progress 
(see sidebar). 

 Develop and maintain tools and components to help actuaries 
construct agent-based models. 

 Maintain large databases relating to complex systems of 
interest to actuaries, such as claims data of health insurers. 

 Perform controlled experiments to better understand the 
behavioral rules of agents in systems of interest to actuaries. 

 Recommend agent-based modeling standards, and standard 
evaluation criteria for agent-based models. (see sidebar) 

 Perform research to deepen our understanding of complex 
systems of interest to actuaries, as well as advance our 
methods for simulating such systems. 

 Solve complex system problems for specific organizations, 
and thereby help to develop social policy. 

 
The institute, like the Santa Fe Institute, will obtain seed money 
from organizations that stand to benefit from its work. Then its 
funding will come from grants, foundations, and project fees. 
 

 
To take these steps, 

I request the pleasure of your company. 
 

RSVP 

                                                      
3 Takadama & Shimohara (2002) 

 
The tortoise and hare 

 
Takadama and Shimohara recommend the 
following to foster cumulative progress in agent-
based modeling: 
 
“(a) Common test-beds:  Sharing common 
test-beds is a promising approach for cumulative 
progress. The reasons are summarized as 
follows:  (1) common test-beds enable 
researchers to narrow an argument down to 
concrete and detailed issues, which help to 
provide a fruitful and productive discussion; and 
(2) common test-beds encourage researchers to 
share results, which can lead to progress in the 
field by comparing results or competing with 
other researchers. 
(b) Standard computational models. 
Standard computational models are necessary 
for cumulative progress. With them (1) 
researchers do not need to design computational 
models, and this can contribute to bringing 
several researchers together and led to progress 
in the field; and (2) common parts of various 
research efforts can become clear through the 
development of libraries of computational 
models, providing the essential parts of agent-
based simulations. 
(c) Validation and advance of older 
work. It is important to validate older results 
and advance older work for cumulative 
progress. In this case, the replication of older 
models is essential to validate and advance older 
work. To promote this, researchers should share 
and understand what things have already been 
done and what things have not in an agent-based 
approach. 
(d) Standard evaluation criteria:  Standard 
evaluation criteria for results … are 
indispensable for cumulative progress. Although 
it is difficult to evaluate results appropriately, it 
is important to apply the same evaluation 
criteria.” 
 
Like the tortoise and hare, “continuous small 
progress is more important than intermittent 
rapid progress.” 3 
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TOP TEN COMPLEXITY SCIENCE BOOKS 

A. INTRODUCTION 
This chapter describes what are, in my opinion, the top ten books 
to help you learn more about Complexity Science.  I selected 
these books based on the following criteria: 
 Together they should cover four key areas of Complexity 

Science – complex adaptive systems, networks, behavioral 
economics, and agent-based modeling – as well as the four 
archetypal models of Complexity Science. 

 Each book should be introductory in nature, yet contain 
sufficient new material to help actuaries apply the insights and 
tools of Complexity Science. 

 Each book should be more useful for actuaries to read than 
other similar books. 

 The books should be easily accessible, either through 
www.Amazon.com or a library. 

 
In the order in which I suggest that you read them, they are: 
 
 
1. Complexity:  the emerging science at the edge of order and chaos 
 by M. Mitchell Waldrop (1992) 
2. Managing business complexity:  discovering strategic solutions with agent-based 

modeling and simulation 
 by Michael J. North and Charles M. Macal (2007) 
3. Linked:  how everything is connected to everything else and what it means for business, 

science, and everyday life 
 by Albert-László Barabási (2003) 
4. The structure and dynamics of networks 
 by Mark Newman, Albert-László Barabási, and Duncan Watts (2006) 
5. A new kind of science 
 by Stephen Wolfram (2002) 
6. Predictably irrational:  the hidden forces that shape our decisions 
 by Dan Ariely (2008) 
7. Complex adaptive systems:  an introduction to computational models of social life 
 by John M. Miller and Scott E. Page (2007) 
8. Growing artificial societies:  social science from the bottom up 
 by Joshua M. Epstein and Robert Axtell (1996) 
9. Generative social science:  studies in agent-based computational modeling 
 by Joshua M. Epstein (2006) 
10. The origin of wealth:  evolution, complexity, and the radical remaking of economics 
 by Eric D. Beinhocker (2006) 
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1. COMPLEXITY 
THE EMERGING SCIENCE AT THE EDGE OF ORDER AND CHAOS 

 BY:  M. MITCHELL WALDROP (1992) 
 
Structure:  9 chapters, 380 pages, with index and bibliography 
Recommended reading:  all chapters 
Themes: 

complex adaptive systems.. x behavioral economics... x 
networks…….…………. x agent-based modeling.. x 

 
 
Although originally published in 1992, this book remains the best 
general introduction to complexity science.1  Written in an 
engaging biographical style, it introduces most of the major topics 
of complexity science (such as complex adaptive systems, agents, 
self-organization, emergence, evolution, phase transition, 
computation, the edge of chaos, and power laws), as well as most 
of the people involved in its development (including Per Bak, 
George Cowan, Doyne Farmer, Chris Langton, Murray Gell-
Mann, John Holland, Stuart Kauffman, Norman Packard, and 
Stephen Wolfram). 
 
In it, you will not find a single complexity science equation, 
graph, picture, or computer code snippet.  But from it you will 
glean something perhaps more important:  the frustrations of 
scientists and economists with traditional scientific methods, the 
moments of inspiration, the evolution of thought, and the 
interactions of people that led to Complexity Science. 
 
 

                                                      
1 For another perspective on the history of complexity science, also with interesting vignettes about its key 

personalities, you may enjoy reading Lewin (1999).  Other readable classics about the development of complexity 
science are Gleick (2008), Gribbin (2004), Bak (1996), Kelly (1994) and Pagels (1988). 

 
 For more technical overviews of complexity science, see Érdi (2008) or Mitchell (2009).  For a more advanced 

overview, see Gros (2008).  For a more extensive reference resource, see the 10-volume encyclopedia edited by 
Meyers (2009).  (To find a library near you that carries a copy of the Encyclopedia, search “www.WorldCat.org”.) 

 

 
The sciences of the 21st century 

 
“Complexity, adaptation, upheavals at the edge 
of chaos – these common themes are so striking 
that a growing number of scientists are 
convinced that there is more here than just a 
series of nice analogies.  The movement’s nerve 
center is a think tank known as the Santa Fe 
Institute … The researchers who gather there 
… all share the vision of an underlying unity, a 
common theoretical framework for complexity 
that would illuminate nature and humankind 
alike.  … They believe that their application of 
these ideas is allowing them to understand the 
spontaneous, self-organizing dynamics of the 
world in a way that no one ever has before – 
with the potential for immense impact on the 
conduct of economics, business, and even 
politics.  They believe that they are forging the 
first rigorous alternative to the kind of linear, 
reductionist thinking that has dominated science 
since the time of Newton – and that has now 
gone about as far as it can go in addressing the 
problems of our modern world.  They believe 
they are creating, in the words of Santa Fe 
Institute founder George Cowan, ‘the sciences 
of the twenty-first century’. 
 
This is their story.” 

from Chapter 1, pp 12-13 
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2. MANAGING BUSINESS COMPLEXITY 
DISCOVERING STRATEGIC SOLUTIONS WITH AGENT-BASED MODELING AND SIMULATION 

 BY:  MICHAEL J. NORTH AND CHARLES M. MACAL (2007) 
 
Structure:  15 chapters, 313 pages, with an index and a bibliography 

for each chapter 
Recommended reading:  all chapters 
Themes: 

complex adaptive systems.. x behavioral economics...  
networks…….………….  agent-based modeling.. x 

Main ideas: 
 Agent-based modeling is a new way to understand complex systems 

– a way for businesses to view potential futures and to anticipate 
the likely effects of their decisions on their markets and industries. 

 Because of the naturalness of the agent representation and the close 
similarity of agent models to the predominant paradigm of object-
oriented programming, in the future virtually all computer 
simulations will be agent-based. 

 
This book is the best resource for learning how to do agent-based 
modeling and simulation.2  It is a complete resource, starting from 
basics for those who know nothing about the subject, and 
including many examples with sample code on various agent-
based modeling platforms.  It consists of three sections: 
 The first five chapters explain the basics of agent-based 

modeling. 
 Chapters 6 through 10 describe how to construct an agent-

based model in different environments. 
 Chapters 11 through 15 deal with ancillary issues, such as 

software development and code verification and validation, 
that are critical to developing useful agent-based models. 

 
Of particular interest, an extended section of Chapter 5 discusses 
the differences between agent-based modeling and other modeling 
types such as systems dynamics, discrete event simulation, 
participatory simulation, optimization models, statistical 
modeling, and risk analysis. 
 
For a brief introduction to agent-based modeling, you may enjoy 
reading the paper Agent-based modeling and simulation, by the same 
authors3  

                                                      
2 A much shorter resource for learning how to develop agent-based models is Gilbert (2008). 
3 Macal & North (2009) 

 
Who, what, where, when, why, and how 

 
“This book addresses the who, what, where, 
when, why, and how of agents: 
 
 Who should know about agent modeling?  

Who should do agent modeling?  Who 
should use information generated from 
agent modeling? … 

 What do agents allow us to do that cannot 
be done using standard modeling 
approaches? … 

 Where are the promising applications of 
ABMS [agent-based modeling and 
simulation] in the everyday business 
problems that surround us? … 

 When is it appropriate to use agent-based 
modeling and simulation? … 

 Why do people use agent-based modeling? 
… 

 How should one think about agents?  How 
should one go about building agent-based 
models? 

 
This book provides the answers to these 
critically important questions for anyone who 
has heard about agent-based modeling or for 
those who are considering undertaking an agent-
based modeling enterprise.” 

from Chapter 1, pp 3-4 
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3. LINKED 
HOW EVERYTHING IS CONNECTED TO EVERYTHING ELSE AND WHAT IT MEANS FOR BUSINESS, 
SCIENCE, AND EVERYDAY LIFE 

 BY:  ALBERT-LÁSZLO BARABÁSI (2003) 
 
Structure:  16 chapters, 294 pages, with notes (some of which give 

bibliographical references), and an index 
Recommended reading:  all chapters 
Themes: 

complex adaptive systems..  behavioral economics...  
networks…….…………. x agent-based modeling..  

Main ideas: 
 Many of the complex systems surrounding us are characterized by 

one universal network architecture – including hubs and the power 
law distribution – that is simultaneously robust and fragile. 

 Many real networks are governed by two laws:  growth and 
preferential attachment. This is why the rich get richer. 

 The structure of an organization’s network is responsible for its 
ability to adapt (or not) to rapidly changing market conditions. 

 An understanding of network architecture can lead to new 
discoveries and strategies for business, politics, and economics. 

 
 
This book tells the story of the progress of network theory from 
1783 to 2002, from Euler’s bridges of Konigsberg, through “six 
degrees of separation”, “small worlds”, Pareto’s 80/20 rule, and 
network hierarchies, to recent advances. This book is not 
technical, but it lays the groundwork for understanding more 
technical works about network theory.4 In that regard, it is a 
better introduction to network theory than Gladwell’s Tipping 
point or Strogatz’s Sync. 
 
As an introduction to the author as well as other major scientists 
in the field, you may enjoy watching the documentary about 
network theory titled Connected:  the power of six degrees.5   

                                                      
4 After reading this book, works such as M. E. J. Newman (2010), M.E.J. Newman (2008), M.E.J. Newman (2003), 

M.E.J. Newman, et al. (2006), Watts (2003), and Buchanan (2002), Barrat, et al. (2008) would be good next steps. 
5 This documentary, which originated on TV’s Discovery Channel, may be found as a series of five short videos on 

YouTube.com, the first of which is:  Discovery Channel (2008) 

 
The importance of networks 

 
“Today we increasingly realize that nothing 
happens in isolation. Most events and 
phenomena are connected, caused by, and 
interacting with a huge number of other pieces 
of a complex universal puzzle.  We have come 
to see that we live in a small world, where 
everything is linked to everything else. We are 
witnessing a revolution in the making as 
scientists from all different disciplines discover 
that complexity has a strict architecture. We 
have come to grasp the importance of 
networks.” 

from Introduction, pp 6-7 
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4. THE STRUCTURE AND DYNAMICS OF NETWORKS 
 BY:  MARK NEWMAN, ALBERT-LÁSZLO BARABÁSI, AND DUNCAN WATTS (2006) 
 
Structure:  6 chapters, 582 pages, with references and an index. 
Recommended reading:  chapter 1, introductions to all chapters and 
chapter sections, chapter 6. 
Themes: 

complex adaptive systems..  behavioral economics...  
networks…….…………. x agent-based modeling..  

 
This book is a collection of 44 key research papers about network 
science, with excellent introductions to and summaries of the 
papers. 
 
Chapter 1 gives a brief history of the study of networks, and 
describes the new science of networks. 
 
Chapter 2 includes key historical papers, including the short story 
titled “Chain-links” by Karinthy, the first known mention of “small 
worlds”, one of Stanley Milgram’s papers about the small world 
effect, and an interesting paper about the Erdös number. 
 
Chapter 3 presents empirical studies of the world wide web, the 
Internet, metabolic networks, the web of human sexual contacts, 
and the structure of scientific collaborabations. 
 
Chapter 4 includes papers about network models, including 
random graph models, small-world models, and models of scale-
free networks. In this collection are the seminal papers “Collective 
dynamics of ‘small-world’ networks” by Watts and Strogatz, and 
“Emergence of scaling in random networks” by Barabási and 
Albert. 
 
Chapter 5 presents applications of network science, including 
applications about contagious disease, susceptibility of networks 
to attack, and network search algorithms. 
 
Chapter 6 concludes the book with speculations about the future 
of network science. It concludes with the thought, “… if the 
science of networks is to have an impact in policy, business, and 
technology, then research that explicitly addresses the relationship 
between network properties and the behavior of networked 
systems will need to be pursued.” 
  

 
By studying networks, 

there is much to be learned 
 
“Networks such as the Internet, the World 
Wide Web, and social and biological networks 
of various kinds have been the subject of intense 
study in recent years. From physics and 
computer science to biology and the social 
sciences, researchers have found that a great 
variety of systems can be represented as 
networks, and that there is much to be learned 
by studying those networks. The study of the 
web, for instance, has led to the creation of new 
and powerful web search engines that greatly 
outperform their predecessors. The study of 
social networks has led to new insights about the 
spread of diseases and techniques for controlling 
them. The study of metabolic networks has 
taught us about the fundamental building blocks 
of life and provided new tools for the analysis of 
the huge volumes of biochemical data that are 
being produced by gene sequencing, microarray 
experiments, and other techniques. 
 
In this book we have gathered together a 
selection of research papers covering what we 
believe are the most important aspects of this 
new science. The papers are drawn from a 
variety of fields, from many different journals, 
and cover both empirical and theoretical aspects 
of the study of networks.” 

from the Preface  
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5. A NEW KIND OF SCIENCE 
 BY:  STEPHEN WOLFRAM (2002) 
 
Structure:  Preface, 12 chapters, 1,197 pages, with extensive notes 

(349 pages) and index, but no bibliography 
Recommended reading:  preface, and chapters 1, 2 (pp. 23-39), 3 

(51-70, 105-113), 5 (169-183), 6 (223-254, 261-266, 275-280), 
7, 8 (429-432), 9 (433-457), 10 (547-597), 11, 12 

Themes: 
complex adaptive systems.. x behavioral economics...  
networks…….………….  agent-based modeling.. x 

Main ideas: 
 Simple rules can produce behavior of immense complexity. 
 Because most systems that are amenable to mathematical analysis 

are relatively simple, mathematics is not the best tool to analyze 
complex systems. 

 Simple computer experiments to investigate simple questions are an 
important part of scientific discovery, and offer a new way to view 
the operations of complex systems. 

 For most complex systems, prediction is impossible. 
 Complex systems are computationally equivalent. 
 
 
This book is the best introduction to the world of cellular 
automata, and to the far-reaching insights about complex systems 
that they convey.6  Although many of the book’s provocative 
assertions have led to storms of protest7, its central message is key 
for understanding complexity science:  simple behavior rules can 
lead to immense complexity, a phenomenon that is best 
investigated with computer programs. 
 
Although the book is wide-ranging and fascinating (for example, it 
offers insights into topics as diverse as free will, space-time, and 
the ultimate rule of the universe) for this report’s purposes, 
only the recommended readings given above are 
directly relevant. 
 
As an introduction to Stephen Wolfram and this book, you may 
enjoy watching his presentation of A new kind of science at the 
University of California, San Diego.8   

                                                      
6 Another excellent book solely about cellular automata is Schiff (2008). 
7 See, for example, the web page “shell.cas.usf.edu/~wclark/ANKOS_reviews.html”.  It provides links to dozens of 

book reviews about A new kind of science (most of which are negative) as well as to humorous satires about the book 
and its author. 

8 Wolfram (2008), a YouTube.com video, lasting about 90 minutes. 

 
A new approach to complexity 

 
“In the existing sciences much of the emphasis 
over the past century or so has been on breaking 
systems down to find their underlying parts, 
then trying to analyze these parts in as much 
detail as possible.  And particularly in physics 
this approach has been sufficiently successful 
that the basic components of everyday systems 
are by now completely known.  But just how 
these components act together to produce even 
some of the most obvious features of the overall 
behavior we see has in the past remained an 
almost complete mystery.  Within the 
framework of the new kind of science that I 
develop in this book, however, it is finally 
possible to address such a question.” 

from Chapter 1, pp 3-4 
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6. PREDICTABLY IRRATIONAL 
THE HIDDEN FORCES THAT SHAPE OUR DECISIONS 

 BY:  DAN ARIELY (2008) 
 
Structure:  introduction and 13 chapters; 368 pages, with notes, 

index, and bibliography 
Recommended reading:  all chapters 
Themes: 

complex adaptive systems..  behavioral economics... x 
networks…….………….  agent-based modeling..  

Main ideas: 
 Expectations, emotions, social norms, and other invisible, 

seemingly illogical forces skew our reasoning abilities. 
 Our reliance on standard economic theory to design personal, 

national, and global policies may be dangerous. 
 
 
Written by a behavioral economist, this entertaining book 
demonstrates the explanatory power of behavioral economics, and 
the necessity of behavioral experiments for understanding the 
often irrational – but generally predictable – rules that govern 
human behavior. 
 
The book’s scope is more general and applicable to the business of 
actuaries than either of the other popular books Nudge (focusing on 
the choices people make and how their choices can be influenced) 
or The mind of the market (focusing on how behavioral economics 
affects our daily lives). 9  The book is an excellent introduction to 
more technical works on behavioral economics by Kahneman and 
Tversky.10 
 
When you read this book it is helpful to pause after each chapter 
to consider the potential implications of the behavioral economics 
experiments for actuarial work, and how the behavioral rules 
might be reflected in agent-based models of actuarial systems. 
 
As an introduction to the author you may enjoy watching his 
presentation of the book as part of the Authors @ Google 
program.11 
                                                      
9 Thaler & Sunstein (2008) and Shermer (2008) 
10 For example, see the books Gilovich, Griffin, & Kahneman (2002), Kahneman & Tversky (2000), and Kahneman, et 

al. (1982).  You may also be interested to see videos of Kahneman on YouTube.com:  Kahneman (2008a) and 
Kahneman (2008b). 

11 Ariely (2008a) 

 
When do headaches vanish? 

 
“Do you know why we so often promise 
ourselves to diet, only to have the thought 
vanish when the dessert cart rolls by? 
 
Do you know why we sometimes find ourselves 
excitedly buying things we don’t really need? 
 
Do you know why we still have a headache after 
taking a one-cent aspirin, but why that same 
headache vanishes when the aspirin costs 50 
cents? 
 
Do you know why people who have been asked 
to recall the Ten Commandments tend to be 
more honest (at least immediately afterward) 
than those who haven’t?  Or why honor codes 
actually do reduce dishonesty in the workplace? 
 
By the end of this book, you’ll know the 
answers to these and many other questions that 
have implications for your personal life, for your 
business life, and for the way you look at the 
world.  Understanding the answer to the 
questions about aspirin, for example, has 
implications not only for your choice of drugs, 
but for one of the biggest issues facing our 
society:  the cost and effectiveness of health 
insurance.” 

from the Introduction, pp xxi-xxii 
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7. COMPLEX ADAPTIVE SYSTEMS 
AN INTRODUCTION TO COMPUTATIONAL MODELS OF SOCIAL LIFE 

 BY:  JOHN H. MILLER AND SCOTT E. PAGE (2007) 
 
Structure:  Preface, 12 chapters, Epilogue, two appendices, 263 

pages, with an index and bibliography 
Recommended reading:  all content 
Themes: 

complex adaptive systems.. x behavioral economics...  
networks…….………….  agent-based modeling.. x 

Main ideas: 
 The science of complexity and its ability to explore the in-between 

areas (in between the extremes of traditional economics, in 
between stasis and chaos, control and anarchy, and the continuous 
and the discrete) is especially relevant for some of the most pressing 
issues of our modern world. 

 While complex systems can be fragile, they also exhibit unusual 
robustness to changes in their component parts. 

 The innate features of many social systems produce complexity. 
 The commonly-mentioned “edge of chaos” is not one edge, but 

rather a multitude of edges contained within a set of attractor rules. 
 
 
This book provides an excellent introduction to many key models 
of Complexity Science.  It starts with the “standing ovation” 
model, and progresses through “attack of the killer bees”, the 
Tiebout world, Conway’s Game of Life, the forest fire model, 
social cellular automata, Schelling’s segregation model, Schelling’s 
beach model, Bak’s sandpile model, the Prisoner’s Dilemma, and 
others.  Along the way, the authors discuss related topics such as 
the pros and cons of computational modeling, what agents are, a 
basic framework for computational models, the edge of chaos, 
network structure, self-organized criticality, power laws, fat tails, 
and game theory. 
 
The two appendices are especially interesting and useful.  
Appendix A discusses 19 unanswered questions that complexity 
science must address, such as: 
 What does it take for a system to exhibit complexity? 
 What makes a system robust? 
 
Appendix B gives best practices for successful computational 
modeling. 

 
A new approach to complexity 

 
“[The topic of] complex systems has become 
both a darling of the popular press and a rapidly 
advancing scientific field.  Unfortunately, this 
creates a gap between popular accounts that rely 
on amorphous metaphors and cutting-edge 
research that requires a technical background.  
Here we hope to provide a point of entry that 
lies between metaphor and technicalities.  Our 
work focuses on simple examples that are 
accessible, yet also contain much deeper 
foundational insights.” 

from Chapter 1, p 6 
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8. GROWING ARTIFICIAL SOCIETIES 
SOCIAL SCIENCE FROM THE BOTTOM UP 

 BY:  JOSHUA M. EPSTEIN AND ROBERT AXTELL (1996) 
 

Structure:  6 chapters, 208 pages, with appendices, index, and 
bibliography 

Recommended reading:  all chapters and appendices 
Themes: 

complex adaptive systems.. x behavioral economics...  
networks…….………….  agent-based modeling.. x 

Main ideas: 
 Agent-based modeling is the basis of a new kind of generative social 

science, one that evolves the characteristics of society from the 
bottom up, based on primitive agents. 

 Generative social science provides new insights into the workings of 
complex social systems.  For example, the book’s “Sugarscape” 
model shows that two basic tenets of traditional economic theory, 
equilibrium and Pareto optimality, are not realistic. 

 All spheres of social life, including demography, economics, 
cultural change, conflict, and public health, emerge naturally, 
without top-down specification, from the purely local interactions 
of individual agents in society. 

 
One of the most cited works in complexity science, this 
groundbreaking and enduring book demonstrates the power of 
agent-based modeling, and will generously reward your study.12  
In it, the authors show how an economy can be grown from 
scratch in a computer world called “Sugarscape”, starting with 
nothing more than 250 agents, a few basic behavior rules, and an 
environment with some natural resources.  Along the way, it 
shows that many of the assumptions of macro- and micro-
economics are unnecessary or wrong. The Sugarscape model 
demonstrates:  the distribution of wealth, social networks, 
migration, combat, trade, and disease transmission. 
 
To read about the flowering of generative social science 
introduced in this book, see the book Generative Social Science, also 
by Joshua Epstein, and also one of the Top ten Complexity Science 
books.  In addition to this book, there are other related books that 
you may enjoy.13 
  

                                                      
12 It was the most-cited reference in the ten-year history of the Journal of Artificial Societies and Social Simulation.  See 

Meyer, Lorscheid, & Troitzsch (2009). 
13 See Casti (1997), Axelrod (1997), Holland (1995), and Schelling (2006) 

 
Can you grow it? 

 
“The broad aim of this research is to begin the 
development of a more unified social science, 
one that embeds evolutionary processes in a 
computational environment that simulates 
demographics, the transmission of culture, 
conflict, economics, disease, the emergence of 
groups, and agent coadaptation with an 
environment, all from the bottom up.  Artificial 
society-type models may change the way we 
think about explanation in the social sciences. 
 
What constitutes an explanation of an observed 
social phenomenon?  Perhaps one day people 
will interpret the question, “Can you explain it?” 
as asking “Can you grow it?”  Artificial society 
modeling allows us to “grow” social structures in 
silico demonstrating that certain sets of 
microspecifications are sufficient to generate the 
macrophenomena of interest.  And that, after 
all, is a central aim.  As social scientists, we are 
presented with “already emerged” collective 
phenomena, and we seek microrules that can 
generate them.  We can, of course, use statistics 
to test the match between the true, observed 
structures and the ones we grow.  But the ability 
to grow them – greatly facilitated by modern 
object-oriented programming – is what is new.  
Indeed, it holds out the prospect of a new, 
generative, kind of social science.” 

from Chapter 1, pp 19-20 
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9. GENERATIVE SOCIAL SCIENCE 
STUDIES IN AGENT-BASED COMPUTATIONAL MODELING 

 BY:  JOSHUA M. EPSTEIN (2006) 
 
Structure:  Introduction, nine chapters (each with a “prelude”), and an 

ending “Coda”; 356 pages, with an index, bibliographies at the end 
of each chapter, and a CD. 

Recommended reading:  Introduction, Chapters 1,2,7,9,12,13, and 
the “Coda” 

Themes: 
complex adaptive systems.. x behavioral economics...  
networks…….………….  agent-based modeling.. x 

Main ideas: 
 Agent-based computational models are a new scientific instrument 

that permits a distinctively useful approach to social science. 
 Generative explanations in social science are scientifically valid. 
 Well-designed generative multi-agent models are more realistic 

explanations of social phenomena than the “proofs” of economic 
equilibria or Nash (game theoretic) equilibria. 

 
 
This book presents some of the concrete achievements of the 
generative approach to social science that the author’s previous 
book Growing artificial societies (also one of the  Top ten Complexity 
Science books) began.  For example, Chapter 7 shows how agent-
based modeling was used to explain the surprising emergent 
patterns of retirement after the U.S. Social Security retirement 
age was changed, and Chapter 12 introduces a model for a 
smallpox containment strategy. 
 
On the book’s accompanying CD are animations and applets of 
the models it describes.  Computer source code for the models is 
available from the author. 
 
As an introduction to the author, and a discussion of the smallpox 
containment model in the book, you may enjoy watching his 
interview titled A conversation with Josh Epstein (part 1).14 

                                                      
14 On YouTube.com, the interview is titled Agent-based modeling and the smallpox example, J. Epstein (2008a). 

 
If you didn’t grow it, 

you didn’t explain its emergence 
 
“Agent-based models provide computational 
demonstrations that a given microspecification is 
in fact sufficient to generate a macrostructure of 
interest.  Agent-based modelers may use 
statistics to gauge the generative sufficiency of a 
given microspecification – to test the agreement 
between real-world and generated macro 
structures.  … A good fit demonstrates that the 
target macrostructure – the explanandum – be 
it wealth distribution, segregation pattern, price 
equilibrium, norm, or some other 
macrostructure, is effectively attainable under 
repeated application of agent-interaction rules:  
It is effectively computable by agent society. … 
Indeed, this demonstration is taken as a 
necessary condition for explanation itself.  To 
the generativist – concerned with formation 
dynamics – it does not suffice to establish that, if 
deposited in some macroconfiguration, the 
system will stay there.  Rather, the generativist 
wants an account of the configuration’s 
attainment by a decentralized system of 
heterogeneous autonomous agents.  Thus, the 
motto of generative social science, if you will, 
is:  If you didn’t grow it, you didn’t explain its 
emergence …” 

from Chapter 1, p 8 
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10. THE ORIGIN OF WEALTH 
EVOLUTION, COMPLEXITY, AND THE RADICAL REMAKING OF ECONOMICS 

 BY:  ERIC D. BEINHOCKER (2006) 
 
Structure:  Preface, 18 chapters in four parts, and an Epilogue; 527 
pages, with notes, index, and bibliography 
Recommended reading:  preface, all chapters, and the epilogue 
Themes: 

complex adaptive systems.. x behavioral economics... x 
networks…….…………. x agent-based modeling.. x 

Main ideas: 
 Economics is in the midst of a revolution that promises to 

overthrow a century of conventional theory; Complexity Science is 
the revolution’s primary enabler. 

 The behavior of economic systems is part of a universal class of 
evolutionary behavior, with common evolutionary laws and 
algorithms.  Wealth is created through these evolutionary 
algorithms acting on technologies, social institutions, and 
businesses.  Indeed, evolution is the formula that lies behind all the 
order, complexity, diversity, and wealth in the economic world. 

 The economy was misclassified by traditional economics as an 
equilibrium system, whereas in fact it is a complex adaptive system. 

 A modern economy’s behavior cannot be forecasted for more than 
a very short time. 

 At the core of any economic theory must be a realistic theory of 
human behavior, an ingredient currently missing in traditional 
economics. 

 Much of the volatility we see in current economies (business cycles, 
growth discontinuities, inflation, etc.) is generated by the dynamics 
of people’s behavior, rather than by exogenous shocks. 

 
This unique tour de force weaves the themes of complex adaptive 
systems, networks, behavioral economics, and agent-based 
modeling into a highly readable account of how Complexity 
Science is transforming the field of economics.  
 
For a brief introduction to the author, see his interview with 
Richard Dawkins.15 
 
 

                                                      
15 See Beinhocker (2009) for part 1 (of 3) of the interview sequence. 

 
Complexity Economics 

 
”As I write this, the field of economics is going 
through its most profound change in over a 
hundred years.  I believe that this change 
represents a major shift in the intellectual 
currents of the world that will have a substantial 
impact on our lives and the lives of generations 
to come. … 
 
Despite the importance of economic thinking, 
few people outside the hushed halls of academia 
are aware of the fundamental changes under way 
in the field today.  This book is the story of what 
I will call the Complexity Economics 
revolution:  what it is, what it tells us about the 
deepest mysteries in economics, and what it 
means for business and for society at large.” 

from the Preface, pp xi-xii 
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ESSENTIAL RESOURCES 

A. INTRODUCTION 
This section lists the resources that, in my opinion, are the most 
useful for actuaries to learn more about complexity science and 
apply it in their work.  I found these resources using the process 
described in the section Finding the essential resources.  They include 
important websites, journals, conferences, e-mail lists, books, 
articles, and videos. 

B. WEBSITES 
The two most important websites for material about Complexity 
Science are: 
 www.santafe.edu  The site for the Santa Fe Institute, the 

premier research institution for Complexity Science.  Visit 
this site to keep abreast of new developments in the field. 

 www.econ.iastate.edu/tesfatsi/ace.htm  Devoted to 
agent-based computational economics, this site provides 
introductory material and links to important related sites. 

C. JOURNALS 
The two most prominent journals focusing on Complexity Science 
are: 
 Journal of Artificial Societies and Social Simulation 

(JASSS)  A free journal, available only on the Internet.  You 
can sign up to receive an e-mail when each issue is published. 

 Computational and Mathematical Organization 
Theory (CMOT)  A subscription-based journal. 

D. CONFERENCES 
The two most important conferences related to social simulation 
and agent-based modeling are: 
 The Winter Simulation Conference (WSC) 
 The World Congress on Social Simulation  This 

biannual (even years) congress is organized by three regional 
societies: 
– European Social Simulation Association (ESSA) 
– North American Association for Computational Social and 

Organization Sciences (NAACSOS), recently reorganized 
as the Computational Social Science Society (CSSS) 

– Pacific Asian Association for Agent-Based Approach in 
Social Systems Sciences (PAAA) 
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E. E-MAIL LISTS 
The most important e-mail list is the SIMSOC e-mail distribution 
list  This list will notify you about forthcoming conferences and 
workshops related to agent-based modeling.  To subscribe to the 
e-mail list, or to view the archives, visit the website 
“www.jiscmail.ac.uk/lists/simsoc.html”. 

F. BOOKS, ARTICLES, AND VIDEOS 
Following are the essential introductory books, articles, and 
videos about complexity science for actuaries.  The list is sorted 
alphabetically by the primary author’s last name.  As a guide to 
each reference, its last lines provide the following information: 
 The area of actuarial interest, such as Health, Pensions, Risk 

Management, Insurance, and General (for references of 
general interest). 

 A brief description of the reference’s contents. 
 The type of reference, such as Book, Book Section, Article, 

Conference Paper, Report, and Video. 
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Aaron, H. J. (1999). Behavioral dimensions of retirement economics. Washington D.C. New York: 
Brookings Institution Press; Russell Sage Foundation,  289 pages. 
(Pensions:  Presents a collection of reports about the application of behavioral economics to retirement issues - 
Book) 

Adamic, L. A. (2002). Ziph, power-laws, and Pareto - a ranking tutorial: HP Labs - Information Dynamics 
Lab,  5 pages. 
(General:  Shows that the power law, Zipf's law, and the Pareto distribution are mathematically equivalent, and 
discusses when to use each - Report) 

Aldrich, C. (2009). The complete guide to simulations & serious games: John Wiley & Sons, Inc.,  
(General:  Provides an overview of serious games and how they are used for education - Book) 

Alkemper, J., & Mango, D. F. (2005). Concurrent simulation to explain reinsurance market price 
dynamics. Risk Management, November 2005 (6), 13-17. 
(Insurance:  Reports on an agent-based model the authors developed to provide insights into the dynamics of 
the property-casualty reinsurance market - Article) 

Ariely, D. (2008a). Authors @ Google:  Dan Ariely.  Retrieved from www.youtube.com.  56 
minutes. 
(General:  Presents Dan Ariely's discussion of his book  - Video) 

Ariely, D. (2008b). Predictably irrational: the hidden forces that shape our decisions (1st ed.). New York, 
NY: Harper,  280 pages. 
(General:  Offers insights from behavioral economics into the patterns that cause people to make the same 
mistakes repeatedly - Book) 

Ariely, D. (2008 - 2009). Predictably irrational series.  Retrieved from 
www.youtube.com/view_play_list?p=B2424C40DE1C0D14&search_query=predictably+irrational.  
1 - 5 minutes each. 
(General:  Presents Dan Ariely's discussion of his book and behavioral economics in 
general - Video series) 

Axelrod, R. M. (1997). The complexity of cooperation: agent-based models of competition and collaboration. 
Princeton, N.J.: Princeton University Press,  232 pages. 
(General:  Presents a collection of Axelrod's essays primarily about game theory in complexity science - Book) 

Bak, P. (1996). How nature works: the science of self-organized criticality. New York, NY, USA: 
Copernicus,  212 pages. 
(General:  Introduces the concept of self-organized criticality - Book) 

Barabási, A.-L. (2003). Linked: how everything is connected to everything else and what it means for business, 
science, and everyday life. New York: Plume,  294 pages. 
(General:  Introduces network theory - Book) 

Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509-512. 
(General:  Seminal article that established preferential attachment and power law distributions as fundamental 
properties of many real-world networks - Article) 

Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. 
Cambridge, UK ; New York: Cambridge University Press,  347 pages. 
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(General:  Explains the effects of complex network patterns on dynamical phenomena - Book) 

Basole, R. C., & Rouse, W. B. (2008). Complexity of service value networks. IBM Systems Journal, 47 
(1), 53-70. 
(Health:  Compares the complexity of various economic sectors to the healthcare sector - Article) 

Bass, T. A. (1999). The predictors (1st ed.). New York: H. Holt and Co.,  viii, 309 p. 
(General:  Tells the story of The Prediction Company, from its inception - Book) 

Beinhocker, E. D. (2006). The origin of wealth: evolution, complexity, and the radical remaking of economics. 
Boston, Mass.: Harvard Business School Press,  527 pages. 
(General:  Shows how complexity science is transforming the field of economics - Book) 

Beinhocker, E. D. (2009). Interview with Richard Dawkins:  The Genius of Darwin (part 1 of 3).  
Retrieved from www.youtube.com.  8 minutes. 
(General:  Presents Eric Beinhocker's interview with Richard Dawkins - Video) 

Bonabeau, E. (2002). Predicting the unpredictable. Harvard Business Review, 2002 (March), 5-11. 
(General:  Discusses how to use agent-based modeling when prediction is impossible - Article) 

Boucek, C. H., & Conway, T. P. (2003). Dynamic pricing analysis. Paper presented at the Casualty 
Actuarial Society Forum - Winter 2003,  18 pages.  
(Insurance:  Desribes an agent-based simulation model that the authors used to estimate the impact that a 
pricing rate change will have on a company's policyholder retention and resulting profitability - Conference paper) 

Buchanan, M. (2002). Nexus: small worlds and the groundbreaking science of networks (1st ed.). New York: 
W.W. Norton,  235 pages. 
(General:  Introduces network theory - Book) 

Buchanan, M. (2009). Meltdown modelling:  could agent-based computer models prevent another 
financial crisis? Nature, 460 (August 6, 2009), 680-682. 
(General:  Makes the case that Complexity Science could prevent another financial crisis - Article) 

Carey, J. (2006). Medical guesswork. BusinessWeek (May 29, 2006). 
(Health:  Describes how the Archimedes model is helping to take the guesswork out of medicine - Journal 
article) 

Casti, J. L. (1997). Would-be worlds: how simulation is changing the frontiers of science. New York: J. Wiley,  
242 pages. 
(General:  Discusses how simulation of "artificial worlds" is changing the nature of scientific work - Book) 

Clarke, A. C. (2008). Fractals - the colors of infinity [Video].  Retrieved from www.youtube.com.  53 
minutes. 
(General:  Arthur C. Clarke introduces the world of fractals, with support from Benoit Mandelbroit, Stephen 
Hawking, and others.  - Video) 

Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2007). Power-law distributions in empirical data: Santa 
Fe Institute,  43 pages. 
(General :  Shows how to correctly analyze data for power law behavior - Report) 
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Conway, J. (2007a). John Conway talks about the Game of Life (part 1 of 2) [Video].  Retrieved from 
www.YouTube.com.  4 minutes. 
(General:  Presents John Conway talking about his Game of Life - Video) 

Conway, J. (2007b). John Conway talks about the Game of Life (part 2 of 2) [Video].  Retrieved from 
www.YouTube.com.  2 minutes. 
(General:  Presents John Conway talking about his Game of Life - Video) 

Crabb, R. R., & Shapiro, A. F. (1996). Managing the insurance enterprise:  an interactive computer 
game. Actuarial Research Clearing House, 1 (1996), 279-289. 
(Insurance:  Describes a serious game to train students how to manage an insurance company - Article) 

Danis, M. (2003). The CHAT project:  choosing healthplans all together: National Institutes of Health,  
(Health:  Describes the CHAT project - Article) 

Diamond, P. A., Vartiainen, H., & Yrjö Jahnssonin säätiö. (2007). Behavioral economics and its 
applications. Princeton, N.J.: Princeton University Press,  xvi, 312 p. 
(General:  Describes many applications of behavioral economics, including applications in health care, finance, 
economics, and welfare policy - Book) 

Discovery Channel. (2008). Connected:  the power of six degrees (on YouTube.com as A documentary 
on networks, social and otherwise) (part 1 of 5): Discovery Channel.  Retrieved from www.youtube.com.  
9 minutes. 
(General:  Introduces network theory - Video) 

Eddy, D., & Schlessinger, L. (2003). Archimedes - a trial-validated model of diabetes. Diabetes Care, 26 
(11 - November 2003), 3093-3101. 
(Health:  Provides an overview of the model Archimedes - Journal article) 

Epstein, J. (2008a). Agent-based modeling and the smallpox example.  Retrieved from 
www.youtube.com.  6 minutes. 
(Health:  Presents Josh Epstein discussing his agent-based smallpox model - Video) 

Epstein, J. (2008b). How organizations adapt to new environments.  Retrieved from 
www.youtube.com.  4 minutes. 
(General:  Presents Josh Epstein discussing his agent-based model of the best organizational structures for 
adapting to environmental change. - Video) 

Epstein, J. M. (2006). Generative social science: studies in agent-based computational modeling. Princeton: 
Princeton University Press,  356 pages. 
(General:  Presents a collection of reports that are examples of generative social science - Book) 

Epstein, J. M. (2008). Why model? Journal of artificial societies and social simulation, 11 (412), 5 pages. 
(General:  Addresses enduring misconceptions about modeling and gives sixteen reasons other than prediction 
to build models - Article) 

Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. 
Washington, D.C.: Brookings Institution Press,  208 pages. 
(General:  Demonstrates the power of agent-based modeling to help us understand social and economic 
systems - Book) 
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Érdi, P. (2008). Complexity explained. Berlin: Springer,  397 pages. 
(General:  Introduces complex adaptive systems, mainly from a mathematical perspective - Book) 

Fausett, L. V. (1994). Fundamentals of neural networks : architectures, algorithms, and applications. 
Englewood Cliffs, NJ: Prentice-Hall,  xvi, 461 p. 
(General:  Provides a non-technical introduction to neural networks - Book) 

Gardner, M. (1970). The fantastic combinations of John Conway's new solitaire game "life". Scientific 
American, 1970 (October). 
(General:  Describes, for the first time, The Game of Life - Article) 

Gilbert, G. N. (2008). Agent-based models. Los Angeles: Sage Publications,  98 pages. 
(General:  Provides a brief practical introduction to agent-based modeling - Book) 

Gilovich, T., Griffin, D. W., & Kahneman, D. (2002). Heuristics and biases: the psychology of intuitive 
judgement. Cambridge, U.K.; New York: Cambridge University Press,  857 pages. 
(General:  Provides a collection of research articles about behavioral economics - Book) 

Gionta, G. (2000). Insurance World 2 - A complex model to manage risk in the age of globalization,  
(General:  Provides a detailed description of the Insurance World model - Report) 

Gladwell, M. (2002). The tipping point: how little things can make a big difference (1st Back Bay pbk. ed.). 
Boston: Back Bay Books,  301 pages. 
(General:  Demonstrates the non-linearity of social systems by giving examples of how small changes can have 
big effects - Book) 

Gleick, J. (2008). Chaos: making a new science (20th anniversary ed.). New York, N.Y.: Penguin Books,  
360 pages. 
(General:  Traces the development of chaos theory - Book) 

Gribbin, J. R. (2004). Deep simplicity: bringing order to chaos and complexity (1st U.S. ed.). New York: 
Random House,  275 pages. 
(General:  Introduces complex adaptive systems - Book) 

Gros, C. (2008). Complex and adaptive dynamical systems: a primer (1st ed.). New York: Springer,  262 
pages. 
(General:  Introduces more advanced topics in complex adaptive systems, from a mathematical perspective - 
Book) 

Haldane, A. G. (2009). Rethinking the financial network,  41 pages. 
(General:  Applies insights from complexity science to the financial sphere - Report) 

Heath, B., Hill, R., & Ciarallo, F. (2008). A survey of agent-based modeling practices (January 1998 to 
July 2008). Journal of artificial societies and social simulation, 12 (8), 42 pages. 
(General:  Surveys agent-based modeling practices - Article) 

Hickman, J. C. (1997). Introduction to actuarial modeling. North American Actuarial Journal, 1 (3), 1-5. 
(General:  Describes the results of the conference titled "Actuarial and financial modeling:  toward a new 
science" held in 1996 - Article) 
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Holland, J. H. (1995). Hidden order: how adaptation builds complexity. Reading, Mass.: Addison-Wesley,  
185 pages. 
(General:  Introduces complex adaptive systems, with an emphasis on the concept of adaptation - Book) 

Holland, J. H. (2008). Modeling complex adaptive systems: Case Western Reserve University.  
Retrieved from www.youtube.com.  71 minutes. 
(General:  Presents John Holland talking about how to model complex adaptive systems - Video) 

Horgan, J. (1996). The end of science : facing the limits of knowledge in the twilight of the scientific age. 
Reading, Mass.: Addison-Wesley Pub.,  x, 308 p. 
(General:  Makes the case that all the important scientific discoveries have been made, and that Complexity 
Science in particular has nothing important to add - Book) 

Johansen, A. (1996). A simple model of recurrent epidemics. Journal of theoretical biology, 178, 45-51. 
(Health:  Describes a cellular automaton model of disease spreading - Article) 

Kahn, J. (2009). Modeling human drug trials - without the human. Wired Magazine, 404 (December 
2009). 
(Health:  Describes the Archimedes model, especially how it is used to simulate drug trials - Journal article) 

Kahn, R., Alperin, P., Eddy, D., Borch-Johnsen, K., Buse, J., Feigelman, J., et al. (2010). Age at 
initiation and frequency of screening to detect type 2 diabetes: a cost-effectiveness analysis. The Lancet, 
375 (April 17, 2010), 1365-1374. 
(Health:  Describes the Archimedes simulation of various type 2 diabetes screening strategies - Journal article) 

Kahneman, D. (2008a). Explorations of the mind -  Intuition:  the marvels and the flaws, Hitchcock 
Lectures.  Retrieved from www.youtube.com.  56 minutes. 
(General:  Presents Daniel Kahneman talking about behavioral economics - Video) 

Kahneman, D. (2008b). Explorations of the mind -  Well-being, Hitchcock Lectures.  Retrieved from 
www.youtube.com.  59 minutes. 
(General:  Presents Daniel Kahneman talking about behavioral economics - Video) 

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: heuristics and biases. 
Cambridge ; New York: Cambridge University Press,  555 pages. 
(General:  Provides a collection of research articles about behavioral economics - Book) 

Kahneman, D., & Tversky, A. (2000). Choices, values, and frames. New York; Cambridge, UK: Russell 
sage Foundation; Cambridge University Press,  840 pages. 
(General:  Provides a collection of research articles about behavioral economics - Book) 

Kauffman, S. A. (1995). At home in the universe: the search for laws of self-organization and complexity. New 
York: Oxford University Press,  321 pages. 
(General:  Introduces complex adaptive systems - Book) 

Kelly, K. (1994). Out of control: the rise of neo-biological civilization. Reading, MA: Addison-Wesley,  521 
pages. 
(General:  Introduces complex adaptive systems - Book) 
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Kornhauser, D., Wilensky, U., & Rand, W. (2009). Design guidelines for agent based model 
visualization. Journal of artificial societies and social simulation, 12 (2), 27 pages. 
(General:  Shows how to use visualization for analyzing and presenting agent-based modeling results - Article) 

Law, A. M. (2009). How to build valid and credible simulation models. Paper presented at the 2009 Winter 
Simulation Conference,  10 pages.  
(General:  Presents techniques for building valid and credible simulation models. - Conference paper) 

Lewin, R. (1999). Complexity: life at the edge of chaos (2nd ed.). Chicago, Ill.: University of Chicago 
Press,  234 pages. 
(General:  Introduces complex adaptive systems - Book) 

Lewis, A. A. (1985). On effectively computable realizations of choice functions. Mathematial Social 
Sciences (10), 43-80. 
(General:  Proves that it is not possible to behave with full rationality - Article) 

Macal, C. M., & North, M. J. (2009). Agent-based modeling and simulation. Paper presented at the 2009 
Winter Simulation Conference,  13 pages.  
(General:  Introduces agent-based modeling and simulation - Conference paper) 

Mandelbrot, B. B. (1983). The fractal geometry of nature (Updated and augm. ed.). New York: W.H. 
Freeman,  468 p. 
(General:  A beautiful book that describes fractals and shows where they appear in nature - Book) 

Mango, D. F. (2004). The agents are coming. The Actuarial Review, 31 (1), 23-24. 
(General:  Argues that agent-based simulation is an important new method for actuaries to test the impact of 
changes in rates, plans, laws, sales compensation, and regulatory policy - Article) 

Mango, D. F. (2005). Risk management research imperatives. North American Actuarial Journal (July 
2005), iii-v. 
(Risk management:  Calls for new research in risk management - Article) 

Meyer, M., Lorscheid, I., & Troitzsch, K. G. (2009). The development of social simulation as reflected 
in the first ten years of JASS:  a citation and co-citation analysis. Journal of artificial societies and social 
simulation, 12 (4), 20 pages. 
(General:  Reviews the development of social simulation literature - Article) 

Meyers, R. A. (Ed.) (2009) Encyclopedia of complexity and systems science (1st ed.). New York: 
Springer. 
(General:  Presents articles about most areas of complexity science. - Encyclopedia) 

Microinsurance. (2008). Microinsurance - CHAT - Choosing healthplans all together.  Retrieved from 
www.youtube.com.  6 minutes. 
(General:  Presents an overview of the application of CHAT in rural india - Video) 

Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: an introduction to computational models of 
social life. Princeton, N.J.: Princeton University Press,  263 pages. 
(General:  Introduces the theoretical foundations of complex adaptive systems theory - Book) 

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.: MIT Press,  205 pages. 
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(General:  Covers the theory and history of genetic algorithms - Book) 

Mitchell, M. (2009). Complexity: a guided tour. Oxford, U.K.; New York: Oxford University Press,  
349 pages. 
(General:  Provides an overview of complexity science - Book) 

Newman, M. E. J. (2003). The structure and function of complex networks: University of Michigan,  58 
pages. 
(General:  Introduces network theory and reviews developments in the field - Report) 

Newman, M. E. J. (2008). The physics of networks. Physics Today, November 2008, 33-38. 
(General:  Describes approaches to quantify network patterns and to determine what such patterns mean for the 
functioning of a system that a network represents. - Article) 

Newman, M. E. J. (2010). Networks : an introduction. Oxford ; New York: Oxford University Press,  xi, 
772 p. 
(General:  The new 'bible' of network science, this book coherently presents the different strands of network 
science and highlights the interconnections among them - Book) 

Newman, M. E. J., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. 
Princeton: Princeton University Press,  582 pages. 
(General:  Delves into network details - Book) 

North, M. J., & Macal, C. M. (2007). Managing business complexity: discovering strategic solutions with 
agent-based modeling and simulation. Oxford ; New York: Oxford University Press,  313 pages. 
(General:  Shows how to develop agent-based models - Book) 

NOVA. (2007). Emergence - complexity from simplicity, order from chaos (1 of 2).  Retrieved from 
www.youtube.com.  5 minutes. 
(General:  Introduces complex adaptive systems - Video) 

Nowak, A., & Lewenstein, M. (1996). Modeling social change with cellular automata. In Hegselmann 
(Ed.), Modeling & simulation in the social sciences from a philosophical point of view (Boston: Kluwer.  
(General:  Describes and gives modeling examples of social impact theory - Book section) 

Orrell, D. (2007). The future of everything : the science of prediction (1st Thunder's Mouth Press ed.). New 
York: Thunder's Mouth Press,  449 p. 
(General:  Compares the difficulties of predicting the weather, health, and wealth - Book) 

Pagels, H. R. (1988). The dreams of reason: the computer and the rise of the sciences of complexity. New York: 
Simon and Schuster,  352 p. 
(General:  Covers the early history and wider implications of complexity science - Book) 

Poundstone, W. (1985). The recursive universe : cosmic complexity and the limits of scientific knowledge. 
Chicago: Contemporary Books,  252 p. 
(General:  Gives an in-depth analysis of the Game of Life - Book) 

Purdy, J. A. (2007). Getting serious about digital games in learning. Corporate University Journal (1), 3-6. 
(Genera:  Gives an overview of the uses of serious games in business and education - Article) 
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Rauch, J. (2002). Seeing around corners. The Atlantic Monthly (April 2002), 35-48. 
(General:  An introduction to the applications of agent-based modeling - Article) 

Regis, E. (2003). The info mesa : science, business, and new age alchemy on the Santa Fe Plateau (1st ed.). 
New York: W.W. Norton,  268. 
(General:  Describes the many businesses that have spun off from the Santa Fe Institute - Book) 

Rhodes, C. J., Jensen, H. J., & Anderson, R. M. (1997). On the critical behaviour of simple 
epidemics. Proceedings of the Royal Society London, 264, 1639-1646. 
(Health:  Describes the power-law characteristics of epidemics for an island population - Article) 

Sanders, I. T., & McCage, J. A. (2003). The use of Complexity Science: a survey of Federal departments and 
agencies, private foundations, universities, and independent education and research centers: Washington Center 
for Complexity & Public Policy,  62 pages. 
(General:  Surveys the organizations involved in Complexity Science and how the new science is being used - 
Report) 

Sargent, R. G. (2009). Verification and validation of simulation models. Paper presented at the 2009 
Winter Simulation Conference,  15 pages.  
(General:  Discusses various approaches to verify and validate simulation models  - Conference paper) 

Schelling, T. C. (2006). Micromotives and macrobehavior. New York: Norton,  270 pages. 
(General:  Shows how seemingly trivial individual behaviors can lead to important aggregate results - Book) 

Schiff, J. L. (2008). Cellular automata: a discrete view of the world. Hoboken, N.J.: Wiley-Interscience,  
252 pages. 
(General:  Introduces cellular automata and their application - Book) 

Schlessinger, L., & Eddy, D. (2001). Archimedes: a new model for simulating health care systems - the 
mathematical formulation. Journal of Biomedical Informatics, 35 (2002), 37-50. 
(Health:  Describes the mathematical formulation to model human biology, disease, and healthcare interventions 
in Archimedes - Journal article) 

Segre-Tossani, L. (2003). Simulation technology for managing risk. Risks and Rewards Newsletter, February 
2003 (41), 4-10. 
(Risk management, Insurance:  Describes the agent-based model InsuranceWorld - Article) 

Serious Games Institute. (2007). The Serious Games Institute:  Building infrastructure for the serious 
games sector.  Retrieved from www.youtube.com.  3 minutes. 
(General:  Presents an overview of the Serious Games Institute - Video) 

Shermer, M. (2008). The mind of the market: compassionate apes, competitive humans, and other tales from 
evolutionary economics (1st ed.). New York: Times Books,  308 pages. 
(General:  Explains human economic behavior using behavioral economics research results  - Book) 

Shumrak, H. M., & Darley, V. (1999). Applying complex adaptive systems to actuarial problems. Paper 
presented at the 1999 Valuation Actuary Symposium Proceedings,  28 pages.  
(General:  Describes an agent-based simulation to model customer lapse behavior - Conference paper) 
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Shumrak, H. M., Greenbaum, M., Darley, V., & Axtell, R. (1999). Modeling annuity policyholder 
behavior using behavioral economics and complexity science,  12 pages. 
(Insurance:  Describes a model of policyholder behavior that combines behavioral economics and agent-based 
modeling - Report) 

Smith, L. M., & Segre-Tossani, L. (2003). Applications of advanced science in the new era of risk modeling. 
Paper presented at the 2003 Thomas P. Bowles, Jr. Symposium - April 10-11,  
(Risk management:  Presents the case that agent-based modeling is better than traditional actuarial methods to 
deliver credible analyses in a risk environment characterized by multiple correlations, extreme events, and 
cascading risks - Conference paper) 

Sobkowicz, P. (2003). Opinion formation in networked societies with strong leaders. Complexity Digest, 
2003 (48). 
(General:  Provides details about social impact theory - Article) 

Strip, D., Backus, G., Strickland, J., & Schoenwald, D. (2005). Modeling the US healthcare system:  
predicting the consequences of policy decisions through computational models: Sandia Corporation,  4 pages. 
(Health:  Argues for creating an agent-based model of the entire U.S. healthcare system in order to better 
understand it - Report) 

Studnicki, J., Eichelberger, C., & Fisher, J. (2009). Complex adaptive systems:  how informed patient 
choice influences the distribution of complex surgical procedures. In Z. W. Ras & W. Ribarsky (Eds.), 
Advances in information and intelligent systems - studies in computational intelligence (Vol. 251): Springer.  17 
pages. 
(Health:  Describes a model the authors developed to study how informed patient choices can influence the 
distribution of surgical volume for complex procedures - Book section) 

Takadama, K., & Shimohara, K. (2002). The hare and the tortoise:  cumulative progress in agent-based 
simulation. In A. Namatame, T. Terano & K. Kurumatani (Eds.), Agent-based approaches in economic and 
social complex systems (Amsterdam: IOS Press).  pages 3-14. 
(General:  Argues for the slow, careful, and thorough development of agent-based modeling and simulation - 
Book section) 

Thaler, R. H., & Sunstein, C. R. (2008). Nudge: improving decisions about health, wealth, and happiness. 
New Haven: Yale University Press,  293 pages. 
(General:  Shows how human behavior can be molded using behavioral economics research results - Book) 

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, Conn.: Graphics 
Press,  197 p. 
(General:  Provides guidance about displaying quantitative information - Book) 

Tufte, E. R. (2006a). Beautiful evidence. Cheshire, Conn.: Graphics Press,  213 p. 
(General:  Provides guidance about displaying quantitative information - Book) 

Tufte, E. R. (2006b). The cognitive style of PowerPoint: pitching out corrupts within (2nd ed.). Cheshire, 
Conn.: Graphics Press,  31 p. 
(General:  Makes the case that PowerPoint is misused, and shows better ways to make a presentation - Booklet) 

Waldrop, M. M. (1992). Complexity: the emerging science at the edge of order and chaos. New York: Simon 
& Schuster,  380 pages. 
(General:  Introduces complexity science - Book) 
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Wang, S., & Mango, D. F. (2003). Research outside the actuarial comfort zone. Actuarial Review, 30 (1 
(February 2003)). 
(General:  Argues that actuaries should take a leadership role in addressing systemic societal problems - Article) 

Watts, D. J. (2003). Six degrees: the science of a connected age (1st ed.). New York: Norton,  368 pages. 
(General:  Introduces network theory - Book) 

Wei, Y.-m., Ying, S.-j., Fan, Y., & Wang, B.-H. (2003). The cellular automaton model of investment 
behavior in the stock market. Physica, 325 (2003), 507-516. 
(General:  Applies an automaton model to study stock market investment behavior - Article) 

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media,  1197 pages. 
(General:  Introduces cellular automata and their application - Book) 

Wolfram, S. (2008). A new kind of science - Stephen Wolfram [Video]: University of California, San 
Diego.  Retrieved from www.youtube.com.  86 minutes. 
(General:  Presents Stephen Wolfram talking about his book - Video) 

Wragg, T. (2006). Modelling the effects of information campaigns using agent-based simulation: Australian 
Government Depart of Defence - Technology Organisation,  58. 
(General:  Demonstrates an agent-based model of an information campaign regarding vaccination in India - 
Report) 
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FINDING THE ESSENTIAL RESOURCES 

A.  INTRODUCTION 
Even though Complexity Science is young, its literature is vast and 
scattered.  This section describes the process I followed during 
December 2009 and January 2010 to search through this literature 
and find the essential resources for actuaries. 
 
As a measure of the literature’s size, on Google Web one finds 
over 500,000 resources related to complexity science (CS) and 
agent-based modeling and simulation (ABMS).  Also, according to 
Google Scholar and Google Books, during the twenty-year period 
1989 – 2008, more than 50,000 related articles and books were 
published (see the charts below).  By contrast, during the same 
twenty-year period, only about 4,000 articles and books were 
published about another young field of interest to actuaries, 
Enterprise Risk Management (ERM).1 
 

 
Not only are the Complexity Science resources numerous, they 
are also widely dispersed.  Mirroring the variety of fields that 
Complexity Science touches, its resources are scattered among 
numerous journals, websites, conferences, publishers, and 
institutions, and are classified under many domains.  For example, 
a recent survey of agent-based modeling applications found 279 
articles from 92 publication outlets classified under 9 domains 
(economics, social science, business, etc.).2 
 
 
 

                                                      
1  These results were obtained by searching for the terms “complexity science”, “complex adaptive system(s)”, “agent 

based model(ing)” , and “enterprise risk management” on Google Web, Google Scholar, and Google Books. 
2   Heath, Hill, & Ciarallo (2008) 
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B.  SEARCH GOALS 
The primary goal of this literature search is to compile resources 
to help actuaries apply the tools and insights of Complexity 
Science to their work. 
 
A secondary goal is to demonstrate how an actuary can perform a 
structured literature search, a powerful aid that actuaries often 
neglect. Accordingly, this literature search includes only databases 
and search tools that are readily available to actuaries; it includes 
no purely academic or subscriber databases (such as the ISI Web of 
Knowledge). 

C.  SEARCH PROCEDURE 
The search process consists of six sequential steps: 
 
1. Develop search terms  The first step was to develop search 

terms.  “Search terms” are the words or phrases used to find 
resources in a database (see sidebar).  The process to develop 
search terms is largely trial and error:  one tries a variety of 
potential terms to find those that yield the most useful and 
manageable results.  As examples, for this search, the term 
“complexity” yielded too many resources to sort through, 
while the term “complexity theory” yielded too few.  The 
terms used for this search are listed in Section D – Search 
terms. 

 
2. Identify relevant databases  The next step was to identify 

databases that would provide useful resources, and that 
actuaries can easily access.  After identifying obvious choices 
such as online databases of professional actuarial organizations 
and Google Web, finding other databases was largely a matter 
of trial and error.  For example, almost by accident I 
discovered many valuable resources through Google Video.  
The databases used for this search are listed in Section E – 
Databases. 

 
3. Find primary resources  Using the search terms and 

databases developed in the first two steps, the next step was 
to search the databases for potentially useful resources.  For 
example, I searched the Society of Actuaries online database 
for all resources containing the search term “complexity 
science”.  All the resources returned by a database are called 
“hits” (see sidebar). 

 

 
Search terminology 

 
“Search terms” are words or phrases related 
to a topic that are used to find resources on 
that topic within a database.  For example, in 
many databases I used the search term 
“complexity science” to find resources related 
to complex adaptive systems. 
 
“Hits” are the resources found in a database 
from using search terms. 
 
“Primary resources” are those resources of 
potential interest to actuaries that I found 
directly from searching a database.  For 
example, I found the article “Applying 
complex adaptive systems to actuarial 
problems” directly from searching the Society 
of Actuaries online database.  Thus, it is a 
primary resource. 
 
“Referenced resources” are those 
resources potentially of interest to actuaries 
that are mentioned within a primary resource.  
For example, within the article  “Applying 
complex adaptive systems to actuarial 
problems”, the authors  mention an article 
titled “Modeling annuity policy holder 
behavior using behavioral economics and 
complexity science”.  This second article is 
thus a “referenced resource”. 
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C.  SEARCH PROCEDURE CONTINUED 
3.  Find primary resources continued 

By reviewing each hit (or, with Google searches, each of the 
top 200 hits), I determined its potential usefulness.  
Potentially useful hits are called “primary resources” (see 
sidebar on the previous page). 
 

4. Find referenced resources  Next, I reviewed each 
resource mentioned in the text of every primary resource, to 
determine its potential usefulness.  Such potentially useful 
resources are called “referenced resources” (see sidebar on the 
previous page). 

 
For more search details, you can find the complete list of 
primary and referenced resources, together with a detailed 
chronicle of the process I used to find them, on the SOA web 
page for this report. 
 
Section F – Search results summarizes the search results. 

 
5. Select the essential resources  The next step was to select 

from the primary and referenced resources those that are the 
most important for actuaries to study.  I selected these after 
reading the primary and referenced resources obtained in 
steps 3 and 4.  The essential resources, numbering about one 
hundred, are listed in the section of this report titled Essential 
resources. 

 
6. Select the top ten books  From among the essential 

resources, the final step was to select and annotate the ten 
most important books.  These are the most important books, 
in my opinion, to help actuaries learn more about Complexity 
Science.  They are discussed in the section of this report Top 
ten Complexity Science books. 
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D.  SEARCH TERMS 
Following are the search terms I used: 
 

 
Complexity science (CS) 
search terms 

complexity science 

complex adaptive system 
complex adaptive systems 

network theory 
network science 

behavioral economics 
behavioural economics 

 

 
Agent-based modeling and 
simulation (ABMS) search terms 

agent-based 
agent based 

multi-agent 
multi agent 
multiagent 
 

 
Actuarial search terms 

actuarial 
actuaries 
actuary 

asset allocation 
investment 

insurance 
reinsurance 

pension 
retirement 

healthcare 
health care 
 
risk management 
 

 
For actuarial databases, such as the Society of Actuaries online 
database, I used only CS and ABMS search terms.  For other 
databases, I used the following search term combinations: 
 (CS search terms) AND (Actuarial search terms) 
 (ABMS search terms) AND (Actuarial search terms) 
 
Search terms were grouped as indicated in the table above (e.g., 
insurance and reinsurance were grouped together in a search). 
 
The complete list of search term combinations employed is given 
in Section F – Search results. 
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E.  DATABASES 
Following are the databases I searched. 
 

 
A.  Actuarial online databases 
1. Society of Actuaries (SOA) 
 (www.soa.org) 
2. Casualty Actuarial Society (CAS) 
 (www.casact.org) 
3. International Actuarial Association (IAA) 
 (www.actuaries.org) 
4. Institute of Actuaries/Faculty of Actuaries 
 (UK) 
 (www.actuaries.org.uk) 
5. Institute of Actuaries of Australia 
 (www.actuaries.asn.au) 
 
B.  Books 
1. Library of Congress 
 (www.loc.gov) 
2. Google Books 
 (www.google.com) 
3. Santa Fe Institute Book List 
 (www.santafe.edu/research/publications/ 
 publications-book-list.php) 
 
C.  Internet 
1. Google Web 
 (www.google.com) 
 
 

 
D.  Journals 
1. Google Scholar 
 (www.google.com) 
2. PubMed 
 www.ncbi.nlm.nih.gov/pubmed 
3. Santa Fe Institute Working Papers 
 (www.santafe.edu/research/publications/wplist) 
4. Specific journals 
 a. Journal of Artificial Societies and Social 

Simulation (jasss.soc.surrey.ac.uk) 
 b. Computational and Mathematical 

Organization Theory 
 (www.springerlink.com/content/1381-298X) 
 c. Complexity 
 (www3.interscience.wiley.com/journal/ 
 388804/home) 
 
E.  Conference papers 
1. Winter Simulation Conference reports 
 (www.wintersim.org) 
 
F.  Videos 
1. Google Video 
 (www.google.com) 
 
G.  General reference 
1. Wikipedia 
 (en.wikipedia.org) 
 

F.  SEARCH RESULTS 
The following tables summarize the search results.  From a review 
of more than 15,000 resources, I selected about 300 potentially 
useful resources (the “primary resources” and “referenced 
resources”).  From these I selected about one hundred essential 
resources for inclusion in this report.  Thus, of the total number 
of resources I reviewed, the essential resources represent about 1 
percent.3 
 

                                                      
3 Because some of the essential resources came from sources other than the literature search (such as from 

recommendations of people who reviewed this report) the number of essential resources is greater than the sum of 
the ‘selected resources’ in the following table. 



Complexity science – an Introduction for actuaries 

Finding the hundred essential resources continued 

FINDING THE ESSENTIAL RESOURCES     6 

F.  SEARCH RESULTS CONTINUED 
 
    Results 
 
 
 
 
Search 
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Search terms 
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A.  Actuarial online databases 

      

A.1.a 
A.1.b 

SOA CS 
ABMS 

Any resources 
Any resources 

41 
48 

9 
1 

11 
0 

5 
1 

A.2.a 
A.2.b 

CAS CS 
ABMS 

Any resources 
Any resources 

12 
29 

3 
3 

1 
13 

1 
1 

A.3.a 
A.3.b 

IAA CS 
ABMS 

Any resources 
Any resources 

31 
77 

3 
2 

3 
0 

3 
0 

A.4.a 
A.4.b 

Institute of Actuaries – UK CS 
ABMS 

Any resources 
Any resources 

16 
4 

0 
3 

0 
5 

0 
2 

A.5.a 
A.5.b 

Institute of Actuaries – Australia CS 
ABMS 

Any resources 
Any resources 

0 
1 

0 
0 

0 
0 

0 
0 

  
B.  Books 

      

B.1.a 
B.1.b 

Library of Congress 
 

CS + Actuarial 
ABMS + Actuarial 

Any text 
Any text 

331 
313 

12 
7 

42 
4 

12 
4 

B.2.a 
B.2.b 

Google Books CS + Actuarial 
ABMS + Actuarial 

Any text 
Any text 

1,478 
5,132 

6 
3 

0 
0 

4 
1 

B.3 
 

Santa Fe Institute Book List Manual search All books NA 1 0 0 

  
C.  Internet 

      

C.1.a.i 
C.1.a.ii 
C.1.b.i 
C.1.b.ii 

Google Web CS + Actuarial 
 
ABMS + Actuarial 
 

PDF documents (top 200) 
non-PDF resources (top 200) 
PDF documents (top 200) 
non-PDF resources (top 200) 

698,576 
1,742,226 

276,350 
719,180 

31 
9 

18 
5 

3 
0 
3 
0 

3 
1 
8 
0 
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F.  SEARCH RESULTS CONTINUED 
 
    Results 
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D.  Journals 

      

D.1.a 
D.1.b 

Google Scholar CS 
ABMS 

 2,763 
8,100 

4 
3 

0 
0 

0 
0 

D.2.a 
D.2.b 

PubMed CS 
ABMS 

 58 
413 

9 
17 

0 
0 

1 
1 

D.3 
 

Santa Fe Institute Working Papers Manual search All working papers NA 
 

5 1 1 

D.4.a Journal of Artificial Societies and 
Social Simulation 

Manual search All articles NA 15 0 3 

D.4.b Computational and Mathematical 
Organization Theory 

Manual search All articles 2008-2010 NA 2 0 0 

D.4.c Complexity 
 

Manual search All articles 2008-2010 NA 1 0 0 

        
  

E.  Conferences 
      

E.1 Winter Simulation Conference 
reports 

Manual search Relevant conference tracks 2008-2009 NA 6 0 3 

  
F.  Videos 

      

F.1 Google Video CS 
ABMS 
Other 

All videos 
All videos 
NA 

106 
518 
NA 

7 
3 

14 

0 
0 
0 

2 
1 
8 

  
G.  General reference 

      

G.1 Wikipedia CS 
ABMS 
 

All articles 
All articles 

2 
1 

2 
1 

0 
0 

0 
0 
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GLOSSARY 
actor:  See ‘vertex’. 

agent:  The fundamental element of a Complexity Science model, representing an actor within a 
system. 

agent-based model:  A type of computer simulation that models the relationships and behaviors 
of agents within a complex system, in order to model the emergent behavior of the system as a 
whole. 

artificial intelligence:  A scientific field whose goal is to develop computers that think like 
humans. 

artificial life:  A scientific field that shows how computer programs can emulate certain features 
of living organisms. 

asynchronous updating:  When a behavior rule is not applied to all agents at one time step. 

Barabási-Albert model:  A type of network model. 

behavioral economics:  A relatively new field that experimentally investigates the behavior of 
humans in an economic system. 

behavior rule:  An algorithm governing how an agent’s states are updated from one time step to 
the next. 

bond:  See ‘edge’. 

boundary:  In reference to a cellular automaton in the form of a lattice graph:  how cells at the 
edge of the lattice are related to other cells of the lattice. 

catastrophe theory:  A branch of mathematics popular in the 1970s that studies how large 
discrete changes (catastrophes) can appear in solutions of continuous equations with only small 
parameter changes.  

cell:  See ‘vertex’. 

cellular automaton:  A graph with vertices (cells) that can assume two or more states, and a 
behavior rule governing how each vertex’s state is updated. 

characteristic path length:  See ‘mean geodesic’. 

chaos theory:  The mathematical study of chaotic systems. See ‘chaotic system’. 

chaotic system:  A dynamic system that is highly sensitive to initial conditions. See ‘dynamic 
system’. 

cluster:  A group of vertices disconnected from other vertices in a graph, like an island. 

complete N-graph:  An undirected graph with a maximal number of edges. 

complex adaptive system:  A complex system that changes its behavior to respond to changes 
in its environment. 

complex adaptive systems theory:  One of the branches of Complexity Science, dealing with 
the theory and application of complex adaptive systems.  
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complexity science:  A new field that studies universal principles common to all complex 
systems. 

complex system:  An interesting dynamic system. See ‘dynamic system’. 

complex systems actuary:  A professional who addresses problems in complex systems, using 
the tools and concepts of Complexity Science. 

computation:  The aggregate behavior of a complex system, in which each of its agents carries 
out (or computes) its behavior rule, the way a computer carries out its program. Equivalently, the 
complex system can be said to be processing information. See ‘information’. 

computational complexity theory:  A branch of computer science that classifies 
computational tasks according to their inherent difficulty. 

computational model:  Agent-based model. See ‘agent-based model’. 

connected triple:  Three connected vertices (which may also be a ‘triangle’). 

controlled experiment:  An experiment that isolates the effect of one variable on a system by 
holding constant all variables but the one under observation. 

correlation coefficient:  A measure of the extent to which vertices are connected to other 
vertices with like degree. 

criticality:  A state where a system is out of balance, but not yet chaotic. 

cybernetics:  Originating in electrical engineering, this field studies the aggregate non-linear 
behavior of systems characterized by feedback loops. 

degree:  The number of edges connected to a vertex. A vertex of a directed graph has both an in-
degree and an out-degree for each vertex, which are the numbers of in-coming and out-going edges 
respectively. 

degree distribution:  The distribution of vertices with various degrees in a graph. Usually 
depicted on a graph with the x axis representing the degrees, and the y axis representing the degree 
frequencies. 

density:  In a graph, the ratio of the number of edges to the possible number of edges. 

design space:  For a complex system, all possible combinations of relationships networks and 
behavior rules. 

diameter:  The length (in number of edges) of the longest of the geodesic paths between all pairs 
of vertices in a graph. 

digraph:  A directed graph. 

directed edge:  A edge that runs in only one direction between two vertices. 

directed graph:  A graph of which all the edges are directed. 

dynamic system:  A system together with a behavior rule that causes the state of at least one of 
its objects to change over time. 
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dynamical systems theory:  A branch of applied mathematics, this field studies systems that can 
be modeled with a particular class of mathematical equations (differential equations or difference 
equations). 

dynamical network:  A type of network that incorporates agent behavior rules . 

edge:  A line connecting two vertices. Also called a tie (sociology), a link (computer science), and 
a bond (physics). 

edge of chaos:  A description of the most productive complex adaptive systems, meaning that 
such systems are closer to random systems than to simple systems. Many question the concept’s 
validity. 

emergence:  A characteristic of a complex systems, in which aggregate patterns arise out of the 
endogenous interactions of its agents with each other and an environment, without any central 
controller or other outside influence. 

environment:  An element of a complex system on which agents move and with which they can 
interact. 

evolution:  The creation of complex system behavior patterns that solve hard problems, most 
commonly problems of survival. 

experimental mathematics:  A branch of mathematics, this field uses computers and numerical 
computation to investigate mathematical objects and properties. Generally, the field studies objects 
and properties that have already been investigated using traditional mathematics. 

first-order cellular automaton:  A cellular automaton with a behavior rule that only depends 
on states at the previous time step. See ‘second-order cellular automaton’. 

fitness landscape:  A 3-dimensional representation of a design space. See ‘design space’. 

fractal:  A geometric pattern that is repeated at ever smaller scales to produce irregular shapes and 
surfaces that cannot be represented by classical geometry. 

fractal geometry:  A branch of mathematics that studies shapes in nature, and shows that many 
are not regular or smooth, but rather are nested shapes with intricate patterns. 

fragile:  Description of a system or network that cannot withstand damage to its parts. 

game theory:  A branch of applied mathematics that studies behavior in strategic situations where 
one person’s (or organization’s) choices depend on the choices of others. 

general systems theory:  A scientific field popular in the 1960s that studied general principles of 
social system functioning. 

geodesic path:  The shortest path from one vertex to another. There may be more than one 
geodesic path between two vertices. Also called, simply, the ‘geodesic’. See also ‘path length’. 

graph:  A representation of a real-world network, consisting of vertices and edges. 

heterogeneous:  Referring to agents of a complex system, when they can have different values 
for their attributes and states, different types of states, or different behavior rules. 

heuristic:  An informal guide to the solution of a problem. A rule of thumb. 
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hub:  In a graph, a vertex with a relatively high degree. 

in-degree:  The number of edges directed inward (with directional arrows) to a vertex. 

information:  The state of a complex system’s environment, together with the states of all the 
agents, that are used to define the system’s behavior rules. 

lattice model:  A type of network model. 

layout:  A pattern for placing vertices on a plot of a graph, determined by a placement algorithm. 

link:  See ‘edge’. 

loop:  An edge that starts and ends on the same vertex. 

mean degree:  For a graph, the average of the degrees for all vertices. 

mean geodesic:  The average of all the geodesics of a graph. Also called the ‘characteristic path 
length’. 

minimum degree:  In a graph, the degree of the vertex with the least degree. 

Moore neighborhood:  In a two-dimensional cellular automata, the eight cells surrounding a 
central cell. It is named after Edward F. Moore, a pioneer of cellular automata theory.  It is one of 
the two most commonly used neighborhood types; the other is the four-cell von Neumann 
neighborhood. See ‘von Neumann neighborhood’. 

multi-agent model:  Sometimes used synonymously with agent-based model. But the term can 
also mean a model in the field of multi-agent systems, a field mainly concerned with robot 
interactions. The term can also be used to mean a subset of agent-based models in which agents are 
heterogeneous. 

multi-dimensional histogram:  A histograms showing frequencies of more than one system 
state over time. 

neighborhood:  The collection of vertices connected to a vertex within a certain edge distance. 

network: Any system that can be modeled using vertices to represent system elements or agents 
and using edges to represent relations or interactions among the elements. 

network science:  One of the branches of Complexity Science. It deals with the theory and 
application of networks. Also called network theory. 

network theory:  See ‘network science’. 

neural network:  A virtual device, modeled after the human brain, in which several 
interconnected elements process information simultaneously, adapting and learning from past 
patterns. 

node:  See ‘vertex’. 

non-linear:  A relationship that is not linear; that is, change in an independent variable may 
produce wildly non-proportional change in a dependent variable. 

non-linear dynamics:  A branch of mathematics, this field analyzes non-linear mathematical 
equations. 
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object-oriented programming:  A type of computer programming in which an ‘object’ 
includes both the object’s attributes (called ‘instance variables’) and the functions (called 
‘methods’) that operate on the attributes. 

oscillation:  A common emergent pattern in a complex system, where its properties or attributes 
exhibit large swings. 

out-degree:  The number of edges directed outward (with directional arrows) from a vertex. 

participatory model:  An agent-based model in which people take agent roles and, following 
either simple scripted rules or their own instincts, act out the evolution of a simulation in the real 
world. 

path length:  The least number of edges between two vertices. Also called the ‘geodesic path 
length’. 

pattern-matching algorithm:  An algorithm that finds data patterns with potential near-term 
predictive value. 

periodic boundary:  A boundary where corresponding agents at opposite sides of a lattice are 
related as nearest neighbors. 

phase-space diagram:  Multi-dimensional diagrams that show the possible states of a system, 
with each state corresponding to a point on the diagram. 

phase transition:  A sudden dramatic change in a material from one state to another, such as ice 
turning to water, or non-magnetic material turning magnetic. 

power law distribution:  A degree distribution of many natural and human-made networks, 
conforming to the formula p(X = x) ~ x-k. For phenomena following a power law, small occurrences 
are common, whereas large occurrences are rare. 

punctuated equilibrium:  A common emergent pattern of a complex system, in which the 
system goes through long periods of relative stasis, interspersed with brief periods of explosive 
activity. 

random model:  A type of network model. 

random system:  A dynamic system for which the state changes of its objects appear to be 
random. See ‘dynamic system’. 

resilience:  The capacity of a system or network to withstand damage to its parts. 

robust:  Description of a system or network that can withstand damage to its parts. 

rulestring:  A simple way to represent a behavior rule for a cellular automaton whose agents can 
have only two states, consisting of a string of 1’s and 0’s corresponding to the last column of the 
cellular automaton’s  transition table 

scale free network:  A network that has a degree distribution that follows a power law. See 
‘power law’. 

second-order cellular automaton:  A cellular automaton with a behavior rule that depends on 
states in the two previous time steps. 
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self-organization:  The propensity of dynamic systems to organize themselves into complex 
systems, on their own, without experimentation, mutation, or selection. 

self-organized criticality:  The tendency for a system to organize itself to a critical state, 
without outside manipulation. 

serious game:  A game whose primary purpose is training, education, or discovery. Serious 
games are also called ‘e-learning simulations’ and ‘simulation challenges’. 

set:  A collection of objects. 

simple one-dimensional cellular automaton:  A graph whose non-boundary vertices all have 
exactly two nearest neighbors (ie, neighbors within a radius of one). 

simple system:  A dynamic system for which the state changes of its objects are relatively 
uninteresting. See ‘dynamic system’. 

simple two-dimensional cellular automaton:  A graph whose non-boundary vertices all have 
either exactly four or exactly eight nearest neighbors. 

site:  See ‘vertex’. 

skewed distribution:  A non-symmetrical distribution with a long and often ‘fat’ tail. The 
power-law distribution is a skewed distribution. 

small world effect:  A characteristic of a network, whereby its mean geodesic is approximately 
equal to the mean geodesic of a random network with the same number of vertices and mean 
degree. Many real-world networks exhibit this effect. 

small world network:  A network for which (a) its mean geodesic is approximately equal to the 
mean geodesic of a similar random network (one with the same number of vertices and the same 
mean degree or, equivalently, number of edges), and (b) its transitivity is much greater than the 
transitivity of a similar random network. Many real-world networks are small world networks. 

synchronous updating:  When a behavior rule is applied to each agent at each time step. 

system:  A set whose objects are related to one another. 

systems dynamics:  Originating in electrical engineering, this field studies the aggregate non-
linear behavior of systems characterized by feedback loops. 

tie:  See ‘edge’. 

transition table:  A method to present a set of simple if-then rules or a discrete function, 
whereby the values of the independent variables are listed in columns of a table, and the 
corresponding value of the dependent variable is listed in another column of the table. 

transitivity:  a measure of the probability that the adjacent vertices of a vertex are connected. It is 
equal to: 3 x number of triangles in a graph/number of connected triples. See ‘triangle’ and 
‘connected triple’. Also called the ‘clustering coefficient’, even though this term is also used for 
other graph measures. 

triangle:  Three vertices all of which are connected to each other. 
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Turing Machine:  A virtual machine consisting of a tape, a read/write head, and a transition 
table, that can perform any arithmetic or logical function. 

undirected edge:  An edge that runs in both directions between two vertices. 

undirected graph:  A graph of which all the edges are undirected. 

universal computer:  A Turing Machine that can simulate the behavior of any other Turing 
Machine, including itself. Also known as a Universal Turing Machine. 

Universal Turing Machine:  See ‘universal computer’. 

vertex:  The fundamental unit of a network. Also called a node (computer science), an actor 
(sociology), and a site (physics). 

von Neumann neighborhood:  In a two-dimensional cellular automata, the four cells 
orthogonally surrounding a central cell. It is named after John von Neumann, and is one of the two 
most commonly used neighborhood types; the other is the eight-cell Moore neighborhood. See 
‘Moore neighborhood’. 

Watts-Strogatz model:  A type of network model. 
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