
RECENT DEVELOPMENTS IN MODERN COMPUTER LANGUAGES

Panelists:

Dr. Hendrik J. Boom, Concordia University
Albert K. Christians, Gibraltar Life Insurance Co.

Brian J. Fortier, Cologne Life Reinsurance Co.

37

38

PANEL

NOTE FROM THE EDITORS:

We have added a number of footnotes containing explanatory and

other comments as they occurred to one of the panelists, Brian

Fortier, while he was reading the transcript of the discussion.

Plesse note that all footnotes are Brisn Fortier's.

MODERATOR (ARNOLD SHAPIRO): Al is going to start off and he

says thst he is going to say things that are controversial.

AL CHRISTIANS: Well, these other gentlemen will be able to

correct me. Probsbly the audience will be sble to correct me also.

I'm under the impression that the biggest recent development in com­

puters is the language in this book (Wegner). It is the Reference

Manual for the ADA Programming Language, U.S. Department of Defence.

You can get your copy from the U.S. Government Printing Office for

$5.00 and you can get it reprinted exactly as is in hard cover for

about $20.00 - it's not copyrighted, anyone can publish it who wants

to.

Before this, another book (by Wegner) appeared which was a pre­

liminary introduction to the language. It didn't include all fea­

tures, as stated in it, it was not final. The book stated that the

language was being finalized as it was being written and therefore

you'd better wait for the next edition, but the next edition hasn't

shown up yet. But you can read this book to get a very appetizing

introduction to the language. It doesn't go into great detail on a

39

lot of things, and a lot of things it leaves out entirely, but I'll

tell you first about some of the good things. Basically all of the

good things are in the book by Wegner and all the bad things are in

the Language Reference Manual. The first thing is that ADA is a •••

GOTTFRIED BERGER: What's the name?

AL CHRISTIANS: ADA. ADA is named after Lady Augusta Ada Byron"

later Countess of Lovelace. She was the programmer of Babbage's

analytical engine, actually she was the world's first computer pro-

grammer. She thought of subroutines and recursions and all these

things which are really hard to figure out and to implement on a

steam driven device but she threw her heart in it.

The first thing about the language is that it is based on

PASCAL. If any of you have experience with PASCAL, it will rather

help you if you ever get to ADA. It's a strongly typed language.

That meanS that each location in the computer's memory, each variable

in the program, has a particular type and it is absolutely impos-

sible, according to this book (Wegner's) anyway, to refer to the

contents of a variable by the wrong type. You don't have the abili-

ty, as you have in FORTRAN, to put some really bizarre integer into a

variable and print it out as a character, and it spells "mother".

You've got to deal with everything exactly as defined. There is only
~-

one way to treat any variable - there's 'no way to let array sub-

scripts get out of bounds - there's no way to do all the programming

tricks that make some programs very hard to understand, very hard to

fix when you decide to change them, and so on.*

* At least, the better known ones - obscure programming will not be
abolished by language fiat.

40

.
k
"

"

There's type checking, that is to say, whenever you assign a

value to a variable, the types have to match - there is no way to get

around thst. The machine does a lot of checking for you and because

the progrsmmer can define his own types, this gives a lot of checking

on the correctness of programs.* For example, in actuarial calcula-

tion, you might aay you calculate an actuarial present value which is

a probability times an interest factor times a dollar amount. You

can make each of these things separate types. If you have an sssign-

ment statement with a present value on the left side, you'd better

have something that's of the present value type on the right side.

You can tell the machine that when you multiply these things together

you get the type "present value". And if you leave one of them off,

it's going to be Some other type and the machine is going to flag it.

You're not going to be able to use the wrong type. If you use the

type facility, you can do a dimensional analysis, just as you can

when you're doing physics problems - on your programs it's going to

catch many mistakes.* •

• This also causes some problems: types are not always well defined.

** But not much more so than a compiler that does not check type
conversion. For instance:

"type DOLLAR is INTEGER, range -10,000 •• 10,000;
A,B: DOLLAR;
A: a B + 100;"

is valid, even though "100" is not directly type DOLLAR.
Types were designed with the FORTRAN I and II compiler as an aid

to the compiler - not the program writer - to determine the machine
leVel presentation of an item. It is chilling to find this idea be­
ing used as a pair of manacles. The justification of strict typing
seems to be that otherwrise the "stupid" programmer, "playing with
sharp tools" might cut himself. In its original setting, as an in­
troduction to programming, this is reasonable. Otherwise it has the
chilling tone of "I know what's best for you".

In any case the program writer can obviate type conversion I A
file record is typed only while it's being written or read: once on
the medium it is only so many bits or bytes. Therefore, to
reinterpret a given set of bits with "invalid" types, per PASCAL or
ADA, write them under one rec·ord defini tion, then read them back
under another one.

41

It also checks types between subroutines, so that programming in

lots of little pieces is facilitated, because the compiler checks a

the types that subroutine returns match up with the types the program

calling the subroutines is looking for and similarly for procedure

parameters going the other way. It comes with a programming support

system that checks all those things for you at compile time, too.

You don't need to run the program to find these errors you can't

compile them.

I'm sure everybody here has run a FORTRAN program where the ar-

guments and parameters didn't match and you got really odd results.

With ADA this can't happen. The compiler is going to check it all

for you. No problems.

One thing that ADA does, is an improvement over some of the

other procedure-oriented languages like PL/l and Fortran: say you

have something like A-F(x). In PL/l, for example, A and F can be

records, or they can be arrays, F can also be a function. But you

have a problem: in PL/l or Fortran a function can only return a

single value, it can't normally return arrays or records.* In ADA,

as in APL, functions can return arrays or records as results. You

can have A-F(x)*G(x) where F is a function that returns an array and

G is a function that returns a record and the * is also programmer

defined. You can build more abstract programs. The programmer can

deal much more conveniently with aggregates like records and arrays

* This is true for IBH-implementations of PL/l. The 1976 ISO/ANSI
standard requires the return of arrays/records by functions.

42

i·

• ,~t,

'.
,,,'" ;::;~

in ADA.

The machine aspects, as I said before, are completely hidden.

You can't find out, at least not according to this book, how the

machine is implementing any of this - it's all hidden.. You just

deal with the source program and the data that you define. ADA comes

with a good programming support system that's essentially with data

base manager for all your different modules; it tracks which modules

affect which other modules; if you change one module, it's going to

tell you every other module that you will have to recompile to keep

them compatible with each other - great support for large systems

built in many pieces!

Then so much for the "semi-final" design. This book, which is

actually the final reference manual, came out. It tells us what the

language does all of a sudden there are ways to get around virtually

all the restrictions that were originally put in, so it's still pos-

sible to write bad programs in this language ••• In fact, it's

probably possible to write worse programs in this language than in

any other if you really wanted to. You can turn off the type check-

ing. You can drop right into whatever the machine language is.

There's a statement which calls a built-in subroutine and uses, for

arguments, the op-codes and operands of a machine language instruc-

tion for whatever machine you're running on.... The subroutine exe-

cutes the machine instruction.

• Except for some PRAGHA's •

•• It's always possible to write bad programming!

••• This is the LINE pragma, whi'ch is machine dependent but could
compile in a non-ADA language, which could be assembler.

43

This way you can drop into machine code wherever you want to.

You can tell the machine at what addresses to put in instructions or

data, how to represent the data - all the machine features are acces-

sible to the programmer if he decides to use those parts of the lan-

guage. So you can get all the machine-oriented problems back in.*

The language is moderately difficult. The Language Reference

Manual says a lot of things that aren't in the Wegner book. There's

a glossary of terms, which has 47 terms in it. Programmers of more

conventional lsnguages would probably have no conception of what 10

of these mean and about ten others are a little bit different but

could be related to PASCAL. There's a syntax definition in the

Language Reference Manual - it's got about 150 different definitions

of syntax, so it's a pretty big but not s giant language. ADA will

be a little bit harder to learn and to write - it's not for the

smateur programmer. With APL, PL/l subset, FORTRAN, one could stsrt

programming in a day. It will be much harder with ADA. You have got

to be ,a little bit more serious sbout it to do that.

There's no automatic conversion. It's a strongly typed lan-

guage, the types in asSignment statements have to match; that means

that we are basicslly back to the days of FORTRAN 2, when if I is an

integer and B a'-floating point, you can't hsve I*B and so you will

wind up gnsshing your teeth.

HENDRIK BOOM: You can ask for conversion.

* A mixed curse. The primary reason for these things is the incred­
ible ·verbosity· required for doing things in a high level language
that can be done in one or two machine instructions.

44

AL CHRISTIANS: That's right, you can ask for conversion, but

you have to remember to ask and it matters how you write your con­

stants - if you put a decimal after them or not, things like that.

Basically, the main drawback of it is that it's not really de­

signed to be a general purpose programming language. Since it's a

modern language and it was developed by a large and thoughtful com­

mittee of people, or several large and thoughtful committees of

people, it does everything anybody could possibly want, but it is not

supposed to be a general purpose programming language. It's basical­

ly for imbedded processes. We had a brief discussion on those this

morning - controlling hardware, controlling weapons for the defense

department, airplanes, rockets, missiles, sewage plants, whatever you

want. But it's not for general purpose programming - the input-out­

put facilities they give you for file sccess, writing reports, etc.,

are kind of limited.. You have to write a lot of your own code to do

things which you could do more easily in other languages. The com­

pensating advantage is that it's easy to make this code reusable by

making it into a free-standing package - the language supports free­

standing packages pretty well.

I guess that's all I have to say about it.

BRIAN FORTIER: Hay I ask you a question about it?

AL CHRISTIANS: Yes, go ahead.

BRIAN FORTIER: I haven't read that manual yet, I've read the

preliminary report. Do they maintain the process handling the

• An understatement.

4S

SIHULA-like or GPSS-like approaches?

AL CHRISTIANS: You mean tasks, separate tasks?

BRIAN FORTIER: Well, not separate tasks, the process handling.

You can start a task- and schedule other tasks to begin st a given

time - I think there's enough in there that you can- build a simula­

tion model quite easily.

AL CHRISTIANS: That's right. There's a communication, they

call them tasks. You can have sepsrate tasks, there's a communica­

tion mechanism for synchronizing the tasks or not synchronizing. I

don't think there's a timing for them, you can get them together at

particular program statements: you can make sure this task is at

this statement and that task is st that statement. Then, after they

have rendezvoused, they each go their separate ways until they decide

to shake hands again.

I think this Will support your Jackson-structured programming a

little bit better than Jackson has done it, With a little bit less of

Mickey House work to do it than in Cobol. Has anyone seen Jackson's

_ book on program design? He talks of co-routines. ADA pretty well

'supports co-routines.

HENDRIK BOOM: I guess it's my turn now.

GOTTFRIED BERGER: Could you please tell me where ADA is imple­

mented?

HENDRIK BOOM: Well, let me tell you that story, the history of

this thing. I first ran into this project way back when I waS get­

ting my Ph.D. and dropped in st Wsterloo, where I discovered my

thesis supervisor walking around With a bunch of xeroxed typed pages

called 'Strawman'. Apparently the U.S. Department of Defence had

46

I
t

I
[
I

)

I
I

I
I
I
j

decided to do something towards a uniform language for all their so-

called imbedded applicstions and they put together this document

saying what they would like in a language and hsnded it around for

criticism and suggestions. After they got the criticism, they would

be putting up a ~ooden Han- which was based on the criticism and

would be more solid. Then they were to go on to the "Tin Man-, -Iron

Han- and the -Steel Han- - each a more precise specification as to

what this language would have to do.

Now I was told how they got the original specs. They took some

people who were involved in programming in the Army, Navy and Air

Force, and probably the Marines too, and they locked them in a room

and wouldn't let them out until they came up with specifications.

And these were pretty bizarre specifications to start with.

But over the years, the specifications improved and they put

more money into the project. About 1968 (that's about four or five

years later), I met somebody from the Department of Defence who said

that, so far, for unifying all this programming effort in a single

language, the Department had spent 4 million dollars on the project.

He said this was incredibly cheap: "we never spent this little money

on any project yetI" In fact, he said, it was hard to get budget

approval because they needed so little. Their annual software bud-

get, at the time was something like $2 billion a year, I think, so

this really was peanuts - for them; for the academics and such, who

were starting to get money for criticizing these things, it was an.

enormous amount such as had not been seen in years. Anyway, after

the specifications were "hardened" and they had gotten down to

-steel- they started letting contracts for language designers to

47

design a language to these specifications.

Now there are a number of mistakes in the specifications because

people at the time were not farsighted enough to see the implications

of what they were asking for and any such defects in the specifica­

tions resulted directly in defects of the language. And there is no

point in talking to the language designer and aaying that's a defect

- he will put back the specs and say, .. that defect has to be there, I

know it's a defect". This ia a funny process. There was some feed­

back from the tentative language designa on the specs but it wasn't

much. I think it was a revised "Iron Han" or "Steel Han",. but it

wasn't quite as far-reaching as anybody would really like.

Of course they wanted to get the thing out.

And after that there were, I think, four design teams with ten­

tative proposals (Green, Red, Yellow and Blue); two of them got

knocked out and the other two came with further proposals. These

last two were written and put together in Boston (Red) and in Paris

(Green). The one in Paris was officially awarded to Honeywell in

Minneapolis and Honeywell immediately contracted it out to the people

in Paris that they had designing languages for them but, you know,

pro forma it was an American company who got it.

After that, the ~~uage that was designed in Paris was the one

that finally survived and you can see remnants of that in the fact

that when two processes communicate they have a "rendezvous".

Now, what was this language originally for? Bssically most of

* Steel Han II

48

the software the Department of Defence had was controlling weapons,

controlling bombs, and things like that. And they wanted a better

language than the ones they were using, which were things like COBOL,

a DOD design to begin with, and FORTRAN and all kinds of home-grown

products (such as JOVIAL and NELIAC) and mountains and mountains of

assembly language, all of which were incompatible and everybody

starting building a new weapon system started out to design a new

programming language. So the DOD thought that this was silly, there

was too much effort being expended here and that was the start of

their motivation. Well, on the way, they decided they wanted to pick

up all the nice things of high level languages and they sent out

letters to all the well-known programming language gurus in order to

get advice on things and a lot of it was good and .some of it was

very, very bad. Anyway, the main advantage of ADA that I see is that

it does look like a sort of state-of-the-art programming language -

the state of the art being measured around the beginning of the

1970's. That's when the design effort started and that's when it

started solidifying. The good thing I can say about it is that it

looks as if it exists and it's going to exist. There are lots and

lots and lots of systems languages, some of which are better than

ADA, some of which are worse; some exist on just one machine and

never get passed on to anything else. The main thing about ADA is a

political factor and that's that the Department of Defence, which has

enormous purchasing power, is going to insist that that language be

available in all the computers they buy. So, it's likely to be

available, likely to be as available as FORTRAN.

BRIAN FORTIER: Or COBOL.

49

HENDRIK BOOM: Or COBOL.

AL CHRISTIANS: In all the versions, will it be compatible?

HENDRIK BOOM: I don't see that all the versions are going to be

compatible. They tried for that, but there are inherent limita­

tions.

AL CHRISTIANS: They still decreed it.

HENDRIK BOOM: They decreed it, yes, they decreed it. That was

one of the requirements in "Steel Man", so ••• Incompatibilities are

against the rules, of course, but how are they going to check?

People implementing it don't say, "Gee, I have a slightly better way

of doing that, let's hope nobody notices I improved it."

BRIAN FORTIER: Bench marks?

HENDRIK BOOM: Bench marks? Yes. But you can always add things

and keep them secret - until it's passed the test.

MARK HOROWITZ: What is the relevance of ADA for actuarial

work?

HENDRIK BOOM: I don't know. Maybe somebody who is closer to

actuarial work will answer that question.

LISP might be more relevant but

AL CHRISTIANS: One thing is the wide availability of ADA;

another is that the language supports well the use of libraries of

functions. It's possible to build portable software, extremely por­

table software, extremely sharable functions. We have this in

actuarial circles now with APL. Different time-sharing systems have

pretty much the same APL packages and software can circulate around.

You can get something from somebody else's system and it will work on

your system because APL's are all pretty much the same. Because of

50

the mandatory stsndardization the same thing can happen with ADA.

The other advantage is that, as a 1970's language, it is more

modern than anything else that's widely available.

BRIAN FORTIER: The real relevant thing we have is something I

was mentioning just a while back. If you're doing any simulation

work at all it has some of the capacities of SIMULA, you can basical­

ly build yourself an event-driven model in this language and that is

probsbly the most significant thing for actuaries.

I might as well put my word in at this psrticular point, I don't

think very much of ADA. It's merely a blown-up version of PASCAL

with some things built into it for the benefit of the Department of

Defence. And I can't conceive of making much use of PASCAL under any

circumstances.

PASCAL is interesting in that it's trying to attend to one of

the great difficulties of all modern programming languages - and

that's data. People have been spending an awful lot of time writing

clever programs to express algorithms in, and have been slighting the

data. The only languages that really attend to data with any kind of

attention are PLII and COBOL. They are the only current ones besides

PASCAL which allow you structures that are meaningful in the most

common cases we come across.

I should mention, incidentally, that I come from both sides of

the fence, I have acted as Data Processing Manager and as Vice-Presi­

dent and Actuary and I have done my programming for computing cash

values, reserves and premiums as well as for trying to process the

master record. And, looking at the whole company's operation, ADA is

insignificantly meaningful in any company's operation. As for the

51

actuary, possibly he could use it as a computational language if for

some reason he does not like PL/I, FORTRAN, PASCAL, ALGOL or APL.

PASCAL will probably be just as available as ADA and probably earlier

and I am quite sure there will be more software available in it for

quite some time, now thst Apple has decided to put together a PASCAL

compiler and, especially, since Wirth has basically given away the

PASCAL compiler to anybody who wants to write a P-code executor on

any given machine. There is one manufacturer who is making an ADA

chip so you can now have an ADA processor in ROM on an Intel chip.

VOICE FROM TIlE AUDIENCE: Intel?

AL CHRISTIANS: Yes, Intel.

HENDRIK BOOM: It actually turns out to be three chips but •••

AL CHRISTIANS: I thought it was three IC's on one chip.

HENDRIK BOOM: Well, that's a new one. I haven't heard that one

before.

BRIAN FORTIER: I seem to have said enough. I think I see a

question coming up •••

GEORGE CHERLIN: I haven't heard the language FORTH mentioned.

I don't know enough about it but there was a quite nice magazine

srticle featuring it. Apparently that's used a lot on these embedded

processors, like sewing machine chips and washing machine chips, be-
-~..-::-

cause it will work on a very small CPU. Apparently you need only a

few hundred bytes to do something meaningful with it.

BRIAN FORTIER: Called FORTH?

GEORGE CHERLIN: Yes, FOR T H. The man who developed it said

he got the name at the time when he was limited to five-character

names and this was the fourth - FOR T H - version of it.

52

BRIAN FORTIER: Is this s mini-computer lsnguage?*

GEORGE CHERLIN: Yes, well it seems even smaller than mini.

Apparently, you use it on little tiny chips and appliances.

HENDRIK BOOM: Yes. FORTH is basically the following. There is

a collection of subroutines which can be called. A FORTH routine

consists of just the addresses of the routines to be called; an in-

terpreter calls them one after another. The FORTH routine, however,

looks just like a machine-code subroutine because it starts with a

real machine instruction that calls the interpreter. It also has a

mechanism for reading in words, looking them up in a table, finding

out what subroutine corresponds with it and calling that subroutine.

That's about all the basic routine FORTH does. One of these sub-

routines puts FORTH into a special mode in which it stores the

address of the subroutine instead of calling it when it reads a word.

In this way you can use it to create new FORTH routines. There are

also subroutines that put machine code into memory, so you can create

new machine code routines, too. That's basically what FORTH is. You

can start with a very small piece of it and build a larger system.

That's the way it originated. What you tend to get is a programming

language which is extremely error-prone, because anything you do

wrong simply becomes another program, different from the one you in-

tended, and usually in a bizarre way. Most of your instructions

directly generate code and if you leave a "then" out but you've got

* The normal implementation is micro-computer, sort of a micro APL
in its way. In many ways FORTH can be looked at as·a package to
convert a computer into a programmable desk top calculator, but with
computer size.

53

an "if", suddenly it will do something bizarre that bears no rela-

tionship to what you want.·

It has insufficient error checking. But it runs. Its advantage

is that a program is just a list of addresses. It has to be extreme-

ly small and, therefore, tends to be pretty fast too •• *
BRIAN FORTIER: You can get the wrong answer faster then.

HENDRIK BOOM: You get the wrong answer faster and it's sort of

more compact than the assembler code because subroutine call

instructions take space - addresses don't take as much.

GOTTFRIED BERGER: Would any of you comment on the following:

I think it would be highly desireable if the tendency would be

towards one reasonable language which can be used on any computer;

particularly, it would be very nice if we had one higher. language

which would be available on the Apple computers and the home compu-

ters but also on big computers. Now, I have no idea whether PASCAL

is a good language but it's not, yes?

BRIAN FORTIER: In its place. In its place.

GOTTFRIED BERGER: Yes. Now I have the impression that PASCAL

is the coming language because I heard today that Apple supports it,

then IBM will s~RP~rt it in its new home computer, then I heard

Hewlett Packett will replace its internal language with PASCAL, so I

• But if you handle the language and machine as a programmable cal­
culator and test each line before incorporating it in the program -­
a la APL -- you can program quite efficiently. And FORTH runs faster
than BASIC or APL •

• * The language puts a premium on the programmer using efficiently a
language close to the machine.

54

think PASCAL is the thing to come.

HENDRIK BOOM: I guess that sounds like my question. PASCAL is

certainly growing by leaps and bounds and, I think, for a while it

was promoted mainly by academics who were interested in writing

compilers. They could take over versions of this thing that Wirth

wrote and take his recipes and sit down and write a compiler for it

by tsking the existing thing and modifying it. This made it very

easy to spresd.

It also had very good press behind it because it was advertised

essentially informally as a structured programming language snd it

csme out at just about the time of the whole hubbub of structured

programming. Now, I mean, it doesn't matter that it is a structured

programming language: most of the things it has were already in PLI

and ALGOL 60. Because it came out at the time the structured pro­

gramming hubbub came about, it got the benefit of the publicity, even

though there had been other languages for at ·least twelve years that

would be capable of supporting structured programming nicely. Now

PASCAL spread among academics, and when something spreads among

academics the students get it and once the students get it, they go

elsewhere and want it. So it starts spreading by word-of-mouth.

There are troubles with PASCAL. The first trouble is that it's

good for writing small programs, but it's not so good for writing

medium-sized programs and it's really bad for writing large programs,

because it doesn't have enough structure to organize very large

programs.

I was in a place that did a lot of numerical calculations - the

Mathematical Centre in Amsterdam. Among other things, they are re-

55

sponsible for maintaining one of the large mathematical subroutine

libraries and when they got their new CDC Cyber they said, "let's go

on writing ALGOL 60". Then they discovered that, on a machine that

was twenty times as fast, ALGOL 60 ran at the same speed as on their

old machine and they said, "My God, we can't use this compiler." So

they turned around and said, "What can we use?" And they tried

PASCAL and after about two or three years of trying that - it takes

about that long before you know what the limitations of the language

are - they pretty well had to give up using PASCAL as a main language

to carry out their subroutine libraries. The reason was that it is

not possible in PASCAL to write procedure or function which takes a

variable bound array as a parameter so that you can pass different

size arrays to it within different calls.

So, if you have a matrix inversion subroutine, you have a matrix

inversion subroutine that inverts one size of matrix. Now you can

parametrize that, but not by a parameter, instead by "manifest" con­

stant, so that if you want to have a large program and you have one

size of matrix to invert, you can copy the code in and have it com­

piled - it's sort of tailored for that one size but you can't use the

same subroutine if."You have two matrices of different sizes to invert

in the same program. You essentially have to make two different

copies of the subroutine.

"Now this became intolerable - there has been some stuff done

about it in the standardization, but still, this is the kind of limi­

tations you get. Another kind of basic limitations you get every

place is that in data manipulation you find that there are two

classes of values in the language. There are first-class values and

56

there are second-class values. With the first-class values you can

do anything you want, you can return them as function values. With

the second-class values, which are usually of user defined data

types, you can't do everything you want. There are restrictions on

where you can use them. This gets in the way. After about two year's

experience with the language you start to encounter the limitations.

The danger is that, as a straightforward programmer, you may live

with the limitations and never know they are there, have trouble

writing big systems and never know why.

So, I don't like PASCAL. It's a language I use when I don't

have a better alternative. Many machines don't have better alterna­

tives.

BRIAN FORTIER: This is generally one of the good reasons for

using any language, that it is all you've got. I'm quite sure more

things have been written in Fortran because that's the only compiler

you've got when you would like to use something else.

Frankly, I'll express one criticism with ALGOL and all of its

descendents, whatever they may be (I think the only exception is

PL/l): despite the fact that yes, they can support structured pro­

gramming and, really, they can be written top-down, in form they look

like bottom-up languages. It is very hard to read an ALGOL program

of any size. What you do is to turn to the very end and try to read

back until you find where the main routine begins. Then you read

back a little bit further until you find where the main sub routines

are. and 80 on •••

HENDRIK BOOM: Well, you have to know the trick to start with

the end.

57

I find it fairly eaay because I sit at a terminal when I do it.

It's very easy to say, "go to the end", and I look at the last lines

and say, NOh, that's what it's doing?" Then I say, "What's that sub­

routine?" I say, "Go to the beginning and find me this name". I

look for the subroutine and the first place that name appears is

where it's declared and all the other places are calls so it becomes

very easy to find with an average text editor.*

BRIAN FORTIER: But with the average text editor, what do you do

if all you have is the listing?

HENDRIK BOOM: Oh well, if all you have is the listing, you have

to look for it just like always.

BRIAN FORTIER: I find that actually FORTRAN is much easier to

read that way, particulsrly when written properly, because your main

routine is here and it's short and the data are not particularly big

and here are your main subroutines and here are your smaller sub­

routines. It's a matter of linear search if it's been written

properly. Any language can be poorly written.

HENDRIK BOOM: I have to admit I share a bit of your objection.

I think it's an objection I can live with easily, especially because

some of the other"languages have very difficult objections.

GARY MOONEY: Just like your views, you guys are kind of depres­

sing me.

HENDRIK BOOM: Well, the world's a depressing place.

GARY MOONEY: I would like to find out, first, what languages

* Provided the language does not support forward declarations I

58

l
!

\
I
I

I
I
l

I

you do like, and, secondly, what languages do you think will be im-

port ant over the next ten years? I realize there are different

languages for different purposes.

BRIAN FORTIER: What do you mean by that second part of the

question?

GARY MOONEY: I mean FORTRAN, PLI, ALGOL, PASCAL and ADA will be

very important over the next five years, and APL, I should mention

that. Because there are many, many users of everyone of these

languages and, if you come across the real nuts who have the com-

piler, you are going to find out all kinds of reasons why they are

the best languages in the world. I mean, they are going to persist

and lots is going to be written in them and there are whole places of

people who write nothing but COBOL; I pity the poor people, but they

write that. The whole shop will just not consider anything else.

VOICE FROM FLOOR: Did you include PASCAL in that list?

BRIAN FORTIER: I included PASCAL in that list: there are an

awful lot of PASCAL nuts. They seem to think that it's the greatest

thing since peanut butter, really. It's a mixture of COBOL and ALGOL

60 that has come about as a teaching language and, it is true, the

nuts do look at small programs. You look at any example and it's a

lot of small programs, small subroutines and you look at the nice,

easy algorithm and forget about the fact that 90% of any decent pro-

gram is input-output which is almost impossible to do well in

PASCAL.

HENDRIK BOOM: I have a sort of an answer •• ,

BRIAN FORTIER: Sorry, I forgot to mention my own favourite

language. Given that I do scientific work, it is APL; and given that

59

I do data processing work, it is PL/l.

HENDRIK BOOM: I sort of agree with his list of important

ianguagea in the senae in that certain languages will be very widely

uaed, widely available, but a couple of other important languages are

LISP and SETL which ia the one I mentioned in my talk thia morning.

SETL, by the way, is available, if anybody is intereated. The imple-

mentation is available; ita transformation techniques are going to

take awhile.

VOICE FROM FLOOR: How about BLISS?

HENDRIK BOOM: BLISS? I don't think it will be a major imp or-

tant language.

VOICE FROM FLOOR: Except if you have a DEC 20.

HENDRIK BOOM: If you have a DEC 20 the same optimizer for BLISS

is eventually going to be used in other languages too.

BRIAN FORTIER: BLISS is available in the whole DEC line ••

HENDRIK BOOM: Yes, but it's a slightly different BLISS on each

machine.

BRIAN FORTIER: Not so that you could notice.

HENDRIK BOOM: Yes, so that you could notice.

My favourite languages, on the other hand, the ones I use regu-
._...r:_'"

larly, or would use regularly if they were available, are ALGOL 68

and LISP. ALGOL 68 is a new ALGOL. It's essentially a new language,

a different language from ALGOL 60. It's no t jus t an up-d a te or a

reviaion, it's a completely new language. The designera sort of pub-

• PDP20, PDPll and VAX.

60

lished their first report on what this language was going to be in

1968 (hence the name), but they didn't quite finalize the design un-

til 1975 - there were a lot of revisions and improvements and really

fine-tuning of the details. I like the language and I would not

really willingly switch to any other language. The trouble is that

hardly anybody has implemented it. It's available on a CDC Cyber, in

an expensive implementation, and there's a slow one on a 370. Because

of that, I ended up using LISP, which ia available, incompatibly, in

most places, but I don't really care about the incompatibility. I

carry my own implementation with me. That way it stays the same from

place to place.

MARK HOROWITZ: How reasonable will it be for a collection of

actuaries to design specificstions for a language and have the

Society commission a set of programmers to write a language for·

actuarial use?

BRIAN FORTIER: Writing s compiler if you know precisely what

you want to do is a relatively simple task these days. The big prob-

lem would be deciding whst.you want to do.

AL CHRISTIANS: You're probably better off deciding what speci-

fic types of applicstions you want to do, whether they are numerical

or data processing or whstever, and finding an appropriate language

for that type of problem.

There is not going to be a language which is the answer to every

problem. If you expect that it's possible to build a general purpose

language, you're going to be disappointed. You are better off with a

language designed specifically for problems like the one you have.

AL CHRISTIANS: The actuary does numerical work, data processing

61

work, simulation work, and often collates the results of different

kinds of computer work; it's hard to figure what he needs. You have

to put in a lot of different features to give good coverage of what

we want to do.

BRIAN FORTIER: The ,real problem is that we just don't have a

big enough machine to put a real general purpose language on. When

you consider that the human skull contains several thousand times a

CPU's maximum memory banks' worth of information how in the world is

a measly computer going to cover everything that a bright actuary

might want? In any case, a computer language is a tool. If you care

for your tools you're not going to use your jackknife to tighten

screws.

HENDRIK BOOM: A comment on ACT, the APL based programming

language: there is a guiding philosophY to it. You don't have a

thick manual to consult and say, "Let's see, what was the name of

that subroutine again?" There are 278 names and they don't make any

sense.

BRIAN FORTIER: It sounds like the COBOL manual.

HENDRIK BOOM: Yes, that's a problem with many special purpose

languages. Now,-my-impression of the proper way to go about it is to

start with a language that is very general, this time not in the

sense I had this morning that it has features to do everything, but

that it has a general framework of conventions as to how parts of

programs will communicate. What you will do then is build your spe-

cial purpose language by defining the new data types and new opera-

tors that you want to work with in a special purpose language. Now,

there has been some work on these "extensible" languages. The one

62

, .
.'to

- . -

.... ,.

that I happen to favour, I mentioned it earlier, is ALGOL 68. ADA

has some properties like that, al though I think ADA has too much in

it to start with - it will get in your way ••

That's the direction to go. APL is a lot that way too. APL

doesn't allow easy type checiking - I mean, in APL you can implicitly

define how you're going to represent your data; you do that in com­

ments and define the operators, but there's nothing which checks that

you're really USing them the way you wanted to use them. That's very

important, not just to use operators, but to have something checking

when things go wrong - that's as important to the language as that

things go right when you do the right things; things should complain

when you do the wrong thing.

And so you need an extensible language in which you can define

what you want to do and define what you want not to do and have a

check.

Now, there are a few of those around - ALGOL 68 to a fair ex­

tent, ADA a little bit. Mark Rain in Maine is putting out an exten­

sible language, MARY, that looks good. It has no precedence rules,

like APL. Well, the thing to do is to pick one of those and add to

it what you want.

FRANK REYNOLDS: I'm afraid we're running into something I'm go­

ing to discuss on Saturdsy. The problem that we are running into in

Actuarial Science is that there is a lot of demand for a nice simple

language in which you can express actuarial problems. Everybody's

• Incidentally, without the data checking this sounds like FORTH.

63

got the ssme bssic set of problems - genersting premiums, cash

values, dividends, re~erves, a very limited number of categories of

things. We also have, for many things, a nice, simple looking stan­

dard notation and, for any of us reading the notation, it's very

simple to understand and communicate across language barriers and

everything else. However, as soon as we start desling with something

as dense as a computer, we are immediately into the problem that the

present notational system isn't perfect by any means, but does con­

tain, and permit, a very large number of subtleties which are inter­

nationally considered obvious. But if you try and translate these

into a computer, they drive you up the wall. There hsve been a num­

ber of papers trying to simplify, for printing purposes, the nota­

tion. All of them have an appendix at the back, indicating how we

manage to get this simplified notation into the computer. It is very

interesting to note that in pretty well all these papers the authors

have. tried to get something that 1s easy to type and have virtually

given up trying to get something that is easy to get into the com­

puter, because they can't translate the subtleties that are present

in the standard notation. The notation is extremely complex from the

point of view of trying to analyze it; yet it looks so trivial.

BRIAN FORTIER~- In other words, our ancestors did a good job.

I'll add something to that. At least in the work that I have done in

computing premium rates, when you get beyond the classical reserve

formula the notation is completely useless. Almost invariably, when

I have got down to what I really want to do with premium definitions,

I have gone right back to q and ., and i, and tha t 's the onl y way I

could express things.

64

'.

FRANK REYNOLDS: There is s certain amount in what you're say-

ing, no actuarial notation is going to be able to handle the tremen-

dous flexibility that is sometimes necessary under a Gross Premium

Valuation.

BRIAN FORTIER: Well, a Gross Premium Valuation, if done proper-

ly, cannot be expressed by the classical actuarial notation. It is,

without elaborate extensions, still inadequate for Pension Plans.

There is just too much to be taken into account that the symbolism

just can't even begin to deal with.

The standard premium functions don't reflect the actual methods

used in the office.

The standard commutation functions still reflect the computa-

tional capacities of 1900.*

AL CHRISTIANS: I think that if a notation is standardized and

adequate it shows that the science using it has reached its terminal

stages. If you have a growing Science you're going to need a new

notation all the time. There are other fields where people publish a

paper and define all their symbols in the first couple of paragraphs

and there is no standardized notation. Mathematics has its standard

notation but it's so large that it's almost useless; if you try to do

that actuarially you might wind up with the same thing.

GEORGE CHERLIN: On the topic of new languages I think it's

* Notation tends to relate to computational practice. Perhaps the
whole point is that computational practice has far outstripped the
old notation. If so, a new notation is not worthwhile: either it
becomes a programming lsnguage or it is inadequate - and there are
quite enough progrsmming languages already.

65

worthwhile mentioning the ianguage "C" for completeness. It comes

from the Bell System and Western Electric, and it sppears to be

hesded towards implementation on personal computers, along with an

operating "UNIX" syatem that might compete with CPM hence the desig-

nation C ••

BRIAN FORTIER: Similar to C, although it is not quite a lan-

guage, ia also RATFOR, which is baaically C adapted to FORTRAN so

that you can write FORTRAN programs in what looks like C in a atruc-

tured way. I find that very useful, I write RATFOR quite regularly.

GEORGE CHERLIN: Apparently C was never marketed by Western

Electric. It was made available for internal use and it was con-

tracted for by outsidera who wanted to use it and they have sold a

lot of licensea and made a lot of money on it •••

HENDRIK BOOM: The trouble with C is that it looka like a high

level language; but all the operations, and the way it thinks inter-

nally, make it baaically an assembly language. It's like an assembly

language for the PDP II, in fact, with if-then-else and while-do and

things like that in it and it ia often very difficult to read ••••

BRIAN FORTIER: RATFOR ia a little bit better than that.

HENDRIK BOOM: I know, RATFOR is based on FORTRAN which is,

whatever its limi.tationa, a coherent language.

BRIAN FORTIER: And impoaing this "CO structure on it makea it

* C ia the successor to B [CPL].

** C is spreading rapidly along with UNIX in the large micro area •

• ** But all computer languages are ways of recaating aaaembler.
Thoae that make for greater diatance are leaa uaed.

66

into a very nice language.

VOICE FROM FLOOR: Is APL growing, are there proposed manu­

scripts that are being studied or criticized?***

BRiAN FORTIER: Depends who you talk to. I've heard it said

that APL is a dead language and, also, that APL is impossible to

learn.

HENDRIK BOOM: I've heard it said that APL is the best thing

that ever has been invented in programming languages and people

should stop inventing languages ever since. I don't believe that. I

don't believe either of these statements.

BRiAN FORTIER: I agree.

AL CHRISTiANS: Laat spring Computer World had an issue in which

writers were expressing both of those opinions. I think that the

last, and most reasoned, opinion they presented was that for 10-15%

of applications APL was the best thing in the world but that you were

looking for trouble if you tried to use APL on applications outside

of that 10 to 15%.

VOICE FROM FLOOR: Are they going to introduce structures in APL

similar to PL/l structure?

now.

BRiAN FORTIER: That has been done already.

VOICE FROM FLOOR: It has been done?

AL CHRISTIANS: This spring. Scientific Time-sharing has it

*** ISO/ANSI

67

BRLAN FORTIER: I.P. Sharp has it too. A structured API-imple­

mentation is now three years old and it has basically an ALGOL

structure and in APL computationals called APLGOL, without GO TO.

HENDRIK BOOM: That's a big advance.

BRLAN FORTIER: HP3000 built that thing.

HENDRIK BOOM: The other interesting thing is that I think

people working at compiler optimization are almost at the point now

where they can compile APL instead of interpreting it.. I think the

basic techniques exist and it has to be tackled.

BRLAN FORTIER: You can use a Burroughs 6700; the B 6700 APL

does compile on the spot and re-compiles if different binding forces

are-compile.

HENDRIK BOOM: The thing is that being able to compile instead

of interpret means that, if you happen to have programs that don't

fit well into the matrix calculus that APL imposes, you will still

get a reasonable execution time.

DAVID ERBACH: I'm surprised by the implicit assumption everyone

is making that any of these languages is really appropriate for much

of what goes on. There are certain types of problems, - 10% or 15% -

that APL or something like LISP are very good for.

But, for theCmajority of everyday programming you do, the issues

are simpler. You have certain specific problems. For example, you

want to be able to get information into the machine. That means you

will want to be able to design screens efficiently, preferably so

• The problem is binding, not optimization.

68

every individual person has his own custom-made screen. You want to

be able to check that, as the data goes in, it's appropriate.

There are few enough of these processes that you could usually

write general software specifically to create such subroutines.

Something like that would get rid of at least 90% of programmers.

BRIAN FORTIER: Right. I'll explain. I make use of an HP3000

and that's precisely what HP3000 has as part of its software. HP

gives you a package that allows you to design a screen and enforced

very rigid checking on input data before it's accepted into the

machine and then it gives you a set of very good data base accessing

techniques. So, basicslly, your whole program is a string of cslls

to these routines. Get data from the screens, put them in the data

bsse, get data from the data base, put them back on the screen,

whatever, and HP mskes it very simple to creste the data entry

programs which is the bread and butter of this kind of operation.

AL CHRISTIANS: If you talk to IBH, they'll tell you that

automatic programming is something that they are pushing for quite a

bit. They say that if you have their system, called DHS, on one of

their small machines, you can have one programmer, with one person

who is going to be a user, write in one or two months what would

normally take five programmers two years. They get productivity of

thousands of statements per programmer per day. They still need a

programmer to do a little bit of the work, but IBM is pushing auto­

matic programming - everybody is working on automatic programming. I

think the actuary may be one of the last to be converted to auto­

matic programming because his work is mathematically algorithmic;

algebraic programming languages are a natural way of expressing some

69

of the solutions.

BRIAN FORTIER: Yes. For programming you are doing for your-

self.

HENDRIK BOOK: Perhaps for some kinds of algebraic programming

they could take a system like Maxima, which HIT has developed for

symbol manipulation. (It continues to advertise and, as far as I can

tell, it doesn't make it available to outsiders - I'm not sure of

that.) This is basically a symbolic algebra system in which you can

do things like the integral of enormous expressions and square roots

and other things so that you say "integrate this formula" and it goes

away and chugs for awhile, then tells you there is no closed form or

else it gives you a page full of symbology which is your integral,

worked out.

BRIAN FORTIER: It would have to be rewritten for an actuary.

HENDRIK BOOK: Of course it would have to be rewritten to fit

your notation.

BRIAN FORTIER: Ia that LISP-based?

HENDRIK BOOK: I think the thing is LISP-based, but I don't

know.

BRIAN FORTIE~~ __ I know it has been doing things like that.

FRANK KYER: These arguments over which language to use sound as

if there are several carpenters, each of which has been trained to

uae juat one tool, are arguing and each one of them is claiming that

his tool is the one that is good for everything.

BRIAN FORTIER: No, I don't think we're arguing that. Now let's

identify what's going on. I work in an environment where I have may­

be six programmers on a machine and a lot of users but I have all

70

kinds of C.P.U. time available to me. Henk here works at a Univer­

sity and his computers are, generally speaking, assaulted by ten

thousand students who have little programs that they want to compile

and run. We have entirely different views of what is appropriate.

We have to. I mean, he's interested in as many compilers as you can

get out with the best diagnostics you can find.

HENDRIK BOOM (aside): I'm lucky where I am now because the

department has just bought itself a Vax and they haven't got them­

selves any users for it yetI

BRIAN FORTIER: This is a normal requirement for a university

and if I offer you, Mr. University Professor, a choice between a

one-pass compiler which forces the programmer to do a fair amount of

work to get it to work, and which also has neat facilities for solv­

ing fairly complex logical problems versus a several pass compiler

which does much better input-output work, but takes quite a bit

longer to run and doesn't produce as good diagnostics for a green

student, which are you, as a professor, going to choose?

HENDRIK BOOM: Well, you use whichever is good for your job.

BRIAN FORTIER: In my position, I have different aims. I will

take PL/l over ALGOL any day, just on the ground that PL/l requires

me to do much less work to get the ssme results as an ALGOL compiler.

I don't have to have nearly as rigid a structure. I can write a pro­

gram in a much more natural fashion; I can JUBt sit down and write

the task out as I am sitting at my desk.

HENDRIK BOOM: That's funny because I would choose ALGOL over

PL/l for the same resson. I would choose ALGOL 68 though, not ALGOL

60, because ALGOL 68 has the Singular property that it's really hard

71

to get the program through the compiler, it thinks of so many things

to complain about. But when you finally get through the compiler,

your progrsm runs. It's a slow compiler, I mean, I've used ALGOL 68

with one-day turnaround time but I much prefer it because, if you get

your program to run sooner with a fast~r compiler that does fewer

checks, you spend that one-day turnaround time debugging - one bug at

a time and not 20 at a time.

BRIAN FORTIER: Well, ALGOL 68 would drive me up the wall, as

described. My PL/l bugs are small and easily fixed.

ARNOLD SHAPIRO: Could we have a closing statement, maybe?

BILL KITCHELL: Excuse me, I would like to get one question in.

ARNOLD SHAPIRO: Go ahead.

BILL MITCHELL: Along the lines of demonstrating, substituting

demonstrations for impressions, which is one of our goals, is there

any hope for a quantitative approach to choosing the language? Let's

say given a certain environment - certain machines, a certain pro-

gramming project - defining a certain programming language?

HENDRIK BOOM: Not unless you can state quantitatively what you

want the language to accomplish.

BILL KITCHELL: Well, let's say you have a project at hand, that

needs to be done.

BRIAN FORTIER: The answer is yes - and no. Yes, if you have a

very clear situation that will fit precisely what a language is best

for, I can then tell you what that language is. But the vast majori-

ty of problems are out in the hinterland - this language is fairly

good for this aspect of the" problem, but that language is fairly good

for that aspect.

72

And, theoretically, every language we've mentioned will solve

every problem.*'

AL CHRISTIANS: There is something they cslled "software met-

rics", which tries to come up with numerical ratings for individual

programs. It's much like the underwriting process for life insur-

ance, you come up with numericsl ratings to assess the quali ty of a

program and the chance that it will fail but all you get is an indi-

cation of your relative chance for success.

HENDRIK BOOM: You produce quantitative numbers but you don't

know whether those quantitative numbers have any relevance to what

you are trying to measure.

ARNOLD SHAPIRO: Could I have a closing statement maybe? Does

anybody have a closing statement?

AL CHRISTIANS: I can't come up with a short closing statement.

Henk?

HENDRIK BOOM: Yes, I can, at least for my part. My view of

programming languages may be pictured as follows:

I've seen trees being drawn in which FORTRAN is at the bottom

and whatever language the person is trying to sell is at the top and

there are lots of branches with other languages.

But if you really start thinking about it, you discover these

branches come together again - it's more like a mainstream with a

variety of languages that aren't identical (they're good for differ-

ent things) and some side streams of reslly bizarre languages that

*' They are general purpose languages equivalent to a general Turing
Machine.

73

are way off from the rest,.

But what happens in the course of time is that the ideas from

the bizarre languages move back to the mainstream.. People start to

see how to generalize ideas and see the pattern matching isn't so

bizarre after all. It turns out to be useful for writing good input

processors, it's not just something for people in the natural

language field and, gradually, influences go back to the centre.

So, in my view, in ten or fifteen years - it's getting slower

now, maybe fifteen years instead of ten - large numbers of the

various "bizarre" features you find in different languages will find

themselves into the mainstream and we'll have new things to choose

from.

BRIAN FORTIER: I'll make my own closing statement. The problem

in advances in higher level languages is that we're suffering from

terrible indigestion with what we've got already. Until we sort this

out and get a better handle on data and input-output there will be no

real advances in programming languages. There are really only five

"cardinal" languages: COBOL, ALGOL/FORTRAN, APL, SNOBOL/COHIT and

LISP/IPL. All others current in 1980 are cross breeds.

• For instance, APL arrays are now becoming available in PL/l.

74

