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INTRODUCTION 

Some time ago, I got rather excited by a paper by Tellenbach (1977), which 

applies renewal theory models to actuar ial problems. The input consists of 

.. assumptions as to the waiting time between consecutive claims (interclaim time). 

The output is a set of probabilities Pk(t) for k claims in the time period (o,t). 

This can be applied, for instance, to catastrophe insurance. Here, the set 

Pklt) measures the frequency of accidental deaths as a result of (a) claim events 

per accident. 

Tellenbach tested the models on data from automobile insurance. Then Pk (t) is 

·.~the probability of k insurance claims from the same policyholder in the accounting 

He used Monte Carlo techniques, because the formulae became, after 

convolutions, much too complicated. 

When I tried to repeat these t~sts, I noticed two things. One, Monte Carlo 

use excessive CPU time. Two, my results were different from Tellenbach$. 

At this stage, I made a bold decision. expressed the input assumptions not 

but as power expansions. The operational time t is so small 

power expansions could be truncated after a few terms. thus replaced 

power series by polynomials. Now the complicated process of successive 

becomes a simple matter of vector multiplications. The results were 

~~D~~~~"r"aing that I wrote a paper on the method, this paper is reprinted in the 

the following, we shall first describe the model, and how it translates 

between Laplace-Transforms. After this preparation we shall 

the computer program. Here, the Laplace-Transforms are represented by 

which can be easily manipulated within the computer language APL. 
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THE MODEL 

Table 1 is a summary of .the mathematical notation, and of the equations 

which describe the model. The first three equations: 

"'1'" k-l 
(k ~ 2) 

describe an equiblibrium renewal process, meaning that 

lI(t)· l:kPk(t) 

Here, Ql is the mean of distribution PI associated with ¢i c "'l(s). 

The waiting time for the first claim has the c.d.f. Po(t), associated with 

"'l(s). The interpretation of the 3 equations is easy: 

1 - Po(t) <===> ej>o 

Pl(t) <===> <·0(1- "'1) 

Pk (t) <===> "'1 '" k-l 

(no first claim) 

(first claim, but no second claim) 

(k-l claims, plus one more) 

So much for the general model. We now turn to the special assumption: 

Pl(t) • h PIt) + (l-h)u(t) <===> '" 1 = hej> + l-h 

With probability h (o~ h !> 1), the interclaim time has the c.d.!. P(t), for which 

we chose the one-sided Gauss distribution. 

With probability l-h,-£5e interclaim time is zero, allowing for multiple 

claims. (u(t) is the step function which jumps at t=O from 0 to 1.) 

The model is a generalization of Poisson. The latter case results if we 

chose for PIt) the negative exponential distribution. 
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Furthermore, the model can be interpreted as a cumulative claims process: 

Claims events are controlled by PIt). The number of claims per claims event 

follows the geometrical distribution: gn h (l-h)n-l. 

After the choice of PIt), we try to match the empirical data as closely 

as possible. First, we fix t to match the observed mean. Second, we vary h 

to minimize, say, the sum of the error squares. 

THE PROGRAM 

The APL program, called GAUSS is displayed in Table·2.* 

The essential idea is to represent power expansions by the vector of its 

coefficients. In program line [20) we construct the vector Y holding the 

coefficients Yi of 

* 

~o(s) C YI/sl + Y2/s2 

From ~o (s) = _1_ 
a s 

We obtain: 

+ ••• 

Y = __ 1 __ • 0, ~,o, (2·2)1 
a l! (-2) 21 (-2)n 

Program line [24] generates for ~l(s) the associated vector z = zo' zl' ••• 

To make use of the APL primitive function "inner product", we must upgrade 

into a matrix: 

o o 

z o 

Also reprinted is Table 2a which the author used in the presentation 
to explain the program steps. 
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· ,.,; ~ 

Now the APL code "R<- Z + .xY" yields the result vector 

This corresponds to the product $l(s).$o(s). 

In the course of .the program, the matrix Z (corresponding with $1) is kept 

fixed, while the vector Y is always loaded with the new coefficients, resulting 

from the convolution. Of particular interest is the loop L2 in program line 

(33). Here we see two inner products. The left one: 

T+.xY (equivalent to +/TxY) translates the Laplace-Transform back to the 

original c.d.f. 

So far so good. But there remains a disquieting question: How far should 

we extend the power expansion, i.e., what should be the length n of the vector Y 

we start with in line (20)7 

To answer this question, the program starts with n=5, and is repeated (loop 

LI) with n=9, n=13, etc. until the last term of T, tn/nt, becomes small enough 

to be ignored. 

In the example displayed in ~, the results of the first run (with 

na 5) are already final. This indicates that the simple method presented in this 

paper may in many ins~9.P>es well serve to make costly Monte Carlo experiments 

obsolete. 
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REMARK ON ACCURACY 

To test the accuracy of the method, we set h=l and P(t)=Exponential. Then the 

computer algorithm should ·match the Poisson probabilities (which can be calculated 

directly). We found no theoretical but practical machine limitations: 

t .1 .S 1 2 

n 9 13 17 25 45 

l:ere, t is the number of expected claims, i.e., the operational time in units 

of the average waiting time between claims; n is the number of expansion terms 

needed to bring the calculation error squares total below lE-20. 

Gottfried Berger 
Stamford, CT 
June 26, 1981 
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NOTATION 

c.ol-f. p.d·f. 

p(t) p'Ct) 

~(t) ~' (t) 

P. (t) p' It) 
I 

1'~ Ud ' lc ) l'K 

\c" l til 8tt) 

-.t::: t,~-' 

""~ <""-I) { 

MODli"L 

f 
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P. ltd t ~ Plt) 

Plt) ... 
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~ ls.) a E(e..-~") 

<P"ts.) 

~,l !.) 

.1 

cPO) =- <'1-<P)/~'io 
I I 

"Y. ,. CPo U - <:P,) 
,,~ : ~I 11""_1 

~ (I-~) \vet) 
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'V 
(1] 
[2] 
(3] 
[4] 
[5] 
(6J 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 
[17] 
[18] 
[19] 
[20] 
[21] 
[22] 
[23] 
(24] 

'VGAUSSCDJ'V 
GAUSS H;A;E;I;K;N;T;Y;Z;U 

Cumulative claims m~del with parameter h=';H 
Plltl = hxPltl + 11-hlxultl , P'ltl=GAUSSlt~Ol' 

A '" Set N=l, A=l/a, a = JtdPI t) = SQROOT 2/n 
Nt-l 
AHoO.5l*0.5 

L1:' . 
A U=Vector C plO,t) pll,tl ... ] to be compared with 
A ... U=ObSel"Ved claims fl"equencies, taken from TB 
A '" Z=Mean of U 

Zt-+/Ux-l+,pUt-u+i/Ut-TB 
A ••• -Set T=t such-that Z = r k'plk,tl 

Tt-Z.H+A 
A ••• T = Vector ( t ... It*nl/n!] ,n=3.2.N 
Tt-IT*Kl+'Kt-,3+2.N 

A '" Print last, first element of T 
'"N' ;Et--UT 
·t=·;ltT 

A '" Vector Y 
A '" I efthand 

Y"A, «2'N+llp 
A ••• Bu i I d U 

Ut-l-+/TxY 

~O=ll-~l/as = r Y x ( lis ... I/s*n ] 
side from power expansion of ~=LTRF Pltl 
1 Ol\-l, I !2.,N)+I' ,Nl.-2*,N 

pIO,tl=l-POltl, reversing ~O=LTRF POlt) 

A '" Vectol" Z ~l=l-ahs~O r Z x C 1 '" I/s*n-l ] 
Zt-IlpYltll-Y.H+A 

[25] A ... Build matrix Z ~ZC';l] ~Z[·+j;l+j], else zel"OS 
[26] Z"IO,Zl[lr2+Io.-It-,pZ] 
[27] A Perform: Yl = ~O - ~1 x ~O = LTRF pll,tl 
[28] A ••• Y t- Y - Z +.' Y 
[29] A '" Append pll,tl ... "+/Tx" or ··T+ .• ·· reverses LTRF 
[30] U"U,T+ .• Yt-Y-Z+ .• Y 
[31] A '" Perform: Yk ~1 Yk-l = LTRF plk,tl 
[32] A ••• Y t- Z + . x Y 
[33] L2:U .. U,T+ .• Yt-Z+.'Y 

'[34] A ... U now holds pIO,tl ... p(k,tl. Go on until ,,>p(k,tl 
[35] ~(E(-ltUl/L2 

[36] A ••• Print results 
[37] 'r plk,tl.k*O 12= . ;U+ .• IO,,-l+It-pUlo.* 0 1 2 
[38] 'r Ip-Pl*l 2 = . ;+/It-IIUt-ItUl-Ilt-IrpUltUlo .• ,2 
[39] 13 0 ,6p 12 6lT 10 4 tl-l+,pUl,U,I - -

I. [40] k plk,tl p-P Ip-P)*2' 
, [41] A ••• Conditional l"etu'"n to Ll with inCI"eased N 

[42] ~1(E>lE-16lA9~N"N+2l/Ll 

,'_. 

'V 

'VTBCD]'V 
V RHB 

[1] Rt- 7840 1317 239 42 14 4 4 1 
'V 
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:;~ J 

Lo.flo..c.e T .. ~. 

q,. l~) ~ y, + 'f.!:. 
~ ~a, 

"", l '-J ... cP 'So} - c:P. ,~). <P(S.J 
00, 

11'1( ls.) .. 'If'1C_.lS.J . ~,(~) 

1":+;0..1; l-p..t; o~ 

1>, (S.):: 2. 0 " ~ .. ~z., 

CP,,(S) ... ~.~ • (1- <P, (!o) 1 

{ 
z" 0 0 \ 

Z~ %, Z" 0 
z ... Zo, % .. 

Co.. (.CM' e..~ K. ~, 

CAe~e.~k, "flo( (Looy Ll...): 

.....;.':-

1rG.. .. l rOt- b(l,~ 0...1- e.o..~ 'kr' : 

[,1,L) 

[~O ] 

C;~ J 

Po (If) 
fJ, (4::) 

1'1(. (I;} 

To..bLe 10. 

Al'L 

'1 4- { '1. , '11.., y~ J 

'1 to- Y - Z +,)( y 

't ~ Z +.xy .r.? 

z ~ ~ OZ", oz., I "Z. a.. 1 
'14!:- {'J" 'hI '1~ ~ 

'1~ '1 - 2.+ . .lt"y 

~ ~ 2+. >t' Y 

w~ 1 - +/r~ y 

\.V~ 'WI T+.~'1 

'v./ ~ "", T to . J< '! 

::! 

,. ~, .. 
'. 

.I'tJ T~ { ts, ~) i t:: - _ 
I l,! I ?,! 
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14.ble,.. 3 

GAUSS .86 
Cumulative claims model with parameter h~0 . 86 
Pl(tl ~ h.Pltl + (l-hl.ultl P ' ltl=GAUSS(t~O ) 

~N5.7367E-7 

t~0 . 1~709 

1: p(k,tl.k*O 1 2 ~ 1 0 . 21~35 0.31~51 
1: (p-~I*1 2 = -3.2897[-8 1 . 0159E-5 

0 .826453 
1 .140327 
2 .027016 
3 .005067 
~ .000931 
5 .000168 
6 .000030 
7 . 000005 
8 . 000001 
9 .000000 
k p (k • t I 

4N8.879E-l~ 

t·O . l~709 

-.002212 .000005 
. 00112~ .000001 
.001755 .000003 
.000628 .000000 

-.000549 .000000 
-.00025~ .000000 
-.000393 .000000 
- . 000100 .000000 

.000001 .000000 

.000000 .000000 
p-f Ip-~1*2 

1: p l k,tl.k*O 1 2 = 1 0.21~35 0 . 31~52 
1: (p-~I*l 2 = - 3.2964[-15 1.0158[-S 

a .826453 
1 .140327 
2 .027016 
3 .005067 
~ .000931 
5 .000168 
6 .000030 
7 . 000005 
B . 000001 
9 .000000 
k pI k , t I 

c-2.~217E-21 

t=O.I~709 

-.002212 .000005 
.001124 .000001 
.001755 .000003 
.000628 .000000 

-.0005~9 .000000 
-.00025~ .000000 
-.000393 .000000 
-.000100 .000000 

.000001 .000000 

.000000 .000000 
p-f (p-fl*2 

1: plk,t).k*O 1 2 = 1 0.21~35 0.31~S2 
1: Ip-Pi*l 2 = 1.1S~7[-17 1.0158E-5 

o - .826453 -.002212 .000005 
1 .140327 .001124 .000001 
2 .027016 .001755 .000003 
3 .005067 .000628 .000000 
~ .000931 -.0005~9 .000000 
5 .000168 -.0002S~ .000000 
6 .000030 -.000393 . 000000 
7 . 000005 -.000100 .000000 
8 .000001 .000001 .000000 
9 .000000 ,000000 .000000 
k plk,tl p-f (p-f'*2 
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Appendix 

A Computer Algorithm for the Cumul Model 

By Gour,ied Bet .... 

Abstract 

The first two sections of this paper describe a risk theory model which was 
introduced recently by Tellenbach. The model involves Laplace-Stieltjes trans
forms which pose severe computational difficulties. 
The remainder of this paper describes a simple algorithm which appears to 
work in the special case where the time span considered is reasonably small. 
The latter condition is typically met if the model refers to cumulative claims. 
A thorough mathematical treatment of the subject is. not even attempted. 
Rather, the emphasis is on the computational aspect of the problem. 

I. A Claims Process 

Let II denote the interclaim time between the j-Ih and the next following 
claim U = 0, 1,2 ... ~ Suppose the probability distribution functions PI(I) for 
the stochastic variables II are known. We assume II ;,: ° and thus PI (I) = ° for 
t < 0. Our objective is to find the probabilities Po(l) for k claims in the time 
interval (0, I ~ 
Clearly, Po (I) = 1-Po(l~ The rest is not as easy, since we have to perform 
convolutions. ;rjlis can be done, at least in theory, by means of Laplace
Stieltjes transf~rms. See for instance Seal (1969), Appendix A, or Telleilbach 
(1977~ 

We thus define the following Laplace-Stieltjes transforms: 

~I = ~I(S) = L{PI(I)} = 1 e-II dPI(I), (j = 0, 1,2 ... ). 
D-

'1'0 = 'I'.(s) = L{p.(I)} = J e-" dpo(I), (k = 0,1,2 ... ~ 
D-
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, ~.-

We now introduce two simplifications. First, we require that all interclaim 
times IJ (except possibly 10) are independently and identically distributed, i.e., 
<PJ = <P, for j ~ I. The theory of the renewal process then shows that: 

L{1-po(I)} = <Po 

L{p,(t)} = 'P, = <Po(I-<P,) 

L{P.(I)} 

Second, we stipulate a stationary claims process: 

p.(l) = Ek·p.(I) = const·t = 1/11., , 

(2) 

(3) 

If (3) holds, p, (I), the expected claims number in (0, t), is proportional to I, 

and inversely proportional to 11., = average interclaim time = mean of P, (I). 
We obtain from (2) and (3): 

L{p,(I)} = 'P,(1+2<P, +3<P,2+ ... ) = 'PJ(I- <P,)' = <PO/(I-4>,) == 1/". 

Thus, we can rewrite equations (2) as follows: 

L{l-po(I)} = 4>0 = (1-4>,)/11.,. 

L{p,(t)} = 'P, = 4>0(1- 4>,) (4) 

L{p.(I)} = 'P. = 'P._, <P, for k > 1 

Equations (4) confirm that the stationary claims process is completely deter
mined by the function 4>, = <P,(s), the Laplace-Stiehjes transform of P,(I), the 
d.r. of the interclaim time. 

2. The Tellenbach Model 

Tellenbach (1977) considered the following choice of P,(I): 

P,(t) = h·P(I)+(I-h)·u(t) (5) 

Here, P(I) is an arbitrary d.r. which applies to the claims process with the 
probability h (0 < h ::5: I). Multiple claims may occur with the probability 
(1- II), since 

u(t) = {O~ft < 0, 
I,fl ~ O. 
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Intuitively, P(I) controls the number of events, while PI(I) determines the 
number of claims. The smaller the parameter h is chosen, the more claims 
one associates with each claim event. 
Let 4> = 4>(s) denote the Laplace-Stieltjes transform of P(I)' and let'" be the 
mean of P(r~ If t( < 00 we obtain from (5): 

L{Ptll)} = 4>lIs) = (l-h)+h·4>(s). (6) 

Tellenbach applied this model to actual data on auto insurance, published 
by Thyrion (1961~ In doing so, he determined I such that 1'1(1) matches the 
empirical mean !il' That is, 

(7) 

This leaves the free parameter h which may be chosen so that an appropriate 
error measure is minimized. 

Tellenbach considered for P(I) the negative exponential as well as the one
sided Gauss distribution. The results were superior in the latier case which, 
however, involves computational difficulties. Tellenbach solved the problem 
by Monte-Carlo techniques. 

3. An Algorithm 

We shall now assume that the distribution function P(I) can be expressed as a 
power series of I which converges reasonably fast. This assumption will hold 
if I is small enough. The data of Thyrion, for instance, require according to 
equation (7) for the one-sided Gauss distribution: 

I = "'hI' = V2/,,·O.214·h = O.171·h. 

Hoping for convergence we thus develop: 
..-/.-

r(l) = "' ..... "2 = ,,(1-12/2+14/8- ... )'2 = jI271[ 

Hence, 

4>(5) = ",(1/s-I/s"+3/sL ... ), 

and from (6): 

4>1(S) = (l-h)+h2(I/s-I/s"+3/s'- .. . ). 
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The first equation of (4) yields: 

4>o(s) = I; lS - I:s' + I/s' - 3/s' - ... 

l-po(l) = 1/.-I'/2!+t'/4!-316/6!+ ... 

An algorithm to calculate the probabilities pdl) for k = O. 1.2 ... and for the 
special value I obtained from condition (7) is describ.ed below. Please note 
thatthe three steps refer to the three equations (4). 

Stepl-Define: 4>,(s) = =o+z,/s+z.,js'+ ... 

Calculate: 4>o(s) = (I - 4>.)/.,s = )"I/s+ y.,js'+ ... 

Calculate: poet) = 1-y,l- }"2(I'/2!)- ... 

Step2-Calculate: '1', = 4>0(1-4>1) = {(i-zo)YI)/s+ 

«(I-zo)y,-zIY,)/s'+ ... 
Redefine: '1', = ytfs + y.,js' + ... 

Calculate: p, (I) = Yt' + Yo "'/2! + ... 

Set: k = I 

Step3-Calculate: '1'.+1 = '/f,.4>, = zoy,/s+(zo)"2+z,y.)/s'+ ... 

Redefine: 'I't+, = y,/s+ )·,js' + ... 

Calculate: Pk+l(t) = nl +Y,I'/Z! + '" 
Set: k = k + I. return to Step 3. 

In the computer language APL, Step 3 would read: 

w .... w. T+' x Y+-Z+' x Y. (8) 

Please note the APL statements are evaluated from the right to the left. The 
symbols contained in (8) have the following meanings: 
Y is a vector which holds the first" coefficients Yi of 'I't. to be replaced by the 

coefficients Yi of '1"+1' 
Z is a matrix built from the first 11 coefficients of <1>1. For 11= 3. Z looks like: 

Zo 0 0 
Zl Zo 0 
=2 %. Zo 
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T is a vector holding the values I, 1'/2 !, ... ,I"/n! 
IV is a vector holding the values p.(r). Each time Step 3 is traversed, the 

value p,.+,(I) is appended to W. 

4. Numerical Results 

The APL program described above runs fast even On a micro-computer. The 
main practical difficulty is that we do not know beforehand how far to extend 
the vector Z. The length of n of Z should be determined by the condition that 

t"/n! = ("hiit)"/,,, 

becomes insignificantly small. However, it is advisable to make additional 
control runs with increased values of n. Of course, the required length n of Z 
may exceed the computer space; then the method suggested in this paper has to 
be abandoned. 
For the data considered by Tellenbach, final results were already achieved for 
n = S. 
Attached are copies of two sample runs; namely, for h = 0.86 and 0.83. The 
former run yields the lowest sum of error-squares; this is the measure used by 
Tellenbach. The latter run (with h = 0.83) approximates the actual second 
moment 112(1) = ~)2p.(t~ The printouts apply the terminology of Tellenbach 
which dilTers from the terminology used in this paper as follows: 

Tellenbach 

Q(s) 

P,(s) 

P 

Thi5 paper 

Po(t) 

P(t) 

h 

The printouts display: 

£ = t"/n! 

P,T= h,t 

Comments 

1-Error Function 

Gauss 

MOM = ~)I P.(I) for j = 0,1 and 2 

ERR = L(P.(t) - fi.)1 for j = 1 and 2 
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The columns show: 

N= k 

P[NJ = po(t) 

P-~ = Po(t)-po 

(P-~)'2 = (PO(t)-Pk)2 

Appendix 1 compares the actual number of claims (namely. Pt' 9.461) with the 
corresponding ligures from Tellenbach and the runs for h = 0.86 and h = 0.83. 
respectively. 
The run h = 0.86 comes reasonably close to the Monte-Carlo results of Tellen
bach. This may justify the "naive" approach suggested in this paper. 
The run h = 0.831its better to the tail than the run h = 0.86. but is less accurate 
for k = 0 through 4. 

Appendix 1 

Number of Policies 

Number Actual Tellenbach Computer·Algorithm 
ofaaims (Monte-Carlo) b = .86 h - .83 

0 7.840 7.831 7.819.1 7.872.9 
I 1.317 1.311 1.327.6 t,242.1 
2 239 2SS 2SS.6 271.8 
3 42 S4 47.9 S8.S 
4 14 9 8.8 12.4 
S 4 1.3 1.6 2.6 
6 0 0.3 O.S 
7 0 0 0.1 

9,461 9,461.3 9,460.9 9,460.9 

ih 0.214 0.214 0.214 0.214 ", O.))S 0.316 0.31S 0,333 
[(p.-P.l' - S66 907 8,OS8 

Nor~: Computer printout figures arc multiplied by 9,461. For example: u.82645) ·9.461 = 7.819.1. 
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0.83 0.86 ... Q=I-ERF ... PI=GAUSS ••• G=l-ERF . .. PI=GAUSS 

...... SOl6E ~7 c ... S.7367E·7 
P. T = 0.83 0.1~195 P. T = 0.B6 0.1~·'09 
HOH = I 0.21"35 0.332"9 HOH = 1 0.21~3S O. 31~51 

ERR = -2.""38[-0 9.0058t-5 ERR -3.2B97[-B 1.0159E-5 
0 .8J21~5 • 003~80 .000012 0 .826'53 .002212 .000005 

I .lJ12EJ6 -.007917 .000063 I • tlf0327 .00112" .000001 

2 .028732 .003'71 .000012 2 .027016 .001755 .000003 

3 .0061eO .0017'0 .000003 3 .OOSn67 .000628 .000000 , .001310 -.000169 .000000 - .000931 - .0005~9 .000000 

5 .000275 -.0001_8 .000000 5 .000168 .00025" • 000000 

6 • 000057 -.000366 .000000 6 .000030 -.000393 .000000 

7 .000012 -.00009_ .000000 7 .000005 - .000100 .000000 

a .000002 .000002 .000000 8 .000001 .000001 .• 000000 

9 .000000 .000000 .000000 9 .000000 .000000 .000000 

10 .000000 .000000 .000000 N P[N] P-~ (P-f'·2 
N P[N] P-t (P-f'·2 

,,"'8.879E-l" 
.. ""6.4503E-llf P.T = 0.86 0.1_709 
P.T Q 0.B3 0.1~195 HOH = 1 0.21""350.31"52 
HOM I:: 1 0.21435 O.332~ ERR -3.3131CI5 1.0158E-5 
ERR -1.0693E-llf 9.006E-5 O' .826_53 -.002212 

0 .8321"5 • 003~aO .000012 1 .n0327 .00112_ 

1 .131296 -.007917 .000063 2 .027016 .001155 
2 .028732 .003_71 .000012 3 .005067 .000628 
3 .006180 .0017.0 .000003 • .000931 -.0005.9 

• • 001310 - .000169 .000000 5 .000168 -.001125" 
5 .000275 -.0001_8 .000000 6 .000030 -.000393 

6 .000057 -.000366 .000000 7 .000005 -.000100 

7 .000012 -.00009" • 000000 8 .000001 • 000001 
8 • 000002 • 000002 • 000000 9 .000000 • 000000 
9 • 000000 • 000000 • 000000 10 • 000000 • 000000 

10 • 000000 · 000000 • 000000 11 • 000000 • 000000 
11 • 000000 • 000000 • 000000 12 .000000 • 000000 
12 .000000 .000000 • 000000 13 .000000 • 000000 
13 · 000000 .OOOOQO .000000 I' .000000 .000000 
I. .000000 .000000 .000000 IS .000000 .000000 
15 .000000 .000000 .000000 16 ,000000 .000000 
16 .000000 .000000 .000000 17 .000000 .000000 
17 .000000 .000000 .000000 19 .000000 .000000 

18 .000000 .000000 .000000 N peN] P-f 
19 • OOODO~...:,... 000000 .00nOOD 

N peN] P-f (P-f)·2 
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DISCUSSION OF PRECEDING PAPER 

VOICE FROM FLOOR: Could you tell us why your results differ 

from Tellenbach's? 

GOTTFRIED BERGER: Yes. You must distinguish between the APL 

algorithm, which renders exact numerical results, on the one hand, 

and Monte-Carlo techniques on the other hand. As to the APL algo

rithm, I came rather close to the Monte Carlo results of Tellenbach. 

But when I tried Monte Carlo techniques myself, I could not match the 

numberical findings of Tellenbach. It may well be that, for in

stance, my particular APL machine has a bad random number generator. 

Or maybe I did not go far enough, say to 10,000 random experiments 

rather than 1,000. At any rate, I feel uneasy about the confidence 

interval of Monte Carlo experiments, and my point is, one can avoid 

them in many instances and use exact algorithms instead. 

BOB WILLIAMS: Are you acquainted with the recent paper by Harry 

Panjer? On the risk model? The paper that calculates the probabili

tyexactly? Starting from the left and going to the right, one by 

one? 

GOTTFRIED BERGER: Harry Panjer discovered a recursion formula 

which makes it possible to calculate claims frequencies step by step, 

starting at zero claims. This algorithm works within a wide family 

of claim number .distributions, including Poisson, Binomial and Nega

tive Binomial. This can be useful for numerical Stop Loss calcula

tions. 

The APL algorithm which I have presented, has quite different 

spplications. The idea is to try various assumptions as to the in-
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terclaim time distribution, these assumptions are the input. The 

output are numerical values for the claims frequency. Suppose now we 

have empirical data. Then we can try to find input assumptions whcih 

match these empirical data. The APL algorithm runs so fast that we 

can do many such experiments. If successful, we find a model which 

can be used for rate making purposes. 

As an example, we considered empirical data from automobile in

surance, but we can think of many other applications, particularly if 

we remove the restriction that interclaim times are identically dis

tributed for all renewal claims. 

Thsnk you. 
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