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Abstract. Insurance claims have deductibles, which must be considered when pricing for insurance
premium. Deductibles may cause censoring and truncation to the observed insurance claims. For
this type of data, the regression approach is often used with deductible amount included as an ex-
planatory variable inside a frequency-severity model, so that the resulting coefficient can be used for
an assessment of the relativities for deductibles. This approach has the advantage of incorporating
the selection effect into deductible ratemaking. On the other hand, standard actuarial textbooks
recommend the maximum likelihood approach for estimating parametric loss models, which can
be used for calculating the coverage modification amounts due to the deductibles. In this paper,
a comprehensive overview of deductible ratemaking is provided, and the pros and cons of various
approaches under different parametric models are compared. The regression approach proves to
have an advantage in predicting aggregate claims when deductible choices influence the frequency
and severity distributions. The maximum likelihood approach becomes necessary for calculating
theoretically correct relativities for deductible levels beyond those observed, for each policyholder.
For demonstration, loss models are fit to the Wisconsin Local Government Property Insurance Fund
data, and examples are provided for the ratemaking of per-loss deductibles offered by the fund.
Selected parametric models from the generalized beta family distributions are compared. Models
for specific peril types can be combined to improve the ratemaking, and estimation issues for such
models under truncation and censoring are discussed.
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1 Introduction

A deductible is an important feature of an insurance contract. Deductibles influence the number
of times the insured will make a claim and will influence the amount that is reimbursed to the
insured in the event of an insured loss. In many cases, deductibles may cause insurance claims
to be observed with censoring and truncation. These aspects must be addressed when pricing
insurance premiums, and the theoretically correct approach can be discussed from the standpoint
of actuarial theory.

To formalize our framework for modeling, for each policyholder let N be the underlying fre-
quencies and Yj be the severities of the claims, independent of each other. Suppose a deductible d
is applied, so that the risk-sharing function is defined as

g(Yj ; d) =

{
0 Yj < d

Yj − d d ≤ Yj <∞

The observed, censored and truncated random variable for claim frequencies and severities for each
policyholder can be denoted as

Ng(d) =

N∑
j=1

I(d < Yj) (number of claims)

Yg,j(d) =

{
0 Yj < d

Yj − d d ≤ Yj <∞
(censored severities)

Y∗,j(d) = Yj − d | d ≤ Yj (truncated severities)
1∑
1

Sg(d) =
N∑
j=1

Yg,j(d) (aggregate claims)

where I(·) is an indicator function, taking on the value 1 if the input condition is true, and 0
otherwise. Note that Ng(d) is a summation of Bernoulli random variables. We will be consistent in
notating censored random variables with a subscript (g), to remember they have extra zeros below
the censoring point. Also, we will denote truncated random variables and their corresponding
parameters with a subscript ∗. It is helpful to understand that truncation is basically observing a
subset of a full sample, under some truncation mechanism.

The textbook Klugman et al. (2012) shows in detail how coverage modification affects the
claim frequency and severity distributions. The advantage of applying parametric loss models for
deductible ratemaking is that accurate, theoretically correct deductible rates can be calculated
for insurance losses. When covariates are incorporated into the models, deductibles can be priced
in a subject-specific manner, which allows a rating engine to be theoretically correct for all of
the policyholders within an insurance company. Empirical work using truncated estimation for
insurance claims with real data can give practitioners an illustration of the application of loss
models for deductible ratemaking.

Although accurate rates can be calculated using such textbook approaches, a practitioner may
be interested in the regression approach for deductible ratemaking, by treating the deductible level
as an explanatory variable in a regression model, as in Frees and Lee (2016). This intuitive solution
is to use the coefficient estimates for log deductible to calculate the relativities for various deductible
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levels. This approach is taken, for simplicity of implementation and practicality in ratemaking ap-
plications. The approach becomes particularly useful when a large number of explanatory variables
are used for ratemaking. A practitioner may be interested in learning when to apply truncated
estimation techniques and when the regression approach suffices. Hence, in this paper, a detailed
analysis of deductible rating approaches is conducted.

For some more motivation for the study, the reader may consider the situation where an analyst
would be interested in developing a pricing structure that incorporates deductibles in a disciplined
way, and in knowing how to change prices when the deductibles change. Yet only the reported
losses above a certain deductible level may be observed. In this circumstance, an actuarial analyst
may need an assessment of the price of a particular insurance policy or a portfolio of policies. For
these considerations, we believe an overview of the available methods and a comparison of the
approaches using empirical applications to be a meaningful contribution to the literature.

2 Literature Review

There is a large literature discussing problems related to deductible ratemaking. Some foundational
literature on deductible pricing, exposure rating and coverage modification is summarized in the
following subsections. Statistical methods related to censored and truncated estimation have a long
history, as does the insurance economics literature, where the deductible choice of policyholders is
studied for the assessment of risk preferences. Readers who are interested in the main subject of
the paper may skip this section and go directly to Section 3.

Deductible Pricing

A standard reference for deductible pricing in actuarial science is in Brown and Lennox (2015),
where the indicated deductible relativity for a single loss of an insurance policy is given by the
relationship

Indicated deductible relativity =
E[Y∗(d)]

E[Y ]
= 1− LER(d),

where LER is an abbreviation of loss elimination ratio. The indicated deductible relativity provides
an assessment of how much an insurance loss cost is reduced by a deductible, from a per-loss
perspective, while the loss elimination ratio provides an assessment of how much the covered loss
is reduced by introducing a deductible d. If the policy has an upper limit of coverage, u, then the
loss elimination ratio is

LER(d) =

∫ d

0
yfY (y)dy + d

∫ u

d
fY (y)dy∫ u

0
yfY (y)dy

.

This principle can be applied to excess-of-loss treaty pricing for per-loss insurance and reinsurance
policies, where losses beyond a retention level are covered by a reinsurer. For the frequency-severity
framework, it is helpful to use the notations in the following Section 3, to define the relativity of
an aggregate loss as

REL(d0, d) =
E[Sg(d)]

E[Sg(d0)]
=

E[N ]

∫ u

d
(1− FY (y))dy

E[N ]

∫ u

d0

(1− FY (y)dy

=

∫ u

d
(1− FY (y))dy∫ u

d0

(1− FY (y))dy

, (1)
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where d0 is a base deductible. In the textbook, Brown and Lennox (2015), the experience rating
approach, and the exposure rating approach for reinsurance pricing are introduced in relation to
deductible ratemaking. The former uses a company’s historical loss experience, for a best predictor
of future experiences. In the latter approach, claim severity distributions are based on industry
data. The literature has some work related to excess-of-loss layer rating methodologies.

An article by Bernegger (1997) uses the Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac dis-
tributions. Statistical properties of this class of distributions are introduced further in Wu and Cai
(1999). To summarize their approach, an insurance company may be given an increasing curve
in δ—say, H(δ), where 0 < δ < 1. In this case, δ = d/u is a normalized deductible in the [0, 1]
interval. This curve is differentiated to obtain an expression for the loss distribution.

Several related studies have been interested in the rating of large insurance losses and the
excess-of-loss layer rating. For example, Ludwig (1991) provides an overview of the exposure
rating approach. Fasen and Kluppelberg (2014) discusses risk processes for large insurance losses
without empirical examples. Several seminars, such as White and Mrazek (2004) and White (2005),
introduce advanced practical methodologies for exposure rating approaches. A recent article by
Chavez-Demoulin et al. (2016) applies extreme value models to operational risk. Some researchers
have studied the data misspecification issue under left-truncation, as the study by Gurnecki et al.
(2006) has done. These studies provide good motivation for further studies. Our approach is to
provide an empirical demonstration of how coverage modification effects can be incorporated into
deductible ratemaking. We emphasize that our approach is distinct from existing work, in that our
interest is more focused on the experience rating approach, using data from the Local Government
Property Insurance Fund, introduced further in Sections 5.2, 5.3 and 8.3.

Coverage Modification

In many cases, the deductible levels correspond to only small values in the lower tail of the claim
distribution. Hence, it is often most efficient to use the regression approach with independent
explanatory variables, for both the frequencies and the severities of insurance claims. However, for
large deductible amounts, there may be motivation to use other approaches.

For a specific class of frequency distributions, called the (a, b, 0) class distributions, the modi-
fication to the frequencies, due to deductibles, has been understood quite well. The (a, b, 0) class
distributions, summarized in Table 1, are explained in detail by Klugman et al. (2012). These
frequency distributions have the property such that a scale in the parameter θ results in the same
scale to the mean of the distribution. If the mean of the distribution with parameter θ is given as
E[Y], the mean of the distribution with the scaled parameter θv has mean E[Y]v. This property
can be easily observed by inspecting Table 1.

Table 1: (a, b, 0) Class Distributions

Name B(z) B(θ(z − 1)) Mean

Poisson ez eθ(z−1)
∣∣∣∣ θ

Binomial (1 + z)m
∫ 0

((1− θ) + θz)m
∣∣∣∣∫ 0

mθ

Geometric (1− z)−1
∫ 0

(1− θ(z − 1))−1
∣∣∣∣∫ 0

θ

Negative Binomial (1− z)−r
∫ 0

(1− θ(z − 1))−r
∣∣∣∣∫ 0

rθ
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To understand the effect of left-truncation of the severities on the frequencies, an effect also called
coverage modifications in the language of Klugman et al. (2012) is introduced. Let v = 1−FY(d) be
the probability that a loss results in a claim (a payment). The probability-generating function for
the modified claim count random variable can be obtained by modifying the probability-generating
function of the underlying (a, b, 0) class distribution P(z) = B[θ(z − 1)] in the following way:

Pg(z) = P(PI(z)) = P(1 + v(z − 1))

= B(θ(1 + v(z − 1)− 1)) = B(θv(z − 1)) = P(z; θv). (2)

This interesting result uses the probability-generating function PI(z) = 1− v + vz of the Bernoulli
random variable, which takes on the value 1 when a loss results in a claim. The sum of N Bernoulli
random variables has an (a, b, 0) class primary distribution and a Bernoulli secondary distribution,
in which case the probability-generating function for the secondary distribution can be plugged into
the probability-generating function of the primary distribution to obtain the resulting compound
distribution. This allows expression (2) to be so simple and intuitive.

The two most often used frequency distributions in actuarial science are the Poisson distribution
and the negative binomial distribution. The Poisson distribution is often used in practice. Let N c

be the observed counts, excluding the unobserved claims due to truncation, for a policyholder.
Note that from (2), we know the underlying frequencies also follow a Poisson distribution, so that

N ∼ Poisson (θ) ⇐⇒ Ng ∼ Poisson (vθ) ,

where v = Pr(Y > d) is the amount of coverage modification. In practice, the negative binomial is
also often used, in order to accommodate for over-dispersion. In this case, a mean parametrization
is used, and the underlying frequencies can be retrieved in a similar way:

N ∼ NB (r, θ) ⇐⇒ Ng ∼ NB (r, vθ) ,

where v = Pr(Y > d). These properties are valid under the assumption that N and v are indepen-
dent, meaning the factors determining the severity are independent of the number of claims.

There has been little work on how to use an estimated loss distribution for small-deductible
ratemaking in conjunction with the loss frequencies. When the loss frequencies and severities
are empirically analyzed together, the sampling frame also becomes an issue. Cummings (2001)
recommends the use of the generalized linear models (GLM) approach to deductible ratemaking. His
presentation discusses the limitation of the method of Guiahi (2005), where the relationship between
the claim frequencies and the deductibles is not considered. For practical reasons, Cummings (2001)
recommends using standard GLM models with deductibles as an independent explanatory variable.

Truncated Estimation

There is a vast literature on censored and truncated data modeling in statistics. However, most of
these papers focus on the estimation problem, where the goal is to obtain estimates of parameters
for a specified distribution from censored or truncated data. Kaplan and Meier (1958) introduced
the product limit estimator for censored and truncated data. There have been a number of follow-
up studies, including Woodroofe (1985) and Lai and Ying (1991). Kalbfleisch and Prentice (2002)
provides treatment of modeling for censored and truncated data for survival models. Finkelstein
and Wolfe (1985) take a semi-parametric approach for interval censored failure time data. There
have also been a number of studies focusing on estimation problems for particular distributions:
Barr and Sherrill (1999) on the truncated normal, Aban et al. (2006) on the truncated Pareto
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distribution, and Chapman (1956) on the truncated gamma distribution. Discrete data with zero
truncation is discussed in Plackett (1953) and Klugman et al. (2012). Recently, Verbelen and
Claeskens (2014) applied multivariate Erlang mixture models to censored and truncated data.

Although the literature is vast, a combined estimation of frequencies and severities together is
rarely found in the statistical estimation literature. The estimation of censored frequencies under
a deductible to the severities distribution is treated theoretically in actuarial textbooks, but more
empirical studies seem to be needed.

Insurance Economics

There is, however, another vast but separate literature where the selection effect mentioned in
Cummings (2001) is studied in relation to policyholder behavior in the market. The selection effect
occurs when specific deductible choices are correlated with the loss profile of a policyholder. The
problem of deductible choice is important in insurance economics and risk management, as it is a
crucial vehicle for sorting out the adverse-selection and moral-hazard problems in practice, so it is
important to study their effects from an academic standpoint. The pricing of a deductible is an
interesting problem, and the precise psychological effect of a deductible choice is a problem under
active research. Moreover, the deductible choice problem serves as a framework for understanding
economic decisions under uncertainty, which can be applied more broadly to problems in society. For
this reason, traditional economics textbooks cover the deductible choice problem in depth. There
is a vast literature in which deductibles are studied in order to understand the risk preference of
policyholders and the presence of adverse selection in insurance markets.

In economics and risk management, articles such as Rothschild and Stiglitz (1976) and Halek and
Eisenhauer (2001) have been standard references for the need of deductibles for mitigating adverse
selection in insurance markets with hidden information. In economics and behavioral economics,
deductible choices of policyholders have been used to study the risk preference of decision makers.
Treatment of this literature can be found in Mas-Colell et al. (1995), Koszegi and Rabin (2006),
and Sydnor (2010). Econometric approaches for measuring the preference of decision makers in
a lab setting have been an active topic of research. For example, Holt and Laury (2002) provide
standard procedures for measuring risk preferences in a lab environment. Recently, there is interest
in extending these studies into real-world problems, through empirical studies such as Cohen and
Einav (2007) and Einav et al. (2012). In particular, Sydnor (2010) illustrates how deductible
choices are often unexplained by standard economic theory, and more sophisticated models may be
necessary.

3 Theory of Coverage Modification

This section provides useful theoretical results for deductible ratemaking. The proofs are organized
in the appendix (see Section 8.1). Similar results can be found in Klugman et al. (2012), Gray
and Pitts (2012), Tse (2009), and Bahnemann (2015); however, here the results are simplified and
condensed into more general forms, with an emphasis on small deductible changes. The results
apply to any distribution Y , without continuity or the existence of a distribution required. The
results for frequencies apply to any count random variableN , not just the (a, b, 0) class distributions.

Let us begin by assuming the censored random variable is observed. From an empirical stand-
point, the sample size on which estimation can be performed necessarily gets smaller for the claim
severities, as Y is truncated to Y∗(d). The first theorem provides a general expression for the
difference in expected aggregate claims, under two different deductibles.
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Theorem 3.1. Let N be any count random variable, and Y any random variable, each with finite
first moments. If N and Y are independent, then for deductibles d1 < d2, we have

E[Sg(d1)− Sg(d2)] = E[N ]E [Yg(d1)− Yg(d2)] .

Theorem 3.1 provides an expression for the difference between two aggregate claims means, under
two different deductibles. When the loss severities have a parametric loss distribution, the following
corollaries allow a modeler to calculate the mean average claim and relativities for a given deductible
d, relative to a base deductible d0.

Corollary 3.1.1. If Y has distribution function FY , then for d2 > d1 we have

E[Sg(d1)− Sg(d2)] = E[N ]

∫ d2

d1

(1− FY (y)) dy.

Corollary 3.1.2. Using the notation for relativity REL as defined in equation (1), we have

E[Sg(d2)] = E[Sg(d1)]×REL(d1, d2) = E[Sg(d1)]×

∫ ∞
d2

(1− FY (y)) dy∫ ∞
d1

(1− FY (y)) dy

,

where d1 may be considered as a base deductible.

This motivates the concept of the relativity for aggregate claims, as explained in Section 2. Hence,
the mean aggregate claim is modified by an amount, depending on d. Given some loss distribution
FY , the next theorem allows a modeler to recover the underlying loss frequencies, from observed
claim frequencies.

Theorem 3.2. Let N be any count random variable, and Y have distribution function FY , each
with finite first moments. If Y is independent of N , then Ng(d) satisfies

E [Ng(d)] = E [N ] · (1− FY (d)).

Theorem 3.2 provides an expression for the mean of the observed, censored frequency distribution, in
terms of the underlying loss distribution parameters, under deductible d. When the mean frequency
is parametrized using a log-link, for regression purposes, parameters for the underlying loss N can
be obtained by a regression, using offset = ln(1 − FY (d)). Given the loss distributions, the
following formulas provide the theoretical marginal changes in the means, under a small deductible
change.

Corollary 3.2.1. If E[Y c(d)] is differentiable at d, then

∂

∂d
E[Yg(d)] = −1 + FY (d).

If FY is differentiable, then

∂

∂d
E[Ng(d)] = −E[N] · fY(d).
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Corollary 3.2.2. Let N be any count random variable, and Y any random variable, each with
finite first moments. If N and Y are independent, then E[Sg(d)] satisfies

∂

∂d
E[Sg(d)] = −E[N ] · (1− FY (d)) .

Theorem 3.3 (Truncated Severity Modification). Let Y be any random variable with density fY
and distribution FY . Then, Y∗(d) satisfies

∂

∂d
E[Y∗(d)] =

fY(d)

1− FY(d)
E[Y∗(d)]− 1

4 Approaches to Deductible Ratemaking

In this section, we provide an overview of different empirical approaches to deductible ratemaking
and how they can be applied in our framework. The two general approaches are the regression
approach and the maximum likelihood approach with truncated estimation methods. First, the
sampling frame is formalized. For rating purposes, we assume the following variables are observed:

{Ng,i(di),xi, di} ,

where xi is a set of explanatory variables including coverage amounts ui, which could not be
adjusted, while di are the deductible choices, which can be adjusted by either the policyholder or
the insurance company. The coverage amounts ui are used as the upper-limit amounts, and these
are assumed not adjustable by the policyholder or the insurance company. In other data sets,
coinsurance amounts also may be observed. Note that the number of losses Ni are realized prior
to the loss amounts. For each loss Ni, the amounts yij are realized, and

y∗,ij(di) = yij − di|yij > di

are observed for each loss j = 1, . . . Ni. Hence, the estimation assumes a claims data set and
a policyholder data set. If the numbers of observations in these two data sets are considered
independent, then standard asymptotic theory could be used for standard error estimates. In
many cases, y∗,ij may be observed, while yij is unobserved.

4.1 Maximum Likelihood Approach to Deductible Ratemaking

The maximum likelihood approach is a direct application of the theory, outlined in Section 3. We
provide an overview of how the theory in Section 3 and similar results in Gray and Pitts (2012),
Tse (2009) and Bahnemann (2015) can be empirically applied to real data. The rating procedure
is summarized into four simple steps. The most difficult part is the estimation step, which requires
statistical estimation methods for censored and truncated loss distributions. Subsequent steps are
simple and straightforward.

Rating Procedure

1. Obtain FY (y) using statistical estimation. This involves censored and truncated estimation
methods, as described in Section 8.4 (see Section 3 for related theorems).
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2. Obtain E[N ], using Section 3 theory. Specifically, use ln(1 − FY (d)) as offset and E[Ng(d)]

as response in a regression, as described in Section 8.4.
∫ 1
1

3. To calculate the rates for any dnew, obtain E[Yg(dnew)] =

∫ dnew

0
(1− FY (y)) dy, using the

estimated loss model from Step 2 and numerical integration.

4. Calculate the new E[Sg(dnew)] using, E[Sg(dnew)] = E[N ] ·E[Yg(dnew)] (see Corollary 3.1.2).∫ 1
1

Details of the likelihood functions used for the statistical estimation in the first step, as well as the
estimated coefficients from available real data, are shown in the Appendix, Section 8.4.

There are two complications to consider. First, for the frequency model parameter estimates,
the standard errors become amplified by the modeling error and estimation error from the severity
distribution, because of the coverage modification.

Second, if the number of observed claims is considered random, then the size of the claims
data depends on the realization of the claim frequencies and severities for each policyholder, and
hence the sampling frame becomes complicated. It is possible to show that for any confidence
level, it is possible to find a large enough size for the policyholder sample so that the sample size
of the claim data set is ensured to be large enough with any desired confidence. There is a large
literature on large-sample theory for the validity of the fixed sample size for the claims data set,
given a sequential stopping rule. Anscombe (1952) provides a proof for this result. Siegmund
(1985) provides an overview of sequential analysis. In particular, Anscombe (1952) shows that for
a sequence of proper random variables taking positive integer values Nr, the sequence of statistics
based on Nr observations satisfies convergence and uniform continuity in probability. Assuming the
sampling frame described above, application of the rating formulas using the maximum likelihood
approach would use the above steps.

4.2 Regression Approach to Deductible Ratemaking

The regression approach is to use GLM models with a log deductible covariate. In practice, it is
common to assume the observed after-deductible claims follow a gamma distribution or a Pareto
distribution. Let Y∗ be the observed claims. Then common practice is to parameterize the mean
of the gamma distribution, using explanatory variables xi and coefficients β:

E[Y∗(di)] = exp
(
x′iβ

)
.

In this setup, deductibles may be incorporated into the model. If ln di = lnDeducti is included as
an explanatory variable, then its coefficient, βd, would satisfy

∂E[Y∗(di)]

∂d
=
∂ exp (x′iβ)

∂d
= exp

(
x′iβ

)
βd
∂ ln di
∂d

= E[Y∗(di)]
βd
di
.

Hence, for a single policy i, the coefficient βd can be considered as the deductible elasticity of the
observed mean:

βd =
∂E[Y∗(di)]/E[Y∗(di)]

∂d/di
.

In econometrics, elasticity is a term used to denote the percentage change in a variable, in response
to a percentage change in an explanatory variable. However, defining a single quantity βd for a
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population of policies can be done in many different ways. When the sample of observed deductibles
is not uniform, or when the deductible choice distribution is correlated with the response variable,
the coefficient βd may reflect this. For this paper, assessing how well a calculated βd summarizes
the relativity is best done using graphical approaches explained in Section 4.3. Analogously, if used
in the regression for Ng(di), then the corresponding coefficient γd would have the interpretation

γd =
∂E[Ng(di)]/E[Ng(di)]

∂d/di
.

In actuarial science, the pure premium approach is sometimes used to model the aggregate claims
directly, using a compound distribution, such as the Tweedie distribution. In this case, a similar
approach can be used by including ln di as an explanatory variable in the regression for the aggregate
claims. For an overview of the pure premium approach, the reader may refer to Frees (2014) or Shi
(2016). In this case, the coefficient ξd for ln di would have the interpretation

ξd =
∂E[Sg(di)]/E[Sg(di)]

∂d/di
.

One may compare the preceding derivations with using lnui = LnCoveragei as an explanatory
variable, in order to incorporate the coverage amounts into the regression model, as larger coverage
amounts should typically result in higher claims. To ensure the interpretability of the coefficients
for log coverage amounts, it is often recommended to use an alternative, exposure (offset) approach.
According to Frees et al. (2015), in actuarial science exposures (offsets) are used to calibrate the
size of potential outcome variables. In this case, the mean can be assumed to vary proportionally
with an amount E. In this case, the coefficient for lnE is restricted to be 1 and included in the
model as an offset. With this convention, we have

µ = E · exp(x′β) = exp
(
x′β + lnE

)
.

One can consider using E = u − d as the offset amount for the regression, when the deductible
amounts are to be incorporated as well. This way, when a policyholder selects a larger coverage
amount (upper limit of policy), higher insurance premiums would be charged. Similarly, higher-
deductible choices would naturally lead to a discount of the premium. The problem with applying
this approach to deductibles is that the precise effects of deductible changes are not considered this
way. In most cases, for a unit of deductible change, the scale change of the loss may be different
from a unit. Note that in reality, the effect of a deductible change may vary, depending on the loss
distributions of the policyholders.

4.3 Relativity Calculation

Further insight can be obtained by comparing the relativities for each approach. Given a base
deductible d0, for the regression approach, we have

RELREG(d0, d) =
exp (x′β + βd ln d) · exp (x′γ + γd ln d)

exp (x′β + βd ln d0) · exp (x′γ + γd ln d)
=

(
d

d0

)βd+γd
, (3)

where we assume βd+γd < 0. When the pure premium approach is used with a Tweedie distribution,
the relativity given base deductible d0 would be calculated in a similar way:
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RELREG(d0, d) =
E[Sc(d)]

E[Sc(d0)]
=

exp (x′ξ + ξd ln d)

exp (x′ξ + ξd ln d0)
=

(
d

d0

)ξd
, (4)

where we assume ξd < 0. For a general link function η : (0,∞) → (−∞,∞), the relativity curve
becomes

RELREG(d0, d) =
η−1 (x′ξ + ξd · η(d))

η−1 (x′ξ + ξd · η(d0))
,

where ξd is the coefficient for the covariate η(di) in the regression. Different link functions may
result in different shapes of relativity curves, yet in this paper we focus on analyzing the log link.
The true relativity is

RELCM(d0, d) =

∫ u

d
(1− FY (y))dy∫ u

d0

(1− FY (y))dy

, (5)

where d > d0. For a Pareto model, if α > 1, we have

RELCM(d0, d) =

∫ u

d

(
λ

λ+ y

)α
dy∫ u

d0

(
λ

λ+ y

)α
dy

=
(λ+ d)−α+1 − (λ+ u)−α+1

(λ+ d0)
−α+1 − (λ+ u)−α+1 , (6)

and taking the upper bound u to infinity gives

RELCM(d0, d)→
(
λ+ d

λ+ d0

)−α+1

as u→∞. (7)

The reader may compare (4) and (6), and note the similarity, as both are decreasing functions in d,
with the true relativity curve depending on the shape parameter of the distribution. In particular,
observe that in equation (6), as λ→ 0 and u→∞, with α > 1, the relativity curve for the Pareto
model becomes identical to that of the regression approach, with ξd = −α+ 1 in equation (4). To
compare the performance of the regression approach, one may plot the relativities for deductibles
in the range [d0, u] and compare the fit. Note that in parametric models with covariates, the
true relativity curve becomes subject specific through the distribution parameters, whereas the
regression approach would allow for subject-specific variation through interaction terms with the
deductible covariate. The performance of the regression approach depends on how well the relativity
curve approximates the true relativity of a given policyholder.

5 Applications

5.1 Simulation

To assess the performance of the regression approach, claims were generated synthetically, us-
ing parameters similar to the Local Government Property Insurance Fund (LGPIF) building and
contents claims (explained in more detail in Section 5.2); the lightning peril type is used for demon-
stration. The coefficient estimate results for the severity models are shown in Section 8.4. Claims
were synthetically generated using parameters similar to those found from estimation. This way,
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Figure 1: Relativities From Regression Using ln(di), for E[Y ] = 11087, E[Y ] = 2000, and E[Y ] =
500

the deductible level can be adjusted to observe the potential effect on the relativity. B = 10, 000
policies were generated using a Pareto distribution, with E[Y ] = 11, 087 and α = 2.553. The claim
frequency mean E[N ] = 1 was used. Deductibles were synthetically generated by

• Generate di from a multinomial distribution over {500, 1000, 2500, 5000, 10000, 25000}, each
with probabilities (0.461, 0.215, 0.118, 0.095, 0.011, 0.100 ), for i = 1, . . . , B policyholders.

These numbers were used so that the deductible distribution resembles the LGPIF data. Then the
regression approach is used to estimate the elasticities. The results are βd + γd = −0.2434289 for
the deductible elasticity using the Poisson and gamma family. The relativities are then calculated
for deductible levels ranging between the base 500 and 25,000, using the regression coefficients, and
the true relativity curve is shown for comparison in Figure 1.

From Figure 1, the reader may observe that the regression approach using ln(di) approximates
the true relativity curve in the best possible way, with deviations due to the nature of the log link.
In the first panel, notice that for small relativity values, there is a small discrepancy between the
dotted and solid lines. If the curve is dilated to the right, eventually the regression approach results
in larger and larger deviations from the true relativity, as the curve deviates more from the solid
line. For example, if a deductible of 1,000,000 is selected for the reinsurance retention level, the
error in the relativity would be substantial when the regression approach is used. The regression
approach using ln d as the explanatory variable results in a curve that is steeper than the true
relativity curve for small deductibles, and that flattens out eventually, due to the nature of the
link function. In subsequent panels, the scale parameter λ is increased, showing how the regression
approximation becomes closer to the true relativity curve when λ approaches zero. In general, we
find that the regression approach would be suitable for moderate-size problems, where the scale
parameter λ is moderate in size.

In Figure 2, instead of ln(di), we attempt to use ln(di+λ) for the explanatory variable. This way,
the regression approach becomes identical to the true relativity curve, and in all three panels, the
curve fits almost exactly. This suggests several valuable insights. First, we learn that the regression
is an approximation to the relativity curve using one parameter only, or in other words, without
a scale parameter. This scale parameter is not known in advance without performing maximum
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Figure 2: Relativities From Regression Using ln(di + λ), for E[Y ] = 11087, E[Y ] = 2000, and
E[Y ] = 500

likelihood. Also, we learn that for specific cases, regression may perform well—specifically, when
the problem is of moderate size.

5.2 Relativities

Next, we compare the different approaches using real data. Figure 3 shows a histogram of the
lightning losses and the fitted distributions using truncated estimation for the exponential, gamma
and Pareto models. The reader may observe that the exponential and gamma model fits look about
the same, whereas the Pareto model fit is slightly better. Models are fit for various peril types, as
shown in the Appendix, Section 8.3.

The regression approach is implemented using a standard glm software package with Poisson
and gamma families. Log deductibles are included as covariates in each regression model, by peril
type. To compare the single relativity obtained from the regression approach, we calculate single
relativities for the gamma and Pareto maximum likelihood approaches by

RELm(d0, d) =

E

[∑
i

Sg,i,m(d)

]

E

[∑
i

Sg,i,m(d0)

]
where Sg,i,m(d) indicates the aggregate claims for peril type m, for policyholder i, under deductible
d. This single quantity allows for a comparison of the relativity obtained from the maximum
likelihood approach and the regression approach.

The regression approach coefficient estimates for the ln(d) explanatory variable are shown in
Table 2. These quantities are used to calculate the relativities for the regression approach, by peril
type. Relativities for the maximum likelihood approach are calculated using the estimated models
in Table 12, in the Appendix.

In Figure 4, the peril types are categorized into nine categories, as explained in more detail
in the Appendix. In the figure, relativities for the regression approach and those obtained from
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Figure 3: Density of Lightning Losses

Table 2: Coefficients from Regression Approach

Poisson (γd) Gamma (βd) Sum (γd + βd) Adjustment 1 − α**

Fire -0.407 0.228 -0.179 -0.012

Vandalism -1.335 0.981 -0.354 -0.357

Lightning -0.822 0.489 -0.332 -0.874

Wind -0.567 0.259 -0.308 -0.242

Hail* -0.202 0.594 0.391 -0.202 -0.543

Vehicle -1.125 0.429 -0.697 -2.924

Water (Non-weather)* -0.579 0.714 0.135 -0.579 -0.127

Water (Weather)* -0.375 0.949 0.574 -0.375 -0.000

Misc.* -0.734 0.716 -0.019 -0.734 -0.063

*Adjustment made for parameter interpretability.

**Shape parameter of Pareto model is shown for reference.

maximum likelihood are overlayed, allowing for comparisons. The numeric values of the relativities
are shown in Table 3.

In each panel of Table 3, the relativities are shown in the column for each deductible level.
The reader may compare the first panel, showing the regression approach, with the second and
third panels, showing the gamma model and Pareto model, using truncated estimation and the
rating formulas in Section 3. The leftmost column is the relativity for the 1,000 deductible level.
The relativities for the next deductible level, 2,500, are lower as expected, and so on. The lowest
relativity indicates the ratio of the aggregate claims under 50,000 to the aggregate claims under
the base deductible, 500. Hence, the single quantities in the tables allow for a comparison of the
relativity levels for the single elasticity obtained from the regression approach and the maximum
likelihood approach.

The reader may observe that regression provides lower relativities in general. In particular, the
relativities in the regression approach are somewhat more uniform over different deductible levels,
except for very small deductible levels, when compared with the second panel, which uses the same
distributional assumption with a maximum likelihood approach. This is due to the nature of the
log link. As we will see in subsequent sections, the performance of the aggregate claim prediction
is unaffected by this phenomenon. The Pareto distribution has a heavier tail and in general results
in higher relativities. The calculations are shown with holdout sample claims for year 2011, while
the models were fit using data for years 2006–2010.
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Figure 4: Plot of Relativities for Regression Approach and Selected MLE Approaches

We have been able to make a few observations while implementing each approach. First,
when the maximum likelihood approach is used with the gamma distribution assumption, some
of the policyholders resulted in relativity values of zero. This shows that although the maximum
likelihood approach has the flexibility of providing policyholder-specific relativities by varying the
parametrization, sophisticated distributional assumptions, such as a long-tail, Pareto distribution,
would be needed for the relativities to be interpretable. In contrast, the regression approach
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Table 3: Comparison of Relativities for Regression Approach and Selected MLE Approaches

Regression Approach

Deductible 1,000 2,500 5,000 10,000 15,000 25,000 50,000

Fire 0.883 0.750 0.663 0.585 0.545 0.497 0.439

Vandalism 0.782 0.565 0.442 0.346 0.300 0.250 0.196

Lightning 0.794 0.586 0.465 0.369 0.323 0.272 0.216

Wind 0.808 0.609 0.492 0.397 0.351 0.300 0.242

Hail* 0.869 0.722 0.627 0.545 0.502 0.453 0.394

Vehicle 0.617 0.326 0.201 0.124 0.094 0.066 0.040

Water (Non-weather)* 0.669 0.394 0.263 0.176 0.139 0.104 0.069

Water (Weather)* 0.771 0.547 0.422 0.325 0.280 0.231 0.178

Misc.* 0.601 0.307 0.184 0.111 0.082 0.057 0.034

*lnDeduct has been included only in the frequency regression, for interpretability.

Poisson-gamma MLE

Deductible 1,000 2,500 5,000 10,000 15,000 25,000 50,000

Fire 0.996 0.983 0.963 0.928 0.896 0.839 0.723

Vandalism 0.868 0.583 0.320 0.106 0.037 0.005 0.000

Lightning 0.960 0.851 0.700 0.484 0.342 0.181 0.046

Wind 0.974 0.903 0.800 0.635 0.510 0.337 0.129

Hail 0.997 0.987 0.971 0.943 0.918 0.872 0.778

Vehicle 0.829 0.448 0.131 0.008 0.000 0.000 0.000

Water (Non-weather) 0.976 0.911 0.816 0.663 0.546 0.380 0.168

Water (Weather) 0.996 0.983 0.965 0.931 0.900 0.845 0.734

Misc. 0.988 0.954 0.904 0.819 0.747 0.631 0.434

Poisson-Pareto MLE

Deductible 1,000 2,500 5,000 10,000 15,000 25,000 50,000

Fire 0.997 0.989 0.976 0.956 0.940 0.913 0.866

Vandalism 0.988 0.967 0.949 0.932 0.923 0.912 0.900

Lightning 0.962 0.865 0.745 0.588 0.490 0.371 0.236

Wind 0.984 0.942 0.888 0.812 0.758 0.686 0.583

Hail 0.994 0.978 0.952 0.907 0.868 0.803 0.687

Vehicle 0.955 0.863 0.783 0.722 0.702 0.688 0.682

Water (Non-weather) 0.988 0.957 0.916 0.859 0.818 0.761 0.680

Water (Weather) 0.995 0.982 0.964 0.935 0.913 0.879 0.823

Misc. 0.988 0.959 0.922 0.870 0.834 0.783 0.710
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provides a single relativity value, which allows for easier interpretation. When compared with the
empirical relativities, shown in the last panel, the regression approach, although not perfect, seems
to provide reasonable single-value relativities for an analyst to use.

In particular, observe that the maximum likelihood experienced difficulty in assessing the van-
dalism relativities, because claims in this category are influenced substantially by the deductible,
as claim sizes are small. Regression seems to provide more reasonable relativities for this category.
The reader may observe this in Table 2.

Second, the severity model for the regression approach sometimes provided coefficients that
could not be interpreted. This situation is illustrated in Table 2. Specifically, hail, water and
miscellaneous peril types resulted in βd values too high. In these cases, the regression model must
be fixed, with βd omitted from the severity model. In Section 5.3, a similar situation was observed
for the aggregate claims model. The reader may see the coefficients in Table 15.

5.3 Aggregate Claims Prediction

How well does each method, including the regression approach, perform in aggregate claims pre-
diction? We compare the regression approach with the maximum likelihood rating approach for
total aggregate claims prediction for an entire line. From this study, we demonstrate that, although
the regression approach provides smaller-than-reasonable relativities for some policies, it performs
quite well in terms of total aggregate claims prediction. We expect the regression approach to
provide a practical solution for applications with a large number of explanatory variables, where
the aggregate claims prediction is of primary interest. For a demonstration, we compare the results
of three different approaches:

(A) Regression approach, using Poisson-gamma, with the lnDeduct covariate
(B) Maximum likelihood approach, using Poisson-gamma truncated estimation
(C) Maximum likelihood approach, using Poisson-GB2 truncated estimation

We did not implement a regression approach for the Poisson-GB2 model, because comparing the
three cases listed would suffice in demonstrating the most commonly encountered assumptions in
practice. Advantages and disadvantages of regression and maximum likelihood can be illustrated
by comparing these three common modeling assumptions. The estimation results are shown in the
Appendix. Specifically, Tables 15, 16, 17 and 18 each show the results from the regression approach
and the truncated estimation results for gamma, Poisson, and GB2 models. Using these coefficient
estimates, the total aggregate claims are predicted for different deductible levels. For the regression
approach, the log deductible amount is multiplied by the coefficient estimate –0.737 shown in Table
15. The coefficient estimates from truncated estimation are used to calculate the aggregate claims,
and the aggregate claims are compared with predictions from the regression approach.

Table 4: Out-of-Sample (2011) Performance of Each Approach

Aggregate Pearson Spearman

Claims Correlation Correlation

with Claims with Claims

(A) Poisson-gamma regression 16,170,966 0.2231 0.3922

(B) Poisson-gamma MLE 11,464,929 0.3358 0.3847

(C) Poisson-GB2 MLE 20,976,735 0.4157 0.4025

Claims 19,036,189 1.0000 1.0000
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Figure 5: Comparison of Severity Distributions. Panel 1: gamma losses fit; Panel 2: GB2 losses

fit; Panel 3: GB2 truncated estimation (Kolmogorov-Smirnov test statistics (p-values) 0.199 (0.000), 0.025

(0.003), 0.103 (0.000))

According to Table 4, the regression approach was effective in identifying the ranking of the
policyholders (as could be seen from the Spearman correlation), as well as predicting the amount
of aggregate claims, compared with the maximum likelihood approach using the same distribution
assumption. The aggregate claim amount for the regression approach, 16,170,966, is in fact closer
to the empirical claims than 11,464,929. This shows, for many practical rating problems with small
data sets, that the regression approach may provide a good assessment for the actual aggregate
claims. That is perhaps because the coefficients βd and γd incorporate the deductible selection
effect into the rating.

Theoretically, it is possible to incorporate the deductible selection effect into the Poisson-GB2
model. For example, one may consider fitting a separate severity model for various deductible levels.
A similar approach could be used for the mixture approach as well. If a selection effect exists, then
the severity model coefficient estimates would provide different parameters for each deductible level.
Another potential way to incorporate the selection effect is to use dependence modeling, considering
the dependence between deductible levels and the loss severity. This approach is left as future work.

According to Table 4, long-tail loss models, such as the GB2 model with truncated statistical
estimation, and coverage modification theory can improve the deductible rating, as the third row
of the table shows. Figure 5 provides some insight into why the prediction improves. The left panel
shows the Q-Q plot when the GB2 model is fit to the underlying loss distribution, assuming it is
observed. The LGPIF data records both the underlying loss and the deductible amounts, which
allows this figure to be shown as a comparison. The first panel shows that the fit of the gamma
distribution suffers for the lower and upper tails of the claims distribution. The middle panel shows
that the GB2 fit is better, and the third panel shows that truncated estimation has recovered the
underlying distribution quite well. In general, a better fit of the underlying loss model would result
in a better assessment of the coverage modification of the deductibles, for either small values or
large values of deductibles.

During our analysis, we performed comparisons of claim scores obtained from different models,
for various hypothetical deductible levels. For example, the aggregate claims can be predicted for
increasing deductible levels, and applied to all policyholders throughout the property fund. The
predicted aggregate claims can then be compared with the hypothetical empirical observed claims,
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which can be obtained by applying the hypothetical deductible level to the underlying losses. In
general, our analyses have shown that, for large deductibles, the GB2 -01NB model performs best.
Defining how large a deductible level is required, for the maximum likelihood approach to become
necessary, would be an interesting research question for future studies. The regression approach may
be a good method for predicting aggregate claims, for moderate-size data and small deductibles.
We find that when accurate deductible relativities are of interest for large losses, more elaborate
methods, such as the maximum likelihood approach, are needed with truncated estimation. In
particular, if subject-specific deductible relativities are needed or when an excess of loss layers is to
be priced, then the maximum likelihood approach would be necessary. In contrast, when a single
relativity value is desirable, the regression approach may turn out to be useful.

5.4 Comparison of Frequency Models

The assumption of a GB2 severity distribution influences the truncation of the underlying fre-
quency distribution. This section compares different frequency model assumptions. We compare
the Poisson model and 01-inflated Poisson model by fitting the two distributions to the underlying
loss frequencies and then attempting to estimate the same parameters using the censored frequency
observations. Details of the estimation issue for 01-inflated count models under deductible influence
are covered in the Appendix, Section 8.5. For an introduction to 01-inflated count distributions,
the reader may refer to Frees et al. (2015). Briefly speaking, the 01-inflated distribution has a
latent variable I, following a multinomial, so that N satisfies

N ∼


0 I = 0

1 I = 1

Nλ I = 2,

where Nλ is the secondary Poisson distribution. With this, the probability mass function of N is

fN (n) = π0I{n=0} + π1I{n=1} + π2Pλ(n), (8)

where Pλ(n) = Pr(Nλ = n). Suppose censored frequencies Nλ,g(d) are observed. Let π0, π1 and
π2 = 1 − π0 − π1 be the multinomial primary distribution probabilities, and let λ = exp(x′β) be
the mean parametrization of the secondary Poisson distribution. Table 5 shows that the 01-inflated
Poisson model fit is better than that of the Poisson model, when the underlying losses are observed.
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Table 5: Comparison of Predicted Counts Using Validation Sample

(1) (2) (3) (4)

Poisson 01-Poisson Poisson 01-Poisson Empirical

Count Underlying Underlying Censored Censored Counts

Estimation Estimation (2011)

0 703 768 614 603 766

1 194 195 231 236 187

2 84 54 108 109 57

3 42 29 56 57 28

4 23 16 31 32 17

5 14 10 18 19 14

6 8 6 11 12 4

7 6 4 7 7 8

8 4 3 5 5 2

9 3 2 3 4 2

10 2 2 2 2 2

11 2 1 2 2 1

12 1 1 1 1 0

13 1 1 1 1 1

14 1 0 1 1 0

15 1 0 1 1 1

16 1 0 0 0 1

17 0 0 0 0 0

18 0 0 0 0 0

19 0 0 0 0 0

Note: Each column attempts to predict the underlying loss frequencies. Loss count categories

0–19 are shown for illustration. Notice that (3) and (4) overpredict the 0-losses and 1-loss

categories and underpredict the 2-losses category. This is as expected, and the reader may

understand the reason from the fit of the severity distribution below the deductible. Compare

the Q-Q plots in Figure 5.

This situation is shown in the first panel, where the 01-Poisson with underlying frequencies
in general fit the empirical counts better, in each count category. For example, the number of
zero observations is predicted to be 768, which is close to the empirical 766. The situation is
different when a deductible causes censoring. In terms of the predicted counts, the 01-Poisson
does not perform better than the Poisson. This is because prediction of the observations below
the deductible become difficult, as a censoring is in place. This motivates using a basic model for
the counts when censoring is in place. Hence, the Poisson model is used in Section 5.3, which also
allows using the ln(1− vi) offset technique for estimation. Table 19 shows the coefficient estimates.
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6 Conclusion

Summary

Loss models are built on positive responses. For this reason, log links or other such link functions
η : (0,∞) → (−∞,∞) are required to implement a regression approach. As a result, when the
deductible amount is included as a covariate, the resulting relativities become an approximation of
the theoretically true relativities, and hence are not perfect. Work-around approaches are possible
by using d as the explanatory variable or using interaction terms. The regression approach to the
ratemaking of per-loss deductibles is hence simple and widely used, as it proves to be valuable when
aggregate claims prediction is the interest.

This paper provides an overview of the rating of deductibles for per-loss insurance deductibles.
Our contribution is the empirical application of textbook methods for coverage modification to real
data, and the generalization of coverage modification theory to loss variables without a continuous
distribution. We also provide a comparison of the regression approach to deductible rating, with
the maximum likelihood approach. Empirical data are used to calculate aggregate claim amounts
under the influence of a deductible. If deductible choices are not uniform or are correlated with
the loss distribution, then the rating may become more complicated.

To summarize our work, we have proposed a comprehensive overview of deductible ratemaking
using real data. For cases where small deductibles are applied and the aggregate claim amounts are
the primary interest, the deductible amounts may be used as covariates in the scale parametrization
of a regression model. The reader may compare equations (3) and (6) to understand how the
regression approach provides a reasonable approximation of the true relativity curve, and the
meaning of the shape parameter of a distribution in relation to the curvature of the relativity
curve. This approach is not suitable when deductibles are large or when the precise relativities
are of interest for large losses, as shown in Figure 1. When large deductibles are to be priced,
the maximum likelihood approach is recommended. For example, excess of loss layers may be
priced better by fitting an underlying loss model. Yet, as Table 4 shows, when different deductible-
rating approaches were used to predict the aggregate claims, the regression approach performed
reasonably well, outperforming the maximum likelihood approach using an identical distributional
assumption, in terms of predicted aggregate claim amounts. Our explanation is that regression
utilized the deductible selection effect within the data. Specifically, the deductible elasticity of the
claim frequency may likely have included effects due to deductible selection.

Future Work

For future studies, it may be interesting to apply more elaborated estimation procedures for the
case when the observed data contain only the average severities. Further studies on estimation
issues for compound distributions also may be of interest. The effect of an aggregate deductible
may also be a natural extension, where an additional layer of deductible is applied to the losses.
In addition, the claims may be classified using more elaborated techniques, to allow for efficient
peril-specific loss models for deductible ratemaking, using regression and maximum likelihood. The
influence of classification on deductible rates may be potentially interesting to study further.

Selection Effect

Deductible selection effects also may be of interest to study further. For example, separate models
may be imposed for each deductible choice and tested for significance in the difference of coefficients.
The null hypothesis of no deductible selection effect would indicate deductible selection effects are
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not present in the data, whereas evidence of different coefficients may indicate a selection effect. One
may consider null and alternative hypotheses based on the Akaike Information Criterion (AIC). If
the fit improvement from more than one pair of parameters is significant enough, then a deductible
selection effect would be proven. Because the deductible selection effect relates to a vast economic
literature in endogenous selection biases, we consider this to be potentially interesting future work.
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8 Appendix

The appendix of the paper covers some more details of the approaches. First, it presents proofs of
the theory in Section 3. Then it provides an overview of parametric loss models, with an emphasis
on the generalized beta family distributions. The relativities for each peril and the coefficient
estimation results are shown for selected distributions.

8.1 Proof of Theorems

This section provides proofs for the results in Section 3, for the coverage modifications in frequency
and severity first moments.

Proof of Theorem 3.1 Let N be any count random variable, and Y any random variable, each
with finite first moments. If N and Y are independent, then for deductibles d1 < d2, we have

E[Sg(d1)− Sg(d2)] = E[N ]E [Yg(d1)− Yg(d2)] .

Proof. We have

E[Sg(d)] = E

[
N∑
i=1

Yg,i(d)

]
= E

[
E

[
N∑
i=1

Yg,i(d)

∣∣∣∣N
]]

= E [NE [Yg(d)]] = E [N ]E [Yg(d)] ,

and the theorem follows directly.

Proof of Corollary 3.1.1 If Y has distribution function FY , then

E[Sg(d1)− Sg(d2)] = E[N ]

∫ d2

d1

(1− FY (y)) dy.

Proof. It suffices to provide an expression for Yg(d). We have

E[Yg(d)] =

∫ ∞
d

(y − d)dFY (y) = (y − d)(1− FY (y))

∣∣∣∣∞
d

+

∫ ∞
d

(1− FY (y)) dy =

∫ ∞
d

(1− FY (y)) dy.

In particular, we have

E[Yg(d1)− Yg(d2)] =

∫ d2

d1

(1− FY (y)) dy.

Note, E[Yg(d)] is the partial expectation of Y , given Y > d. As a special case, the following provides
an expression for the modified aggregate claims under any new per-loss deductible level:

E[Sg(d)] = E[S]− E[N ] ·
∫ d

0
(1− FY (y)) dy.

For an expression for the influence on severities, the following corollary states that a unit deductible
change results in less than a unit decrease in the severity mean.

Proof of Corollary 3.2.1 If E[Yg(d)] is differentiable, then

∂

∂d
E[Yg(d)] = −1 + FY (d). (9)
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Proof. We have

∂

∂d
E[Yg(d)] = lim

d2→d

E [Yg(d2)− Yg(d)]

d2 − d
= lim

d2→d

−1

d2 − d

∫ d2

d
(1− FY (y)) dy = −1 + FY (d).

An alternative proof assumes a density for Y . Let fY be the density, and we have

E[Yg(d)] = E [(Y − d) · I(Y > d)] =

∫ ∞
d

(y − d)fY (y)dy =

∫ ∞
d

yfY (y)dy − d(1− FY (d)).

Differentiation gives

∂

∂d

[∫ ∞
d

yfY (y)dy − d · (1− FY (d))

]
= −d · fY (d)− (1− FY (d)) + d · fY (d) = −1 + FY (d).

The next theorem provides an expression for the modified frequencies, under the influence of a de-
ductible d. This result is needed when recovering the underlying loss frequencies from the observed
claim frequencies.

Proof of Theorem 3.2 Let N be any count random variable, and Y have distribution function
FY , each with finite first moments. If Y is independent of N , then Ng(d) satisfies

E [Ng(d)] = E [N ] · (1− FY (d)). (10)

Proof. We have

E [Ng(d)] = E

[
N∑
i=1

I(y > d)

]
= E

[
E

[
N∑
i=1

I(y > d)

∣∣∣∣N
]]

= E [N · P (y > d)] = E [N ] · (1− FY (d)).

If FY is differentiable, then the rate of change of the frequencies can be obtained by

∂E[Ng(d)]

∂d
= E[N] · ∂ [1− FY (d)]

∂d
= −E[N] · fY(d).

This provides a framework for understanding the increase in zero probability. For example, in
a count regression model, one may be interested in recovering the underlying parameters of the
loss frequencies, given an observed count random variable Ng(d). The theorem states that the
frequency change is proportional to v = (1−FY (d)). The rate of change of the aggregate claims in
response to a unit deductible change can be obtained in a similar way. In general, the overall effect
of a deductible change on the expected aggregate claim, using any count random variable and any
severity distribution, can be obtained by differentiation. For the truncated claims observations, we
provide the following proof.

Proof of Theorem 3.3 Let Y be any random variable with density fY and distribution FY . Then
Y∗(d) satisfies

∂E[Y∗(d)]

∂d
=

fY(d)

1− FY(d)
E[Y∗(d)]− 1. (11)
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Proof. Using the Libnitz rule, we have

∂E[Y∗(d)]

∂d
=
∂E[Y − d|Y > d]

∂d

=
∂E[Y|Y > d]

∂d
− ∂

∂d
{d|Y > d}

=
∂

∂d

∫ ∞
d

yfY(y)

1− FY(d)
dy − ∂

∂d
{d|Y > d}

=

∫ ∞
d

∂

∂d

yfY(y)

1− FY(d)
dy − dfY(d)

1− FY(d)
− ∂

∂d
{d|Y > d}

=
fY(d)

(1− FY(d))2

∫ ∞
d

yfY(y)dy − dfY(d)

1− FY(d)
− 1

=
fY(d)

1− FY(d)
E[Y|Y > d]− fY(d)

1− FY(d)
d − 1

=
fY(d)

1− FY(d)
TCEY(d)− fY(d)

1− FY(d)
d − 1

=
fY(d)

1− FY(d)
(TCEY(d)− d)− ∂

∂d
{d|Y > d}

=
fY(d)

1− FY(d)
E[Y∗]− 1,

where the last term 1 is obtained by differentiating {d|Y > d} with respect to d. Here, TCE is
used to denote the tail conditional expectation of a severity distribution.
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8.2 Parametric Models

This section reviews the parametric models for general insurance loss severities. In each of the
following models, a continuous distribution of loss severity, given a vector of covariates x, needs
to be specified. Commonly used distributions in lifetime distributions of survival analysis are
exponential, Weibull, gamma distributions. In survival analysis, different aging rates are modeled
by allowing the location and scale parameters to be functions of covariates. Common practice is
to replace the location parameter with x′β. In Frees et al. (2015), the average severities Y after
averaging over policy-years is used for the response. For this, it is common to assume a parametric
model with a logarithmic link for parameter interpretability.

Generalized Beta (GB) Family

The generalized beta random variable Y has the density

fY (y; a, b, c, α1, α2) =
|a|ya·α1−1(1− (1− c)(y/b)a)α2−1

ba·α1B(α1, α2)(1 + c(y/b)a)α1+α2
,

where 0 < c < 1, and b, α1, α2 > 0. Here, B(α1, α2) is the beta function. The generalized
beta family contains many familiar distributions as special cases: GB1, GB2, gamma, generalized
gamma, Weibull, Burr type 3, Burr type 12, Dagum, log-normal, Lomax, F, Rayleigh, chi-square,
half-normal, half-Student-t, exponential and log-logistic. Klugman et al. (2012) provides an intro-
ductory overview of the generalized beta family distributions. Each special case is obtained by
restricting the parameter of the distribution to a specific value or taking the limiting case of the
parameter. Some special cases have been more popular than others in the loss-modeling context.
The GB family is defined for response values between

0 < ya <
ba

1− c
.

Yet limiting cases are defined for arbitrarily large y values.

Gamma

In practice, often the underlying losses or the truncated per-payment variables are assumed to
follow a gamma distribution, defined for 0 < y < ∞. This special distribution is obtained by

taking b = α
1/a
2 s and a = c = 1, and by letting α2 → ∞, for the parameters of a random variable

in the GB family. The resulting density is

fY (y; a = 1, b = α
1/a
2 s, α1) =

yα1−1 exp(−y/s)
sα1Γ(α1)

,

where α1 is a shape parameter and s is a scale parameter. For practitioners, the α1 parameter can
be considered to be where the hump of the distribution happens. As the α1 parameter gets smaller,
the hump goes farther to the right. For regression, the scale can be parametrized by

s = µ/α1 = exp(x′β)/α1.

The limited loss variable for the gamma has some nice properties, such as this:

E[Y ∧ d] =
sΓ(α1 + 1)

Γ(α1)
Γ(α1 + 1; d/s) + d [1− Γ(α1; d/s)] .
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Exponential

The gamma model can be further simplified by restricting the shape parameter to α1 = 1. In this
case, the density reduces to

fY (y; s) =
1

s
exp

(
−y
s

)
.

In basic probability courses, the use of the gamma distribution is often motivated by showing that a
sum of α1 exponential random variables becomes the gamma distribution. Because of its simplicity
and treatment in early probability courses, the exponential seems to be used in practice quite often.
For advanced applications, the tails of both the gamma and exponential distributions have been
considered to be too thin, meaning they underestimate the small probability of large losses.

For this reason, actuarial researchers had begun to apply heavy-tail distributions to insurance
loss data. The GB family provides some flexible specific cases. For practitioners, these topics
become a stretch assignment, because familiar regression software, such as the glm or actuar

package in the R programming environment, does not provide a one-line application of these models
in a regression context. A simple R routine, with practical heavy-tail regression modeling capability
under censoring and truncation, may eventually become available.

Generalized Gamma (GG)

When the condition a = 1 is relaxed from the gamma, the resulting distribution is called the

generalized gamma (GG) distribution. That is, b = α
1/a
2 s, c = 1, and α2 →∞. The density is

fY (y; a, b = α
1/a
2 s, α1, α2) =

|a|ya·α1−1e−(y/s)
a

saΓ(α1)
.

The GG distribution is defined for 0 < y < ∞. Comparing with the gamma, we see that the
exponent a allows for a flexible modeling of the tail behavior of the distribution. From here, if we
further restrict α1 = a, then the resulting distribution is the Weibull distribution:

fY (y; a, b = α
1/a
2 s, α1 = a, α2) =

a

s

(y
s

)a−1
e−(y/s)

a
,

which is introduced in early probability courses for its simple form of cumulative distribution
function, FY (y; a, s) = 1− e(y/s)a .

Generalized Beta of First Kind (GB1)

Restricting other parameters from the GB family results in the GB1 distribution. This is when
the restriction c = 0 is imposed. The density is

fY (y; a, b, α1, α2) =
|a|ya·α1−1 (1− (y/b)a)α2−1

ba·α1B(α1, α2)
.

The GB1 response variable is restricted to be between 0 < ya < ba. The GB1 distribution also

contains the GG distribution as a special case, by allowing b = α
1/a
2 and α2 →∞. From the GB1,

restricting a = 1 results in the beta distribution of first kind (B1 ). Finally, the GB1 distribution
has the Pareto distribution as a special case, with a = −1 and α2 = 1. Introducing a new parameter
λ, the density becomes

fY (y;λ, α1) =
α1λ

α1

(λ+ y)α1+1
.
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From a practitioner’s perspective, the Pareto distribution is a useful special case, allowing for simple
modeling of tail behavior for response variables defined over 0 < y < ∞. It has the nice property
that

E[Y ] =
λ

α1 − 1
and E[Y − d|Y > d] =

λ+ d

α1 − 1
.

In fact, if Y ∼ Pa(α1, λ), then the truncated random variable follows Y −d|Y > d ∼ Pa(α1, λ+d).
See Gray and Pitts (2012) for a proof. In practice, one may think of α1 as a parameter in charge of
the thickness of the tail. Smaller values of α1 result in thicker tails for the distribution. When α1 <
1, the distribution does not have a finite mean, which is often the case for heavy-tail distributions.

Generalized Beta of Second Kind (GB2)

The GB2 distribution is obtained by restricting c = 1 from the GB family. The resulting density
provides a flexible class of distributions for insurance loss modeling. The density is

fY (y; a, b, α1, α2) =
a(y/b)a·α1

yB(α1, α2)[1 + (y/b)a]α1+α2
,

and is defined for 0 < y < ∞. In Frees et al. (2015), and Sun et al. (2008), the density is
reparametrized, so that the definition of GB2 (σ, µ, α1, α2) is

fY (y;µ, σ, α1, α2) =


[exp(z)]α1

yσB(α1, α2)[1 + exp(z)]α1+α2
for y > 0

0 otherwise,

where the parametrization for regression is z = ln(y)−µ
σ , with µ = x′β. According to Frees et al.

(2015) and Sun et al. (2008), if −α1 < σ < α2, then the first moment can be obtained using the
following formula:

E [y|x] =
B(α1 + σ, α2 − σ)

B(α1, α2)
exp(x′β), where B(α1, α2) =

Γ(α1)Γ(α2)

Γ(α1 + α2)
.

When the value of α2 is small compared with σ, the tail of the distribution becomes thick, and the
first moment does not exist. In these cases, for ratemaking purposes, a practitioner must use direct
integration to find the mean of the limited loss variable. Specifically,

E[y ∧ u|x] =

∫ u

−∞
y · fY (y)dy =

∫ u

−∞
(1− FY (y)) dy,

where FY (y) is the cumulative distribution function for the GB2, and u is the policy limit, or in
other words, the coverage amount. The GB2 distribution contains a number of special cases. The
special case where α1 = 1 is called the Burr type 12 distribution and has been extensively used in
heavy-tail loss modeling in the literature. Other special cases of the GB2 are GG, Weibull, gamma,
Burr type 3, Dagum, log-normal, Lomax, F, Rayleigh, chi-square, half-normal, half-Student-t,
exponential, log-logistic. The Lomax distribution is essentially a Pareto distribution with a different
parametrization.

Beta Distributions

The beta distribution is a name for the special case of the GB family, where the restriction is
a = 1. The beta distribution has as a special case, the first and second kind, each corresponding
to restrictions c = 0 and c = 1. The beta distribution is defined for 0 < y < b/(1 − c); however,
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the second kind is defined for 0 < y < ∞. Because of its support, insurance loss modeling seems
to have focused on using the second kind—or in other words, the GB2 class distributions—more
than other specific cases.

Other Distributions (EGB, GPD, GEV )

New random variables can be created by transformations. For example, the GB family distribution
can be transformed by taking the transformation Z = lnY , resulting in the exponential generalized
beta (EGB) distributions. The EGB has several popular specific cases, such as the Gompertz
or Gumbell distribution. Recently, some researchers consider the generalized Pareto distributions
(GPD) and generalized extreme-value distributions (GEV ) for extreme-value modeling, such as
the minimum or maximum of a sample of random varaibles. For interested readers, Salvadori and
Michele (2007) provides an overview of the extreme-value approach to distributions, and Chavez-
Demoulin et al. (2016) and Zhang et al. (2008) provides some applications of extreme-value theory.
Although references are provided for these sources, in this paper we would like to focus on the
GB family distributions and their applications. Extreme-value distributions may be useful for
applications such as excess of loss layers ratemaking, which is not of interest in this paper. We
believe that the GB family distributions provide a flexible class of parametric models for insurance
ratemaking, so we illustrate our approaches using specific cases of the GB family.
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8.3 LGPIF Data Summary

This section applies our rating procedure to real data, with a full set of explanatory variables.
The Wisconsin Office of the Insurance Commissioner administers the Local Government Property
Insurance Fund (LGPIF). The LGPIF was established to provide property insurance for local
government entities that include counties, cities, towns, villages, school districts and library boards.
The fund insures local government property such as government buildings, schools, libraries and
motor vehicles, within over a thousand entities, which pay approximately $25 million in premiums
each year. In effect, the LGPIF acts as a stand-alone insurance company for local government
entities. Table 6 summarizes the number of building and contents (BC) policies in force.

Table 6: Summary Statistics of BC (Primary Coverage) Claims

Year
Average Loss Claim Loss Claim Number of

Deductible Frequency Frequency Total Total Policyholders

2006 3,048 0.735 0.525 20,313,812 18,161,172 1,158

2007 3,233 0.926 0.611 17,230,457 15,261,868 1,142

2008 3,412 0.747 0.518 11,060,356 9,160,440 1,129

2009 3,517 0.925 0.443 11,047,677 8,774,310 1,113

2010 3,599 1.089 0.633 36,659,296 33,328,603 1,113

The LGPIF data is ideal for this study, because the underlying losses and claims are both
recorded in the data server. In many practical situations, the former may not be available. Hence,
our goal in this study is to assume the former variable is unobserved and to test our result using the
observed, empirical underlying losses, which various hypothetical deductible levels can be applied
to and compared against. Table 7 shows a summary of the frequency and severity of claims by
deductible choice, for 2006–2010. There are a number of instances with a high deductible level, say
100, 000, which implies that this data set may be studied in relation to risk retention problems in
the reinsurance context.

Table 7: Summary Statistics of BC Claims by Deductible

Deductible
Avg. Loss Avg. Claim Average Average Number of

Frequency Frequency Loss Claim Observations

500 0.628 0.621 6,197 5,884 2,674

1,000 0.668 0.641 6,808 6,147 1,067

2,500 0.539 0.506 12,923 11,610 686

5,000 0.606 0.362 39,229 36,987 716

10,000 0.378 0.196 13,044 10,692 209

15,000 0.672 0.224 22,426 17,615 67

25,000 5.973 0.202 34,679 21,654 183

50,000 17.290 1.355 530,867 411,317 31

75,000 7.400 0.000 44,897 0 5

100,000 0.294 0.235 486,350 459,880 17

Table 8 shows the explanatory variables in the policyholder data, given that an entity has
purchased BC coverage. Table 10 shows a summary of both the underlying loss data, which
usually isn’t observable, and the claims data for those losses above the chosen deductible, which is
observable in most common practices.

The observed claims are summarized in Table 10, allowing for a comparison of LossBeforeDeductible
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and LossAfterDeductible in both cases. Because Table 9 is conditional on LossAfterDeductible

> 0, the minimum value for LossAfterDeductible is zero in Table 10 (losses), whereas it is positive
in Table 9 (claims).

Table 8: BC Policies, 2006–2010

Min. Median Mean Max. N

CoverageBC 8,937 11,310,000 37,190,000 2,445,000,000 5,655

Log(CoverageBC) -4.718 2.426 2.128 7.802

DeductBC 500 1,000 3,356 100,000

Table 9: BC Claims, 2006–2010

Min. Median Mean Max. N

LossBeforeDeduct 504 4094 29,920 12,920,000 3,089

After Deduct 4 2,982 27,420 12,920,000

Table 10: BC Losses, 2006–2010

Min. Median Mean Max. N

LossBeforeDeduct 1 2,243 19,300 12,920,000 4,285

After Deduct 0 750 16,970 12,920,000

In Frees et al. (2015), the average severities are used for the modeling, whereas here the claims
are directly used without the averaging. In this case, it is helpful to address some additional aspects
of the data, for parameter interpretability.

Table 11 summarizes the losses and claims with respect to the three peril type categories.
The building and contents coverage has subcoverages, each of which consists of different peril
types, which could be clustered into different categories. The property fund classifies the claims
into three categories by default. Here they have been manually recategorized into nine broad
categories: fire, vandalism, lightning, wind, hail, vehicle, water damages (weather and non-weather)
and other perils. Because the scale of the loss distribution is highly dependent on the peril type,
it is worthwhile to consider specific peril type categories and fit loss distributions for each. Hence,
the question is, Given a claim, how can we accurately classify it into one of these categories? For
example, given a claim, could we classify it into either a vandalism claim or other? We have done
some preliminary analyses using basic discrete choice models, and what we learned is that more
categories result in higher standard errors in the coefficients of the peril type model. For this,
Rosenberg et al. (1999) and Yuan and Lin (2006) are some related articles. The claim classification
should use explanatory variables of the policyholder, instead of any properties of the claim that is
unknown at the instance of the claim. In this case, discrete categories may be easier to conceptualize.
Classifying claims using continuous mixture models is left as future work.

When the log coverage is plotted with the average severities of claims, usually a positive cor-
relation can be observed. However, when the underlying losses are plotted without the averaging
over policy-year observations, the variation in the response variable is larger. Hence, when a single
severity model is used with the coverage amount as an explanatory variable, interpretable coef-
ficients may not be obtained without categorizing the claims into peril type categories. For this
reason, we are interested in considering the different severity distributions with respect to various
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Table 11: Peril Types of BC Losses

Peril Average Loss N Prob.

Fire 87,168 172 0.034

Vandalism, Theft, Etc. 2,084 1,774 0.355

Lightning 11,087 832 0.167

Wind 18,125 296 0.059

Hail 145,488 76 0.015

Damage by Vehicle 3,905 852 0.171

Water (Weather) 80,432 426 0.085

Water (Non-Weather) 23,974 202 0.040

Misc. 29,150 362 0.073

peril types. The next section will show the coefficient estimation procedure and results in more
detail for selected models.

8.4 Coefficient Estimation

The general situation is that the jth observed claim for policyholder i is forced to be in the interval
(0,∞), due to left truncation point di. We indicate those claim observations above the deductible
by using j(ς), where the indices ς (varsigma) take on values 1, . . . Ng(d). To specify the likelihood,
we consider modeling the following observed variables:

Ng,i(d) =

Ni∑
j=1

I(Yij > di),

Y∗,i,j(ς;i)(d) =

Nc
i∑

ς=1

Yi,j(ς) − di|Yi,j(ς;i) > di,

j(ς; i) = index of ith loss above di, ς = 1, . . . , Ng,i,
1∑
1

i(ι) = index of jth positive Y∗,i,j(ς;i)(d),
1∑
1

Severity. Here, the likelihood for severities is specified. In most practical situations in actuarial
science, upper-tail truncation rarely happens, and we are interested in ordinary left truncation only.
Then, the likelihood becomes

LY |M =
∏

Mι=m

ng,i(ι)∏
ς=1

fY |M
(
y∗,i(ι),j(ς;i) + di(ι)

)
1− FY |M

(
di(ι)

) · I
(
y∗,i(ι),j(ς;i) < ui(ι) − di(ι)

)
+
∏

Mι=m

ng,i(ι)∏
ς=1

1− FY |M
(
ui(ι)

)
1− FY |M

(
di(ι)

) · I (y∗,i(ι),j(ς;i) = ui(ι) − di(ι)
)
,

where y∗ is used to denote a realization of Y∗(d), and the second term will be nonzero if there is
right-censoring due to a policy limit ui(ι). This provides the likelihood of the conditional severity
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distribution. Coefficients have been estimated for the exponential, gamma and Pareto distributions,
for each peril type separately. Results are shown in Table 12.

Table 12: Exponential, Gamma, Pareto Model Coefficient Estimates

Exponential Gamma Pareto

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Fire

(Intercept) 9.484 0.246 9.524 0.385 11.628 1.029

Coverage 0.455 0.060 0.447 0.096 0.571 0.093

shape 0.423 0.041 1.012 0.012

log L 1,723 1,674 1,626

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Vandalism

(Intercept) 7.713 0.112 7.782 0.001 8.806 0.305

Coverage 0.116 0.025 0.016 0.001 -0.110 0.041

shape 0.454 0.001 1.357 0.131

log L 4,543 4,435 4,324

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Lightning

(Intercept) 8.028 0.105 8.032 0.101 8.419 0.177

Coverage 0.324 0.028 0.325 0.027 0.226 0.040

shape 1.079 0.051 1.874 0.201

log L 7,346 7,345 7,213

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Wind

(Intercept) 8.829 0.139 8.860 0.171 9.258 0.607

Coverage 0.250 0.035 0.235 0.044 0.257 0.066

shape 0.715 0.058 1.242 0.177

log L 2,645 2,635 2,552

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Hail

(Intercept) 9.658 0.181 9.672 0.239 10.481 0.550

Coverage 0.595 0.051 0.593 0.068 0.276 0.091

shape 0.584 0.085 1.543 0.436

log L 857 849 827

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Vehicle

(Intercept) 7.917 0.117 7.921 0.075 8.123 0.149

Coverage 0.049 0.029 0.087 0.018 -0.021 0.036

shape 2.217 0.103 3.924 0.622

log L 5,753 5,645 5,690

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Water (NW)

(Intercept) 8.058 0.201 8.072 0.246 10.167 1.460

Coverage 0.400 0.043 0.386 0.053 0.137 0.088

shape 0.707 0.070 1.127 0.204

log L 1,705 1,698 1,653

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Water (W)

(Intercept) 9.493 0.180 9.516 0.300 12.953 0.438

Coverage 0.428 0.042 0.428 0.071 0.270 0.059

shape 0.375 0.023 1.007 0.002

log L 4,310 4,141 3,910

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Misc.

(Intercept) 8.959 0.148 9.023 0.230 10.561 1.662

Coverage 0.351 0.036 0.333 0.057 0.174 0.069

shape 0.436 0.031 1.063 0.112

log L 3,075 2,990 2,817
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The fit of these models can be assessed by looking at the Q-Q plots. From Figures 6, 7, 8, 9, 10,
11, 12, 12, 13, 14, the reader may see that the Pareto model fits best for most of the peril types,
demonstrating the long-tail nature of the claim severities.

Figure 6: Fire Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.442(0.000),

0.594(0.000), 0.094(0.097)

Figure 7: Vandalism Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.472(0.000), 0.520(0.000), 0.143(0.000)
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Figure 8: Lightning Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.148(0.000), 0.138(0.000), 0.105(0.000)

Figure 9: Wind Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.262(0.000),

0.328(0.000), 0.095(0.010)
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Figure 10: Hail Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.257(0.000),

0.359(0.000), 0.088(0.565)

Figure 11: Vehicle Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.084(0.000),

0.246(0.000), 0.159(0.000)
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Figure 12: Water (Non-Weather) Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-

values): 0.230(0.000), 0.267(0.000), 0.083(0.128)

Figure 13: Water (Weather) Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.120(0.000), 0.648(0.000), 0.044(0.377)
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Figure 14: Miscellaneous Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.453(0.000), 0.610(0.000), 0.059(0.160)

The fit of the models may be visually inspected by plotting the empirical data with a plot of the
fitted density for each peril type. For example, Figure 3 shows the fit of the three different models
(exponential, gamma and Pareto) on a log scale.

Frequency: Obtaining the underlying frequency parameters considers the coverage modification
by the deductible. For regression models with a log link, the quantity ln(1 − FY (di)) can be used
as an offset in standard regression routines. Specifically, for a mean parametrization

E[Ni] = exp
(
x′iγ

)
,

consider the observed frequencies, E[Ng,i]. Section 3 theory can be used, so that

E[Ng,i] = E[Ni](1− FY (di)) = exp
(
x′iγ

)
(1− FY (di)) = exp

(
x′iγ + offset

)
.

Hence, for most frequency regression models, the offset variable offset = ln(1 − FY (di)) can be
used, in order to recover the underlying loss frequency distribution parameters. For (a, b, 0) class
distributions with log link, summarized in Table 1, this approach would work. In particular, the
approach would work for the Poisson regression or the negative binomial regression. This can be
extended to a general link function η, where the mean is parametrized by

E[Ni] = η−1
(
x′iγ

)
.

Estimation becomes more complicated for zero-inflated models, or zero-one-inflated models. For a
treatment of zero-one-inflated models, see Frees et al. (2015). In these models, the modification
to each component of the primary and secondary probability mass function should be specified in
the likelihood function. The estimation of zero-one-inflated Poisson models is covered in Section
8.5. In this paper, we will use the Poisson frequency model for most illustrations. The coefficient
estimates for the Poisson model are shown, using different coverage modification models for the
severity part. In general, the log likelihood tends to improve when the log-tail, Pareto model is
assumed.
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Table 13: Poisson Frequency Model Coefficient Estimates
Fire Vandalism Lightning

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

(Intercept) -5.366 0.225 -5.082 0.156 -3.400 0.093

Exponential Coverage 0.551 0.055 1.007 0.036 0.484 0.024

-log L 604 1,466 2,091

(Intercept) -5.374 0.225 -5.374 0.155 -3.242 0.096

Gamma Coverage 0.556 0.055 1.099 0.036 0.518 0.025

-log L 603 1,590 1,985

(Intercept) -5.124 0.234 -5.118 0.154 -3.245 0.097

Pareto Coverage 0.557 0.057 1.112 0.035 0.560 0.025

-log L 594 1,396 1,949

Wind Hail Vehicle

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

(Intercept) -4.389 0.161 -4.681 0.210 -4.155 0.122

Exponential Coverage 0.503 0.042 0.137 0.065 0.847 0.030

-log L 947 375 1,799

(Intercept) -4.454 0.166 -4.719 0.209 -3.839 0.121

Gamma Coverage 0.599 0.044 0.141 0.065 0.799 0.030

-log L 933 376 1,837

(Intercept) -4.250 0.163 -4.693 0.212 -4.179 0.122

Pareto Coverage 0.525 0.043 0.163 0.066 0.883 0.030

-log L 937 376 1,786

Water (NW) Water (W) Misc.

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

(Intercept) -6.242 0.262 -4.910 0.157 -4.546 0.161

Exponential Coverage 0.867 0.058 0.685 0.036 0.550 0.040

-log L 601 1,155 998

(Intercept) -6.652 0.282 -5.245 0.174 -4.710 0.172

Gamma Coverage 1.043 0.063 0.899 0.041 0.697 0.043

-log L 594 1,142 965

(Intercept) -6.491 0.277 -4.973 0.166 -4.543 0.169

Pareto Coverage 0.990 0.061 0.776 0.038 0.647 0.042

-log L 593 1,134 963

Mixture Approach: For modeling insurance losses with different profiles, depending on specific
cases, mixture models have been used in the literature. In practice, exponential mixtures and
mixed Pareto approaches have been used. For cases with mixture weights in multiple categories,
practitioners have used the term Pareto soup model; see White (2005). One motivation for mixture
models may be the different peril types, under which the loss severities experience different profiles.
The modeling of severities, given a specific peril type, can be performed conditional on each peril
type to obtain a set of parameters for each category of claim peril. This approach is taken in
our aggregate claims prediction. Hence estimation issues for mixture models under censoring and
truncation are discussed in detail here.

Suppose the number of claims N and Y are independent. Let M be the peril type categorical
variable, so that there are several peril types with respective loss severities, conditional on the peril
type category. Then the conditional density for claim severities can be written as

fY |M (y|m) = fY (y; θm),

where we allow the distribution parameters θm to vary over different peril types. The unconditional
distribution for the severity can be obtained using the mixture

FY (y) =
∑
m

FY |M (y|m)fM (m).
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In this case, the expected loss severity becomes

E[Y ] =
∑
m

E[Y |M = m]fM (m).

The underlying peril type probabilities, fM (m), are required for this. In practice, fixed probabilities
fM (m) = pm may be used. Here, in order to determine the peril type probabilities in a data-driven
way, we specify the joint density for the frequencies and severities as

fY,N (y, n) =
∑
m

fY |M (y|m) · fM (m) · fN (n),

for each peril type m. For related work, Frees and Valdez (2008) use a discrete choice model,
focusing on the dependency among auto insurance claim types, and Fu and Liu (forthcoming) use
the EM algorithm for estimation of a finite mixture model. Other approaches may be to impose
parametric models for the peril type probabilities. The approach we take is to model each specific
peril type and consider the coverage modification for that specific peril only.

Hence, calculation of the total building and contents density requires the peril type probabilities,
since the above results are peril dependent. The peril type probabilities may be modeled either for
all of the perils or for the reclassified peril type categories. For the Pareto mixture, we tried the
former, while for the GB2 mixture, the reclassified approach has been used with categories shown
in Table 14. Other data-driven clusterings may be possible. In this case, the clustering has been
manually performed into three arbitrarily chosen categories, using the average loss severities. The
advantage of clustering the perils into categories is the reduction in the number of parameters to
be estimated, especially when covariates are used for the peril type model.

Table 14: Average Loss and Claim Severity by Peril

Category Perils
Average Average

N Proportion
Loss Claim

Low Vandalism, theft, burglary, damage by vehicle 2,675 1,495 2,626 53%

Medium Lightning, wind, non-weather water damage, misc. 17,721 15,020 1,692 34%

High Fire, hail, water damage by weather 89,487 83,617 674 14%

Total 19,496 17,167 4,992 100%

In this paper, a basic discrete choice model is used for the peril type probabilities, whose
coefficients are estimated using maximum likelihood:

fM (m) =



exp (x′ωm)

1 +
∑
ϕ6=m0

exp
(
x′ωϕ

) for peril type m 6= m0

1
∫ 0
0

1 +
∑
ϕ6=m0

exp
(
x′ωϕ

) for base peril type m = m0,

Here, ωm are the regression coefficients of interest. With deductible d, the observed peril type
probabilities are altered. The underlying ωm can be recovered by first calculating

1− FY |M (d|m), for each m,

∫ 0

0
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which are simply the coverage modification amounts for each peril type. Using the truncated claims,
given Y > d, the likelihood for peril type is specified using a multinomial model:

LM |Y >d = Pr(M = m|Y > d) =
Pr(Y > d|M = m)fM (m)∑
ϕ

Pr(Y > d|M = ϕ)fM (ϕ)

=

(
1− FY |M (d|m)

)
fM (m)∑

ϕ

(
1− FY |M (d|ϕ)

)
fM (ϕ)

. (12)

The left side of (12) is an observed quantity from the truncated data. The unknowns are the param-
eters for the unconditional probabilities fM (m) for each m and the conditional severity distribution
parameters for each peril type. In a maximum likelihood context, these quantities would need to
be included in the likelihood for the severity model. The goal is to estimate the ω in fM (m;ω). For
this, each observation of M |Y > d within the truncated claims data is used in the following model
for the categorical response M :

LY,M |Y >d = Pr(Y = y,M = m|Y > d)

= Pr(Y = y|M = m,Y > d) · Pr(M = m|Y > d)

∫ 0

0

= LY |M,Y >d · LM |Y >d. (13)

Taking the log of (13) and summing, we have

logLY,M |Y >d = logLY |M,Y >d + logLM |Y >d,

∫ 0

0
(14)

where the first term is the log-likelihood for the severity for a specific peril type category, and the
second term is the likelihood for the peril type. Note that the first term is the likelihood for the
severity for a given observed claim, and the second is a probability weight, which is due to the
modification by a deductible d.

Poisson-Gamma Regression (Model A)

This section details the models in the main text, Section 5.3 (the aggregate claims study). Two
different regression approaches are compared with the gamma model with truncated estimation. We
also compare a GB2 mixture model with entity types used as predictors for peril type categories.
The GB2 distribution is explained in Sun et al. (2008) and Frees et al. (2015). We begin here
by showing the two regression approaches. Table 15 shows the coefficient estimates for the first
approach. The frequency model contains lnDeduct as an explanatory variable. Here, the peril
type model has used a simple classification scheme, where the peril types are categorized as having
low, medium and high loss severity, before fitting the model. This was necessary because fitting
too many peril type predictors resulted in high standard errors for the peril type model. Different
approaches may be used for the reclassification of peril type categories.
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Table 15: Poisson-Gamma Regression (Model A)
Gamma Poisson

Variable Coef. Std. Err. Variable Coef. Std. Err.

(Intercept) 8.442 0.094 (Intercept) -7.901 0.170

CoverageBC 0.353 0.026 CoverageBC 0.889 0.018

lnDeductBC -0.737 0.020

NoClaimCreditBC -0.409 0.060

Type:City -0.095 0.105 Type:City -0.068 0.063

Type:County -0.093 0.123 Type:County -0.323 0.075

Type:Misc 0.358 0.185 Type:Misc -0.335 0.112

Type:School 0.764 0.111 Type:School -0.745 0.065

Type:Town 0.115 0.194 Type:Town 0.021 0.116

φ 2.847

AIC 64,444 AIC 9,054

Table 16 shows the estimation results when lnE = ln(u − d) is used as an offset variable in both
the frequency and severity regressions. Because the deductible amounts and coverages are used as
offsets, they are excluded from the set of explanatory variables in the regression.

Table 16: Regression Approach With Offset
Gamma Poisson

Variable Coef. Std. Err. Variable Coef. Std. Err.

(Intercept) 7.295 0.076 (Intercept) -2.960 0.046

NoClaimCreditBC -0.669 0.058

Type:City -1.191 0.093 Type:City -0.852 0.056

Type:County -1.953 0.103 Type:County -1.263 0.062

Type:Misc 0.796 0.185 Type:Misc -1.904 0.110

Type:School -0.676 0.095 Type:School -1.599 0.057

Type:Town 1.476 0.191 Type:Town 0.407 0.114

φ 3.196

AIC 65,037 AIC 11,828

Poisson-Gamma MLE (Model B)

Table 17 shows the coefficient estimates when truncated estimation procedures are used with the
Poisson frequency and gamma severity distributions. Note that the AIC for the severity model is
high, most likely because of the poor model fit in the upper tail. Estimates of the Poisson coefficient
are shown in the second panel, where the recovered coefficients are different from Tables 15 and 16.

Table 17: Poisson-Gamma Maximum Likelihood (Model B)
Gamma Poisson

Variable Coef. Std. Err. Variable Coef. Std. Err.

(Intercept) 8.157 0.091 (Intercept) -1.924 0.059

CoverageBC 0.373 0.025 CoverageBC 0.591 0.016

NoClaimCreditBC -0.725 0.059

Type:City -0.114 0.103 Type:City 0.118 0.064

Type:County -0.109 0.133 Type:County 0.087 0.075

Type:Misc 0.395 0.185 Type:Misc -0.635 0.112

Type:School 0.743 0.110 Type:School -0.774 0.065

Type:Town 0.150 0.196 Type:Town -0.195 0.117

φ 0.272 0.007

AIC 70,768 AIC 10,948
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Poisson-GB2 MLE (Model C)

Table 18 shows the coefficient estimates for the GB2 severity model. For the severity model, notice
that only the scale parameters are peril dependent, in order to reduce the number of parameters
used in the model. Also, the reader can observe that the AIC for the severity model becomes much
lower under the GB2 model, compared with the gamma model in Table 17.

Table 18: GB2 Maximum Likelihood (Model C)

Term Variable Coef. Std. Err.

Low (Intercept) 7.235 0.138

Medium
(Intercept) 7.619 0.164

CoverageBC 0.198 0.028

High
(Intercept) 8.332 0.216

CoverageBC 0.250 0.040

ωM

(Intercept) 0.368 0.102

Type:City -0.705 0.124

Type:County 0.467 0.142

Type:Misc -0.191 0.248

Type:School 0.056 0.129

Type:Town -0.314 0.254

ωH

(Intercept) -0.669 0.134

Type:City -0.605 0.166

Type:County 0.444 0.183

Type:Misc 0.081 0.309

Type:School 0.344 0.164

Type:Town -0.081 0.323

σ 1.213 0.154

α1 1.653 0.337

α2 1.677 0.344

AIC 17,737

Table 18 shows only the severity distribution coefficients. This could be paired with the Poisson
model or more advanced frequency model assumptions such as zero-one inflated models. Com-
parison of various assumptions and coefficient estimates are shown in Table 19. In Table 19, the
estimated frequency parameters differ, depending on whether the underlying losses are observed or
unobserved. Estimation of the coefficients in Table 19 is explained in the following Section 8.5.

45



Table 19: Comparison of Coefficients for Frequency Models

(1) (2) (3) (4)

Poisson 01-Poisson Poisson 01-Poisson

Underlying Underlying Censored Censored

Estimation Estimation

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Poisson

(Intercept) -2.874 0.054 -1.841 0.098 -1.955 0.060 -1.913 0.066

CoverageBC 0.993 0.012 0.753 0.019 0.733 0.017 0.734 0.020

NoClaimCreditBC -0.668 0.047 -0.289 0.122 -0.574 0.059 -0.587 0.065

TypeCity -0.597 0.058 -0.025 0.077 0.055 0.063 0.038 0.064

TypeCounty -0.540 0.064 -0.130 0.086 -0.190 0.075 -0.214 0.076

TypeMisc -1.884 0.113 -0.388 0.168 -0.494 0.112 -0.542 0.121

TypeSchool -0.988 0.056 -1.070 0.083 -0.792 0.065 -0.786 0.067

TypeTown 0.360 0.113 -0.117 0.144 -0.045 0.117 -0.130 0.124

Zero

(Intercept) -0.684 0.325 -13.048 9.776

CoverageBC 0.074 0.071 1.228 1.017

NoClaimCreditBC 1.147 0.243 -5.461 44.880

One

(Intercept) -3.507 0.436 -6.400 3.860

CoverageBC 0.481 0.089 -0.196 0.276

NoClaimCreditBC 0.900 0.337 2.167 3.894

8.5 01-Inflated Model Estimation

To estimate the 01-inflated Poisson model from censored observations, we define v = 1−FY (d) for
notational convenience, since only those losses above the deductible would be observed as a claim.
Then the observed zero probabilities would satisfy

Pr(Nλ,g(d) = 0)
1

1

= π0 + π2Pλ(0) + π1(1− v) + π2Pλ(1)(1− v) + π2Pλ(2)(1− v)2 + π2Pλ(3)(1− v)3 + . . .
1

1

= π0 + π2Pλ(0) + π1(1− v) + π2

[
λe−λ(1− v) +

e−λλ2

2!
(1− v)2 +

e−λλ3

3!
(1− v)3 + . . .

]
= π0 + π2Pλ(0) + π1(1− v) + π2

e−λ

e−λ(1−v)

[
λ(1− v)e−λ(1−v) +

e−λ(1−v)(λ(1− v))2

2!
+ . . .

]
= π0 + π2Pλ(0) + π1(1− v) + π2e

−λv(1− Pλ(1−v)(0))
1

1

= π0 + π2Pλ(0) + π1(1− v) + π2Pλv(0)(1− Pλ(1−v)(0)),
1

1

where we use the notation Pλ(1−v)(n) to denote the probability of the secondary Poisson distribution
with parameter λ(1− v) being n.
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The probability of one claim to be observed is

Pr(Nλ,g(d) = 1)
1

1

1

1

= π1 + π2Pλ(1)v

(
1

1

)
+ π2Pλ(2)(1− v)v

(
2

1

)
+ π2Pλ(3)(1− v)2v

(
3

1

)
+ . . .

1

1

= π1 + π2v
[
Pλ(1) + 2Pλ(2)(1− v) + 3Pλ(3)(1− v)2 + . . .

] 1

1

= π1 + π2v

[
λe−λ + 2

λ2e−λ

2!
(1− v) + 3

λ3e−λ

3!
(1− v)2 + . . .

]
= π1 + π2vλ

e−λ

e−λ(1−v)

[
e−λ(1−v) +

(λ(1− v))e−λ(1−v)

1!
+

(λ(1− v))2e−λ(1−v)

2!
+ . . .

]
= π1 + π2λve

−λv(1− Pλ(1−v)(0))
1

1

= π1 + π2 · Pλv(1) · (1− Pλ(1−v)(0)),
1

1

and the probability of n claims being observed is

Pr(Nλ,g(d) = n)

= π2

[
Pλ(n)vn

(
n

0

)
+ Pλ(n+ 1)vn(1− v)

(
n+ 1

1

)
+ Pλ(n+ 2)vn(1− v)2

(
n+ 2

2

)
+ . . .

]
1

1

= π2v
nλne−λ

1

n!

[
1 +

λ(1− v)

1!
+

(λ(1− v))2

2!
+ . . .

]
1

1

= π2
(λv)ne−λv

n!

1

1

= π2Pr (Nλv = n) for n ≥ 2.
1

1

Using these terms, the log-likelihood for policyholder i can be specified as

logLi = log{Pr(Nλi,g(di) = 0) · I(Nλi,g(di) = 0)

+Pr(Nλi,g(di) = 1) · I(Nλi,g(di) = 1)

+Pr(Nλi,g(di) = nλi,g) · I(Nλi,g(di) = nλi,g(di))}.

Because the estimation of 01-inflated models under deductible influence is an interesting application,
we have discussed the details. Table 5 provides an assessment of the performance of this model
with and without deductible influence.
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