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ABSTRACT

Let Z(¢,x) be the risk reserve at time t given a constant risk premium rate
of x,with Z{0,7)=0.We introduce s new risk premium calculation principle &
that produces risk premium rates ,x'(T),for contracts over the finite interval
(0T} as follows: & is a pon-negative real-valued fumction such that
¢|Z(T,n‘1m)]=x'(r) for «®(T) satistying E|Z(T*(T))|=0 ,wherc

Z_(T,n)va(l,n)dt, If we denote byWthe net risk premium calculation
*

principle,it is proved that that in most practical situations ¢ dominstes ¥ ip the
sense that the risk premium rate generated by ¢ is not less than that geperated
by Wforall T, 0<T <.
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1. Introduction

Let us consider an insurance portfolio that consisting of policies (risks) insured over the finite
time interval {0,T]. Initially the portfolio consists of N identical risks (called policies or contracta)
and there are no new entrants into the portfolio in the time interval (0,T}.s0 we can consider the
portfolic as a closed group of risks. The pumber of policies in force at time t,0=< t <7, is thus »
non-increasing fuaction of t Each policy remains in existence for a raadom length of time (possibly
of infinite duration) before expiring.Prior to or upon expiring ,each risk can generate a random
integral number of positive claims. Let us denote by S(t) and P(t),the aggregate claims generated
io the interval (0,t] and the aggregate premiums received im (O,t] respectively The risk reserve at
time t is given by Z{t) where Z(t)=P{2)—S(t), with Z(0)=0.

A risk premium calculation principle s a funclion,defined on the real line that enables an
insurer to quote a risk premium.Traditionally the fenction acts on the risk reserve process Z(t)
only at time T,the end of the contract period. For examples of risk premium calculation principle
see Bihlmann (1970,Chapter 4) sad (1980), Gerber (1079,Chspter 5) and Haezendock and
Goovaerts (1982).

In the sequel we develop a mew risk premium calculation principle @ based on the aggregate
deviations of Z(f,x) as follows:Let Z(¢,n) be the risk reserve at time ¢, given a constant risk
premium rate of x.Without loss of geaerality we assume that Z(0,x)=0. The risk premium rate
generated by & is I‘(T) where

#Z(T. 2% (T))=22(T) {1.1)
such that )
EJZ(T x*(T))]|=0 (12)
where
T
Z(Tx)=fZ(t,x)ds. (13)

The integral in (1.3) is assumed to exist as » Lebesgue stochastic integral.

The motivation for choosing E(T,r) instead of Z(t,x) i as follows:In the definition of
Z(t,x) the history of the random walk of the risk reserve process before time T, a8 is in the case of
most risk premium calculation principles,was igoored.Z(t,x) s thus often comsidered to be
sufficient for the calculation of the risk premium rates.Such rates will produce premivms that are
indifferent to the evolution of the risk reserve process. This might not be a problem if we assume
that the epochs of claims form a stationary point process.Whea this assumption is not
appropriate,it is suggested that we.in some way sttempt (o incorporate the inherent mon-
stationarity of the claim occurrence process into our risk premivms. This caa be accomplished by
taking into account the evolution of the process in such a way that the expected aggregate
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deviation of the risk reserve process,about the time axis and over the time interval (0,T],is zero.In
other words the expected area under the random walk Z(t,2"(T)), 0<¢=<T, is zero. This is
somewhat similar to the requirement,in the graduation theory of death ratesthat the expected
accumulated deviations of the actual minus expected deaths to be zero.See Benjamin and
Haycocks (1970, Chapter 11).

2. Assumptions
Let us define the following random variables:

P(t) =aggregate premiums received in the interval (0,t] from the totality of policy-holders.

S{t) =aggregate claim ammount in the interval (0,t] from the totality of policy-bolders.

n{t) ==total number of claims that occurred in {0,t).

q(t) ==number of policies in force at time t;since there are no new policies issued,then q(t) is a
non-increasing function of ¢ with q(0)= N asad q(t}=0,1,2,....N.

T  ==duration of each contract issued, 085 T < ®,

The S(t) process is such that the size of a claim.given the occurrence of a claim,is
independent of the time of the occurrence of the claim.The claim sizes are alsc independently and
identically distributed (i.i.d.) random variables. The claims are positive finite first and second
moments.

The B(t) process will be assumed to be a self-exciting point process in the sense that the
claim intensity at time t,i{t) is a function of the number of policies at time t. Thus

He)=s{(q(t)
where [ is a non-negative Lebesgue integrable function satisfying f{z)=0 if and only if z =01t is
assumed that f is such that the first two moments of n(t) exist 0= t <®.For example;
(i) I g(t) is a deterministic function of t,then f(g(t)) is also a deterministic function of q(t) and
we have that n{t) is a time-dependent Poisson process.

(ii) If q(t) is a stochastic process and f{g(t))=p{t)q(t) for some non-negative function and non-
random function (¢ ),then n(t) is a doubly stochastic Poisson process in the sense of Cox and
Isham (1980, Chapter 3.3).

Since all of the risks are identical the risk premium rate,x charged will be the same for each
policy. The amount of premiums recieved from the totality of policy-holders in the small interval

(t.t+5t)is 8P(t)=xg(t)st +0{5t). This }eads to the lollowing expression for P{t);

Pit)= xfqls) ds. (2.1)

The existence of the integral in (2.1) was proved by Mc Lean and Neuts (1967). Note that q(t) is
a bounded nop-increasing step function.

Finally we let Z(t,z) be the risk reserve at time t,where x is the risk premium rate charged
pet policy. We thus bave

¢ {1
Z(e.a)=afale) b= 5, (22)
[ i-0
where Y; is the size of the i-th claim and Y;=0. We assume that Z(i,x) is » second order process,
ie. E|(Z(t,®))] <, 0<t <o and abo that .

}}Cov[l(t,rr),Z(a,x)] ds dt

exista for 0 ST < ®. This guarantees the existence of (1.3).See Lodve (1078, Chapter X1, Section
37).
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3. The Maln Results

Recall the definitions of # and x'(T) given in equations (1.1) to (1.3). From (2.2) and {1.2}
we see that

Tt .
Elx*(T)f(folo)ds = 5, )dt] =0. (1)
[ I ] =0
Write
slt)=E[n(t))= [E[As) s (3.2)
and
Me)=E[q(t)]. (3.3)
After taking expectations under the integral sigas we get
T
Sut)a
! (T)=E[Y, | 57—— i >0. (3.4)
S e)ds ot

Let W.be the traditional net risk premium calculation principle. Then W generates the risk
premium m (T) which satisfies

E|Z(T " (T))=0. (3.5)
From (2.2) we see that this leads to the following
2= (36)
Iae)ae

In otder to compare ¢ and ¥ we introduce the concept of dominance.

Definitlon: We say a risk premium caleulation principle O, dominates a risk premium
calculation principle €, if for any finite time interval (0,T]the risk premium generated by 6, is
greater than or equal to risk premium rate generated by 6,.

Compatring (3.4) and (3.6),it is obvious that

d
—M(T)
+#(T)22"(T) if and only if —';—’(-li_’-;lzé‘{——-, (37)
A7)
where
M(T)=fu(t) ét (38)
and
T
A(T)= [ [2(2)dede. (39)

Rearranging the right hand side of (3.7),we get
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x®(T)22"(T) if and only if %ln(A(T))Z-;r-ln(M(T)j, (3.10)
which proves the following theorem:

Theorem 13

() ¢ dominates ¥ if and only if J120, for all t20.

i ALL
" M)
() ¢ m ¥ if and ooly if —d—un(—"ﬂ)]-o, for alf 120,

M(')
G5 % dominates # if and only if —-Il (—ﬁ%)]so, for all t=0.

The condition (iii) in Theorem 1 deserves special mention Since ¥ i is the net risk premium principle
we will pot want to charge a risk premium rate that is less than x ’(t) So we cannot use # in that

case But in practice we will invariably find that for each t, y(t)SI)\(a)da, a result analogous to
L]

the statement that expected number of deaths is less than the total expected exposure of cohort of
lives.So condition (iii) is not expected to be satisfied in practice.

It is instructive to compare & and ¥ for the case where the n{t} process is s time
homogeneous Poisson process. This is accomplished by the foliowing theorem:

Theorem 3

In the classical Lundberg mode! of collective risk theory which is based on the following
assumption that the aggregate claim process is a time homogeneous Poisson process and the
aggregate premium P(t),is proportional t,we have pau .
Proof: Obvious.

If in assumption (i) of Theorem 2 we replace the constant p by a non—constant function of
time,p{t ).a non-homogeneous Poisson process results for n(t).Under these conditions,we loose the
identity relationship between ¢ and ¥.However this process can be transformed into a time
homogeneous Poisson process by changing to operational time r{t) given by

rt)=fpls)ds.

This trassformation,however does not retain the identity #m ¥ because —| _h—l%))—l is not identical

to O under this pew operational time.

4. Conclusions

The risk premium calculation principle @ introduced im this paper is designed to take into
account the history of the risk reserve process. It is only one of many possible methods of
including the history of the random walk of risk reserves,Z(t,7).That this approach leads to a
simple expression for the risk premium is,in the opinion of the author,a very desirable feature of
risk premium calculation principles #. Notice that in keeping with the traditions of risk
theory,the premium calculation principle # produces a flat premium ntc,x'(T),fox the case where
the claims form a non-stationary Poisson process.

The author is grateful to Dr.G.C.Taylor for bis suggestions and comments.
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