
A C T U A R I A L  RESEARCH C L E A R I N G  HOUSE 
1 9 8 4  VOL.  2 

A Risk Premium Calculation Prlnelple Based On The 
Aggregate Deviations Of The Rlsk Reserve Process 

Colin M. Rsmsalt 

Dept. of Statistical and Aeta~rifl .~c~nce* 
University of Western Out.rio 

Londou,Outario 
Canada NOA 5B7. 

ABSTRACT 

Let Z(t,x) be the risk reserve at time t given a constant risk premium rate 
of x,with Z(O,~)ffiO.We introduce a new risk premium calculation principle 
that produces r~k premium rates ,x¢(T~,for contracts over the finite interval 
(O,T) as follows: ¢ is a non-negative real-valued function such that 
¢~[Z{T,x¢(T))I=x#(T) for ••(T) satisfying EI-Z(T,,¢(T))]=O ,where 

Z(T,~)--SZ(t,*)dt. If we denote by,l~,the net risk premium calculation 

principle,it i,q proved that that iu most practical situations ¢~ dominates ~ in the 
sense that the risk premium rate generated by • is not le~s tbau that generated 
by ~ for all T, O < T  < = .  

K e y  W o r d s :  domiaance,r~k premium caku |a t~n  l~iacipk 
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I .  I n t r o d u c t i o n  

Let us consider an insurance portfolio that  consisting of policies (risks} insured over the finite 
time interval {0,T]. Initially the portfolio consists of N identical risks (called policies or contracts) 
and there are no new entrants into the portfolio in the t/me interval (0,T~,so we can consider the 
portfolio as a closed group of risks.The number of policies in force at time t,0 "< t "CT, is thus a 
non-increasing function of t.E~ch policy remains in existence for u random length of time (possibly 
of infinite duration) before expiring.Prior to or upon expiring ,each risk can generate a random 
integral number of positive claims. Let us denote by S(t) and P(t),the aggrega~ claims generated 
in the interval (O,t] and the aggregate premiums received in (0,t] respoctively.The risk reserve at 
time t is given by Z[t) where Zl t )=P(t ) -S[ t ) ,  witb g[O)=~O. 

A risk premium calculation principle is a function,defined oe the read line ,that enables sa 
insurer to quote s risk premium.TraditionaJly the function .--us ou the rbk reserve proceas Z[t) 
only at time T,the end of the contract period. For examples of risk premium calculation principle 
see B'~hlmanu (1070,Chapter 4) and (1080), Gerber (1079,Chapter ,5) and Hacseudock and 
Goovaerts [1982). 

In the sequel we develop a new risk premium calculation principle • baaed on the ugjlregate 
deviations of Z(I,~) as follows:Let Z(t,~) be the risk reserve at time t,$iven u constant  risk 
premium rate of w.Without loss of generality we assume that  Z(O,w)mO. The risk premium rate 
generated by • is we(T) where 

• l~(r ,~*lr}) l=,*(r)  
such that  

E'l~'lr,,,'lrlll=o 
where 

(1.1) 

(~.2} 

(t.z) 
Y 

0 

The intelirad in (I.3) is assumed to exist u s Lebessue stochastic htte|ral. 

The motivation for ehominS g(T,~} in.read of g( t , 'O  is as foUowj:ht the dermition of 
Z(t ,~) the history of the random walk of the risk reserve p r o e m  before time T,as is in the ease of 
moet risk premium cakulatiou pr ineipks,wu i|uored.Z(t,w) is thus of~teu couidered to be 
sufficient for the calculation of the risk premium rates.Sack rates will produce premiums tha t  ate 
indifferent to the evolution of the risk reserve procure.This millht not be a problem if we assume 
that  the epochs of claims form a stationlu7 point procem.Woco this assumption is not 
appropriate,it is sufwlested tha t  we in some way,at tempt to ineorpoN~ the inherent sou- 
statiouarity of the claim occurrence process into our risk premiums. This can be accomplished by 
taking into account the evolution or the process in such a way that  the expected ~ r e l l a t e  
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deviation of the risk reserve process,about the time axis sad over the time interval |0,TJ,IS zero.In 
other words the expected area under the random walk Z(t,~O(T)), 05t '~T,  is zero. This is 
somewhat similar to the requirement,in the grsdu•t lou theory of death rates,that the expected 
accumulated deviations of the actual minus expected deaths to be zero.See Benjamin and 
Haycocks (1970, Chapter I I). 

2. AJmU m p t l o n J  

Let us define the following random variables: 

P(t) ----aggregate premiums received in the interval (0,t] from the totality of policy-holders. 

S(t) ==aggregate claim •remount  in the interval (0,t] from the totality of pofiey-hoklers. 

n(t) ==total number of claims that  occurred in (0,t]. 

q(t) = n u m b e r  of policies in force at time t;since there t i e  no new policies issued,then q(t) is a 
non-increasing function of t with q(0)=- N sad  q(t)-=0,1,2,....,N. 

T =dura t ion  of each contract issued, 0 5  T ~ m 

The S(t) process is such that  the site of • claim,given the occurrence of a claim,is 
independent of the time of the occurrence of the claim.The claim sites ale also independently and 
idcnticalb distributed (i i.d.) random variables. The claims are poeitive finite first sad second 
moments.  

The n(t I process will be =~sumed to be • self-exciting point process in the sense that  the 
claim intensity at time t,v(t } is • function of the number of policies at time t. Thus 

,~t )-- f(q(t )7 

*'here f is a non-Begs.tire Lebesgue iutegrable function satisfying f ( z ) = 0  if t ed  oul)' if z =0. I t  is 
assumed that  f is such that  the first two moments  of n(t) exist 0 5  t ~=0.For example; 

(i) If q(t) is a deterministic function of t,then f(q(!)) is also a deterministk function of q(t) and 
we have that  n(t) is a time-dependent Poieson process. 

(ii) If q(t) is • stochastic process sad f (q( tD. .~tJq( t  ) for some •on-negative function sad  non- 
random function O(t ),the• n(t) is a doubly stochastic Poissou process in the sense of Cox t ad  
Isham (1980, Chapter 3.3). 
Since all o! the risks t ie  identical,the risk premium rste,~,charged will be the same for each 

policy.The amount  of premiums recieved from the totality of policy-hoMers in the small interval 
(t ,t + ~5!} is 6P(| )=, sq(t )6¢ + o(6¢ ). This leads to the roUowing expression for P(t); 

e 

~,(t)= ~J'q(s) ~,. (2.n) 
, o 

The existence of the integral m (2.l) was proved by ~ Lean sad Neuts (1967). Note that q(t) is 
a bounded non-inure•lag step function. 

Finally we let Z(t,s) be the risk reserve s t  time t,where Jr is the risk premium rate charged 
per policy.We thus have 

f ~,) 
z0 ,~ )=~SO)  d , -  L',~. (2.2) 

O im@ 

where Y/ is the size of the ~.th elshn and Yon*O. We sasume ths t  Z(t ,x) is = second order process, 
i.e. El (z ( t , . ) f l<= ,  o<t <'= sad ~ th.t 

SSco~Iz(t,,,l,Z(,.~)l d, 
s o  

exists for 0 "CT~  m This g u t i u t e ~  the existence of (1.3).S¢e Loire (1978, Chapter XI, Section 
37). 
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3. T h e  Main Resul ta  

Recall the definitions of # u d  x ' (T)  given in equations (1.1) to (!.3}. From (2.2) amd (1.2) 
we see that 

T I ! • . 4 )  

El, (r l f  lf  ql,)d, -,U, L 1~1 = 0 .  (3.hi 
0 • i - 0  

Write 

and 

t 

,Is )== E l -  (=)1= J'~l~(,)l ~ (3.2) 
o 

x(¢ )= Eiq(t )l. (3.3) 
After t~king expectations under the intelr~l s~n= we get 

T 

D 

• + (T )=E IL ]  T, ,~ >o. (3.4) 

0 0 

Let ~ be the traditional net risk premium calculation prmciple.Then ~' generates the risk 
premium ~r*(T) which satisfies 

EIZ{T,x'(T))]=O {3.5) 

From (2.2) we see that this Je~ls to the following 

, ' {T)=E[~: ]  " ( T )  13.6 I 
Sxl, ),~ 
O 

In order to compare • and • we introduce the concept of dominnce.  

Defini t ion:  We nay a risk premium calculation principle 01 dominates a risk premium 
calculation principle 0 2 if for any finite time interval (0,T],the risk premium generated by (91 is 
greater than or equal to risk premium rate generated by 0 2. 

Comparing (3.4) and (3.6),it is obvious tbs t  
J 

s+{ r ) zx ' iT )  if and onQ/ if ~ #M(T) 
A(T) =¢ .._.~4 A(T ) ' 13.7) 

where 
T 

Mcr)*=Sp(t ) ~ {3.S) 
0 

and 
T #  

A{T}*f$~{o)Z, dt. 
O 0  

Rearranging the r i iht  hand side of 13.71,we get 

(3.9) 
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rO(T) :~I " ' (T)  if and onllO if -'~,In(A(T))>"~TIn(Id(T)) , 

which proves the following theorem: 

(3.zo) 

T h e o r e m  It 

(i) • dominates ~ if sad only if --~-[l.( 112o, 

(ill @ - * if and only if ~ - I ln (  11=0, for ~/l 

d . A l t l . A t  (i i i) dominates dt if and only if -~T, [ l n ( ~ ) ] ' c 0 ,  
d~ mI~ j 

for ~1 t >0.  

| 2 0 .  

for a/l t 20 .  

The condition (iii) in Theorem 1 deserves special mention.Since • is the net risk premium principle 
we will not want to charge a risk premium rate that  is ks •  than r ' l t  ).So we c u u o t  use • in that  

case.But in practice we will invariably find that  for eacb t, ~(t) < f ) , ( s )d~,  a result analogous to 
O 

the s ta tement  that expected number of deaths is less than the total expected exposure of cohort of 
lives,So condition (iii) is not expected to be satisfied in practice. 

It is instructive to compare • and O' for the case where the u(t) process is • time 
homogeneous Voisson process.This is accomplisbed by the following theorem: 

T h e o r e m  Is 

In the classical Lundberg model of collective risk tbeory which is based on the following 
assumption that the aggregate claim process is s time homogeneous Poisson process and the 
aggregate premium,P(t),is proportional t,we have ~mO,. 
Proofz Obvious. 

If in assumption (i) of Theorem 2 we replace the constant p by a non-constant function of 
time,p(t),a non-homogeneous Poissou process results for n(t).Under these conditions,we loose the 
identity relationship between • sad ~P.However this process can be transformed into n time 
homogeneous Poisson process by changing to operational time ~t  ) given by 

0 

d . A...~)_ 
This transformation,however,does not retain the identity •mqp because ~-r~ M(r) I is not identical 

to 0 under this new operational time. 

4,  C o n c l u s i o n s  

The risk premium calculation principle • introduced in this paper is designed to take into 
account the history of the risk reserve process. It is only one of many possible methods of 
including the history of tbe random walk of risk reserves,Z(t,w).Tbst this approach le~ls to a 
simple expression for the risk premium is,in the opinion or the author,•  very desirable feature of 
risk premium eakula t io•  principles ~. Notice that  in keeping with the t rad i t ion  of risk 
tbeory,tbe premium calculation principle • produces a flat premium rste,fO(T),for the case where 
the claims form • non-stationary Poimmn process. 

The author is grateful to Dr.G.C.Tayior for his suggestions u d  comments.  
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