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I. Executive Summary 
A life insurer can apply per person excess reinsurance as a risk management tool to reduce 

the volatility of its claims. This can be utilized to increase the company’s return on economic 

capital. In our case study we apply quantitative retention management analysis that you can 

customize to your company’s specific circumstances to determine the reinsurance retention 

limit that produces the optimal risk profile and maximum return on economic capital. Our case 

study illustrates a company’s return on economic capital increased from 12% to 16%. Figure 

1 depicts the analysis results and measures the return on economic capital over the wide range 

of retention-level choices: 

 Reinsure too little, and the risk of large claims increases the amount of capital you 

need to hold. The cost of capital puts a drag on your profitability. 

 Reinsure too much, and the cost of reinsurance outweighs the benefit of reducing the 

cost of capital. 

Figure 1 Return on Economic Capital for Different Levels of Retention 

 
Source: Case study for a block of term life business; hypothetical return on capital for fully retained policies 12%. 

Rules of thumb cannot be applied for guessing the optimal retention limit. Each life insurer has 

to carry out the analysis for its own portfolio of risks. The optimal retention levels vary by: 

a. Size of the company 

b. Business mix by product and duration 

c. Heterogeneity of the individual risks 

d. Competitiveness of the reinsurance premiums 

e. Reserve and capital requirements and cost of capital 
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II. Introduction 
This research study was sponsored by the SOA Reinsurance Section, the SOA Financial 

Reporting Section and the SOA Committee on Life Insurance Research with the objective to: 

 Investigate the impact of reinsurance retention limits on retained reserves and 

solvency capital of a life insurer under modern reserving and solvency capital 

frameworks. 

 Demonstrate the use of reinsurance as a tool to manage free surplus and risk. 

 Outline a roadmap for companies to optimize their retention limits and manage their 

life insurance risk profile. 

The Project Oversight Group consisted of Kevin Trapp (Chair), Min Mercer, Tom Edwalds, 

Clark Himmelberger, Lloyd Spencer, Ronora Stryker (SOA Research Actuary) and Jan 

Schuh (SOA Sr. Research Administrator). 

The Challenge 

Within a modern valuation and solvency capital framework, the reserves and capital that a life 

insurance company has to hold are directly tied to the riskiness of its business. In other words, 

reserves and capital in a principles-based framework must explicitly allow for the uncertainty 

associated with future claims. A life company’s reinsurance coverage influences the level of 

riskiness of its business. Therefore, reserve margins and capital requirements have to be 

adjusted to reflect the impact of reinsurance. 

Our aim is to investigate how reinsurance changes the risk profile of the retained life business 

and affects reserves and capital, and to propose a method by which life insurance companies 

can quantify the impact of reinsurance and thus choose an optimal retention level. 

The Solution 

By creating a statistical model that describes the insurance risk of a life book, we are able to 

quantify the uncertainty associated with a life company’s insurance risk and can thus determine 

the necessary margins for reserves and capital relative to best-estimate liabilities. We derive 

the statistical model directly from the claims experience of a life company to create portfolio-

specific valuation assumptions and capital requirements. Different reinsurance retention levels 

are modeled explicitly to quantify their impact on reserves and required capital. 

Limitations 

Before describing our research in detail, it is important to clarify the limits of the analysis. In 

our calculations, we have carried out neither a Principles-Based Reserve Valuation in 

accordance with the NAIC’s Valuation Manual VM-20 nor a calculation of Solvency II capital 

requirements, both of which would have required creating a comprehensive cash flow model 

to project revenue, benefits and expenses. Instead, we have focused exclusively on the 

projection of benefits. The focus of our research has been twofold: 

a) How to set prudent assumptions for mortality and policyholder lapse (which VM-20 

refers to as “Prudent Estimate Assumptions”) and  

b) How the margins within the prudent assumptions should be adjusted to reflect the 

influence of reinsurance. 

In our derivation of mortality and lapse assumptions, we have implicitly assumed the method 

of Aggregate Margins, as discussed in Neve (2013). Furthermore, we have deviated from the 
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mortality calculation method outlined in VM-20, which implicitly assigns greater credibility to 

industry tables than company experience. We have done so for two reasons: 

1. According to Hardy and Panjer (1998), the basic premise for applying credibility theory 

to blend company-specific experience with industry tables is that the company 

experience must be a true subset of the industry experience and that the industry 

experience be relevant to the mortality of the lives being modeled. Given the limited 

participation of life companies in the industry studies from which industry mortality 

tables are derived, and due to the very limited differentiation by risk classes provided 

within industry tables, we believe that these basic prerequisites for applying credibility 

theory do not generally hold. 

2. In relying entirely on company-specific experience and using statistical methods to 

quantify the uncertainty caused by estimation error and adverse deviation risk, we do 

not need to rely on industry tables at all. One could argue that the use of industry tables 

leads to underestimating the uncertainty associated with the projected mortality 

outcomes, and that for a small block of life insurance risks the uncertainty implied by 

the confidence intervals of its company-specific mortality experience is more 

appropriate. 

We acknowledge the fact that for new business for which there are little or no experience data 

the actuary must indeed rely on external sources, such as industry experience or even general 

population data. The model risk introduced by having to apply actuarial judgement in such 

situations is beyond the scope of this report. 

The roadmap presented here is designed to be general to any modern reserving and capital 

framework. It can be applied to analyze reinsurance in multiple regulatory jurisdictions and 

company structures. 

III. The Framework 
In this report, we outline a method that a U.S. life insurer can use to derive mortality and lapse 

assumptions for a principles-based valuation or for economic capital calculations. We assess 

the impact of different reinsurance retention levels on a life company’s in-force business.1 Our 

research shows the reduction of uncertainty when a life insurer purchases excess of retention 

reinsurance. While the impact on benefit reserves is moderate and depends on the business 

mix, in particular on the duration of the company’s liabilities, the impact of reinsurance on 

capital is substantial. This enables the company to optimize its reinsurance retention with 

respect to its return on economic capital. 

Figure 2 The Roadmap 

 
Figure 2 schematically shows the framework put forward in this report. Beginning with the 

policy-level Experience Data of a life company, which contains historical information on the 

deaths, lapses, surrenders and conversions affecting the company’s life insurance business, 

we build a Statistical Model that describes these multiple decrements. Using the method of 

                                                           
1 The techniques shown here fall under the broad topic of Predictive Modeling and include nonlinear models. 
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parametric survival models, we are able to quantify the influence of different risk factors on 

mortality and persistency. 

In the next step, we generate a distribution of possible outcomes for claims by running a Monte 

Carlo simulation. The distribution of annual claims and total liabilities is consistent with the 

company’s experience and allows us to calculate the reserve and capital margins, with which 

the company has to load best-estimate liabilities for prudent valuation and for solvency capital 

requirements. By running the simulation against a range of different reinsurance retention 

levels we can study the impact of reinsurance on reserves and capital margins. 

The Data 

 

The starting point for our framework is the life company’s historical experience data. To extract 

the maximum amount of information from the data, we utilize the seriatim policy-level 

information. For each life leaving the portfolio, we know the exact date and type of exit.  

Essentially, the individual insured lives data give us a longitudinal view of the historical 

experience and allow us to build a statistical model with which we can identify different risk 

factors and quantify their impact on future claims and premiums. One important point to keep 

in mind is that we should ideally model insured lives and not policies, which we can do only by 

combining different policies covering the same life, a process referred to as deduplication.2 

Deduplication is routinely carried out by life companies when they check retention under their 

reinsurance treaties. 

The Model 

 

Life companies require a set of robust best-estimate assumptions for their life insurance risks. 

Such best-estimate assumptions must take into account all relevant risk factors that influence 

the mortality and persistency risk to which the company is exposed. This is important, because 

the distribution of a company’s business across the different risk classes largely explains why 

company-specific experience deviates from the industry average. In addition, trends within a 

single company’s overall experience will in part be due to changes in the composition of its 

business. 

Portfolio-specific assumptions including multiple risk factors can be derived using parametric 

survival models, which describe mortality and lapse risk in continuous time and thus generate 

a set of smooth graduated tables consistent with the company’s experience data.3 In practice, 

a continuous-time model means modeling mortality and lapses daily rather than the historical 

actuarial approach of analyzing annual mortality and monthly lapse rates.  

                                                           
2 See Richards (2012). 
3  The advantages of modeling mortality at the individual level in continuous time are discussed in detail in Richards, Kaufhold and 
Rosenbusch (2013). 
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Hazard Rates 

We denote the continuous-time mortality rate as 𝜇𝑥, which is known to actuaries as the force 

of mortality.4 The model we have used for this investigation is the simple time-varying 

Gompertz law: 

(1) 𝜇𝑥,𝑦,𝜏 =  𝑒𝛼𝜏+𝛽𝑥+𝛿(𝑦−2000), 

where 𝑥 denotes age, 𝑦 denotes calendar time and 𝜏 stands for time since policy issue. Age is 

measured as exactly as the data allow in fractions of a year. Time is measured similarly; for 

example, April 1, 2003, is rendered as 2003.25. The offset of year 2000 is to keep the 

parameters well scaled.  

We used the LongevitasTM software5 to fit6 the mortality law to the data, that is, to estimate the 

parameters 𝛼, 𝛽 and 𝛿. The parameter 𝛼 represents the level of mortality, which can be raised 

or lowered by the main effect of various risk factors such as gender, underwriting class or 

policy face amount (a.k.a., sum assured). 𝛽 represents the rate of change of mortality with age 

and can be modified by interactions with the main effects; for example, the rate of aging might 

differ between males and females. The parameter 𝛿 describes a constant time trend7 over the 

study period. We also include the duration since policy inception as another continuous-time 

variable 𝜏. We incorporate different durational patterns by expressing the intercept parameter 

𝛼𝜏 as a step function. 

MultiDecrement Model 

In addition to mortality, the claims experienced in a life insurance portfolio are also influenced 

by other decrements: lapse, surrender, conversion or disability. These multiple decrements 

potentially impact the run-off behavior of the portfolio and therefore the total liabilities of the life 

company. For this reason, we decided to model the lapse hazard as a risk competing with 

mortality. Using continuous-time survival models allows us to do so without having to make 

additional assumptions about the respective timing of lapses and deaths, like we would have 

to for 𝑞𝑥-type discrete-time models. 

We shall denote the lapse hazard rate 𝜆𝑥,𝑦,𝜏 which depends on age 𝑥, calendar time 𝑦 and 

duration 𝜏, just like the mortality hazard. We can write the total hazard rate ℎ𝑥,𝑦,𝜏 simply as the 

sum of the force of mortality 𝜇𝑥,𝑦,𝜏 and the lapse hazard rate 𝜆𝑥,𝑦,𝜏: 

(2) ℎ𝑥,𝑦,𝜏 =  𝜇𝑥,𝑦,𝜏 + 𝜆𝑥,𝑦,𝜏. 

Because we are building a continuous-time model we could theoretically also include the 

interdependencies between mortality and lapse. However, we have made the simplifying 

assumption that the instantaneous mortality and lapse hazard rates are independent of each 

other and can fit separate models for each hazard. For this purpose, we have ignored the 

concept of antiselective lapse. If we included experience after the end of the level-term period, 

this simplification would not be appropriate, and the lapse and mortality models would have to 

incorporate some sensitivity to the other decrement. 

                                                           
4 Engineers call the same thing the failure rate, and statisticians call it the instantaneous hazard rate, but the concept is identical. 
5 LongevitasTM is a commercial software for the analysis of mortality and other demographic risks.  For more details, see 
http://www.longevitas.co.uk/site/ourservices/survivalmodelling/. 
6 By fit we refer to estimating parameters of the survival models by maximizing the likelihood function.  The parameter estimates shown in 
this report are therefore all Maximum Likelihood Estimates (MLEs). 
7 Multidimensional trend models (e.g., Age-Period-Cohort model or Lee-Carter model) have a very large number of parameters and require 
more data than a typical life company would have. Therefore, they are usually calibrated to the mortality data of an entire country’s 
population. 

http://www.longevitas.co.uk/site/ourservices/survivalmodelling/
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Risk Factors and their Impact 

So far, we have discussed only the basic risk factors age and time. In parametric survival 

models, we can include any number of risk factors for which we have consistent data in the 

experience study. We can investigate whether a risk factor has a statistically significant impact 

on mortality or lapse hazard. All we have to do is to define risk categories and adjust the 

parameters of the mortality or lapse hazard rates at the level of the individual. For instance, if 

we want to distinguish between male and female mortality and smokers versus nonsmokers, 

we would pick the largest group as the baseline—male nonsmokers in our case—and fit 

parameters for females and smokers. The intercept 𝛼𝑖 and slope 𝛽𝑖 in the log-linear Gompertz 

law for each individual 𝑖 in the file can then be written as 

(3) 𝛼𝑖 = 𝛼0 + 𝐼𝐹𝑒𝑚𝑎𝑙𝑒𝛼𝐹𝑒𝑚𝑎𝑙𝑒 + 𝐼𝑆𝑚𝑜𝑘𝑒𝑟𝛼𝑆𝑚𝑜𝑘𝑒𝑟, 

𝛽𝑖 = 𝛽0 + 𝐼𝐹𝑒𝑚𝑎𝑙𝑒𝛽𝐹𝑒𝑚𝑎𝑙𝑒 + 𝐼𝑆𝑚𝑜𝑘𝑒𝑟𝛽𝑆𝑚𝑜𝑘𝑒𝑟 . 

 

Here 𝛼0 and 𝛽0 refer to the baseline (male, nonsmokers). The indicator function 𝐼𝐹𝑒𝑚𝑎𝑙𝑒 takes 

on the value 1 for females and 0 for males, and 𝐼𝑆𝑚𝑜𝑘𝑒𝑟 takes on the value 1 for smokers and 

0 for nonsmokers. In this manner, the model can be extended to include numerous risk 

factors, such as underwriting class and policy size band. We estimate values for these 

parameters using the Maximum Likelihood method. 

Having built a statistical survival model describing the mortality and lapse behavior of the 

insured lives in a specific portfolio, we can calculate the actuarial present value of future 

benefits and future premiums for each individual with policies in force at a particular valuation 

date 𝑦0. The sum of actuarial present values over all lives in-force on the valuation date will 

represent our best-estimate present value (PV) of future liabilities.  

For the purpose of this research, we have ignored future premiums in the calculation of policy 

benefit reserves. We have thus implicitly assumed that all policies are paid up and the present 

value of liabilities simplifies to the present value of future claims. This may impact the 

quantitative results, but we believe that this simplification will not affect our conclusions.  

Recall that policy benefit reserves are calculated as present value of future claims less present 

value of future premiums. In situations when mortality is heavier and therefore the present 

value of future claims is greater, the portfolio will run off more quickly and the present value of 

future premiums will be smaller, leading to greater benefit reserves. We can therefore assume 

that variability in present value of liabilities will be at least as great as the variability in the 

present value of claims. 

The Simulation 
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Now we can reap the benefit of having built a statistical model, because survival models allow 

us to quantify how uncertain the central estimate is. There are two main reasons for the 

uncertainty8 of the claims outcome: 

 Misestimation risk: The parameters of the model are estimated from a finite set of data, 

which means that their true value may differ from the estimated parameter values. This 

estimation error depends on the size and nature of the business. The larger the data 

set, the closer the parameter estimates will be to the true parameter values, which 

means that misestimation risk will be smaller for large, stable blocks. Conversely, 

misestimation risk will have a larger impact for smaller companies with less experience 

data. 

 Idiosyncratic risk: Deaths and lapses are random events, and therefore the claims 

outcome will always be uncertain, even if we did know the true parameter values for 

the model. The stochastic uncertainty depends on how the different risk factors, like 

face amount, smoker status etc., are distributed within the block of insurance risks. The 

more concentrated the risk is upon a small group, the greater the potential variability of 

results. 

We run a Monto Carlo simulation to quantify the impact of both sources of uncertainty. 

Generally speaking, a Monte Carlo simulation is a stochastic experiment, in which we simulate 

the death or lapse of each individual and calculate the financial result for many different random 

scenarios. The aim is to generate the random events in a way consistent with the model so 

that the Monte Carlo simulation gives us a probability distribution of the financial outcomes for 

the specific block of business.  

The Monte Carlo simulation in our framework includes two nested steps: one for misestimation 

risk and one for idiosyncratic risk. The simulation is depicted schematically in Figure 3.  

                                                           
8 Further contributors to the overall uncertainty include model risk as well as mortality trend risk.  For the purpose of this 
report, we do not consider any trend assumption beyond the end of the experience study period.  Therefore mortality 
trend risk is excluded from the scope. 
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Figure 3 Schematic of Monte Carlo Simulation 

 

Step 1: Perturbation 

First we perturb our existing models for mortality and lapse in a way consistent with the 

experience data, to which they were fitted. We follow the calculation method described by 

Richards (2016). The important thing to observe is that we do not perturb (“shake”) each 

parameter in isolation but have to consider its correlations with all other parameters. 

Simple Example 

If our survival model only contained the parameters 𝛼 and 𝛽 with estimated values �̂� and �̂�, 

then we would need to draw two Normal-distributed random numbers 𝑟1, 𝑟2 and could generate 

two perturbed parameters 𝛼′ and 𝛽′ in the following way: 

(4) 𝛼′ =  �̂� + �̃�𝛼𝑎𝑟1 + �̃�𝛼𝛽𝑟2, 

𝛽′ =  �̂� + �̃�𝛽𝛽𝑟1 + �̃�𝛽𝛼𝑟2. 

(
�̃�𝛼𝑎 �̃�𝛼𝛽

�̃�𝛽𝛼 �̃�𝛽𝛽
) are correlation coefficients derived from the variance-covariance matrix.9 

 

Step 2: Lifetime Simulation 

In the second step, we use the perturbed survival model to simulate the random future lifetime 

of each individual.  

We can calculate the individual’s survival curve10 using Equation 2: 

(5) 𝑝𝑥𝑡 =  exp (− ∫ ℎ𝑥+𝑠𝑑𝑠
𝑡

0
) = exp (− ∫ 𝜇𝑥+𝑠𝑑𝑠

𝑡

0
) × exp (− ∫ 𝜆𝑥+𝑠𝑑𝑠

𝑡

0
). 

                                                           
9 More details on the perturbation and simulation method in Appendix B. 
10 Here “survival curve” describes the remaining time before the individual exits the portfolio, either by lapsing or due to death. 
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Figure 4 Survivorship Functions for Mortality and Lapse 

 
Source: Simple example for a male aged 52 in 2012, residual standard nonsmoker, policy year 10 (past selection period). 

We draw two uniformly distributed random numbers 𝑢1 and 𝑢2 and use them to calculate 

random remaining time until death 𝑡1 and time until lapse 𝑡2: 

𝑢1 = 1 − exp (− ∫ 𝜇𝑥+𝑠𝑑𝑠

𝑡1

0

) = 𝐹(𝑡1)  ⟼   𝑡1(death) = 𝐹−1(𝑢1), 

𝑢2 = 1 − exp (− ∫ 𝜆𝑥+𝑠𝑑𝑠
𝑡2

0
) = 𝐹(𝑡2)  ⟼   𝑡2(lapse) =  𝐹−1(𝑢2). 

 

Now, all we need to do is check whether lapse or death occurred first, that is, whether 𝑡1 > 𝑡2 

or 𝑡1 < 𝑡2, and calculate the appropriate benefit reserve for that scenario. We repeat this 

valuation for each individual and then for each perturbation of the survival model. 

The result of the simulation is a distribution of liabilities, as illustrated in Figure 5. 
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Figure 5 Monte Carlo Simulation of Claims 

 
Source: Sample Monte Carlo simulation of term life case study. The simulated results have greater skewness and fatter tails 
than the corresponding Normal distribution. 

 

The Principles-Based Reserves and Capital Requirements 

 

In its Model Standard Valuation Law—VM-05, the National Association of Insurance 
Commissioners (NAIC) states the Requirements of a Principles Based Valuation (Section 
12.A):  

(1) Quantify benefits … and their risks at a level of conservatism that reflects conditions 
that include unfavorable events that have a reasonable probability of occurring during 
the lifetime of the contracts. … 

(2) Incorporate assumptions, risk analysis methods … that are consistent with … those 
utilized by the company’s overall risk assessment process. … 

(3) Incorporates assumptions that are derived in one of the following manners: 
a. The assumption is prescribed in the Valuation Manual. 
b. For assumptions that are not prescribed, the assumptions shall: 

i. Be established using the company’s available experience, to the 
extent that it is relevant and statistically credible; or 

ii. To the extent that company data is not available, relevant or statistically 
credible, be established utilizing other relevant, statistically credible 
experience. 

(4) Provide margins for uncertainty, including adverse deviation and estimation 
error, such that the greater the uncertainty the larger the margin and the resulting 
reserve. 

The NAIC Valuation Manual 20 (VM-20) prescribes three different methods of calculating 
principles-based reserves: net premium reserve, deterministic reserve and stochastic reserve. 
Each of these methods requires prudent estimate assumptions for mortality, lapse and 
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expenses. In general, principles-based valuation requires that these prudent estimate 
assumptions be determined by:  

 Applying probabilistic methods for quantifying insurance risks 

 Ensuring their consistent use in the management of insurance business and 

 Deriving assumptions from a statistical analysis of company experience, where 
possible. 

The framework put forward in this report is consistent with the general aims of the NAIC stated 

above. However, we do not follow the calculation method laid out explicitly in VM-20. We start 

out with a statistical analysis of the life company’s experience data and then carry out a Monte 

Carlo simulation. Our aim within this project is to apply the results of the statistical analysis to 

managing the insurance risk of the insurer by means of per person excess reinsurance. 

Beyond this application, the results can also be used within other contexts as well, such as 

product development and marketing. 

Within this context, it might be interesting to note that under the new Solvency II regulatory 

framework in the European Union, a life insurer can use a so-called Internal Model for 

calculating its Solvency Capital Requirements only if it can demonstrate that it puts the model 

to use in its risk management and business practices. Such a Use Test is fulfilled by the 

framework in this report, as we use the framework to actively decide upon the company’s 

retention, which is an important risk management application. The framework can also be 

applied to in pricing and product development. 

Reserve MARGIN 

We derive prudent estimate assumptions by using the distribution of liabilities from our Monte 

Carlo simulation to calculate confidence intervals around best-estimate liabilities and risk 

measures such as the Conditional Tail Expectation CTE(𝑋) for a given percentile 𝑋.  

Assuming a CTE70 reserving requirement, which is the conditional expected value of all those 

claims that exceed the 70th percentile, we can express the valuation margin for adverse 

deviation and estimation error in terms of the best-estimate liabilities (𝐵𝐸𝐿) as follows: 

(6) Reserve Margin ≔  (
CTE(70) 𝑜𝑓 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝐵𝐸𝐿
− 1). 

 

EConomic capital 

Life insurers are subject to regulatory requirements to hold a certain amount of solvency capital 

to protect the company against ruin should it incur disastrous losses in any given year. Different 

regulatory regimes have different methods of defining the solvency capital requirements. Most 

of the recently introduced capital frameworks operate on a probabilistic basis, measuring 

required capital in terms of either the Value-at-Risk (VaR) in a one-in-200-year event, that is, 

99.5th percentile of the total annual loss distribution or the expected shortfall given a certain 

percentile loss.  

The new European regulatory regime Solvency II is based on the VAR approach, as were the 

Individual Capital Assessments (ICA) in the United Kingdom. The expected shortfall is also 

referred to as Conditional Tail Expectation (CTE) and is used within the Canadian Minimum 

Continuing Capital and Surplus Requirements (MCCSR) and the Swiss Solvency Test (SST). 
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For the purpose of this report, we will not consider all the different capital frameworks but will 

apply a simplified method, which is based on the CTE99 of the distribution of annual claims. 

We will refer to this figure as “Economic Capital.” We assume that a life company will hold at 

least enough Economic Capital (EC) to cover an annual loss at the level of CTE99. We express 

the EC in terms of the best-estimate liabilities: 

(7) 𝐸𝐶 𝑀𝑎𝑟𝑔𝑖𝑛 ≔  
CTE99(𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑠𝑠)−mean(𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑠𝑠)

𝐵𝐸𝐿
. 

Impact of Reinsurance Retention on Reserves and Capital 

 

 

Having established an integrated method for deriving reserve and capital margins from a life 

company’s own experience data, we can apply this method gross and net of reinsurance. This 

shows us how a particular reinsurance coverage changes the risk profile of the retained 

business and what the impact of reinsurance is on a life insurers retained net liabilities and 

Economic Capital. 

IV. Case Study: U.S. Term Life Insurance 

The Data 

 

For our case study, we used seriatim policy experience data for term life insurance collected 

from the U.S. life insurance industry by a leading consulting firm for the years 2000 to 2011. 

The data provided to us were sampled randomly from one life insurer’s data to ensure that it 

was impossible to identify the company or the individual lives.11 

For each policy, we had information on age, gender, date of issue, type of product, smoking 

status, underwriting class and policy face amount. For the purpose of this analysis, we decided 

to model only the experience up to the end of the level-term period. Post-level-term experience 

is an important factor that should be considered when applying this framework in real life; 

however, it raises issues that would have exceeded the scope of this project. All exposure 

times and decrements (deaths and lapses) stated in the tables below are with respect to the 

level-term period only. Furthermore, we limited the analysis to the range 30 to 86 years of age, 

outside of which only very limited data on deaths and lapses were available. 

We further simplified the analysis by considering only the run-off of the in-force business at the 

end of the study period. No new business was considered. In our case study, we have also 

combined lapses and surrenders to be one type of decrement that is modeled simultaneously 

                                                           
11 There was no information available by which the data could be deduplicated. Therefore, our analysis is on a 
policy basis only. 
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with death. Furthermore, we chose to treat term conversions as a censoring event, which 

means that these lives exited without decrement. 

The following tables summarize the case study data by gender, underwriting class, smoking 

status, product and amount band.  

Table 1 Summary by Risk Group, Ages 30 to 86 Years Only 

Risk class Risk group 
Number of 

policies 

Total face 
amount  

[US$ millions] 

Exposure12  
[time lived] 

Deaths Lapses 

Gender Female 650,906  $174,512  4,438,518 4,021 180,255 

Male 944,353  $407,996  6,276,808 9,864 333,591 

Rated Standard 1,530,354  $566,494  10,344,206 12,734 485,272 

Substandard 64,905  $16,014  371,120 1,151 28,574 

Product T10 396,958  $128,601  2,070,848 4,057 185315 

T15 303,164  $97,204  2,224,775 3,995 106,544 

T20 671,708  $272,655  4,890,347 4,329 151,238 

T30 189,900  $75,007  1,348,023 672 44,457 

Other Term 33,529  $9,041  181,334 832 26,292 

Underwriting 
Class 

Preferred 590,062  $257,668  4,345,446 3,056 143,397 

Residual standard 894,851  $300,663  5,733,886 8,629 316,519 

Smoker 110,346  $24,178  635,993 2,200 53,930 

Total  1,595,259      $582,508 10,715,326 13,885 513,846 

Table 2 Summary by Face Amount Band 

Amount 
band 

From 
US$  

To US$ 
Number of 

policies 

Total face 
amount  

[US$ millions] 

Exposure  
[time lived] 

Deaths Lapses 

1 0 99,999 135,865  $6,976  824,701 3,026 52,496 

2 100,000 124,999 335,052  $33,626  2,245,455 3,629 110,015 

3 125,000 249,999 271,160  $47,598  1,903,095 2,478 91,123 

4 250,000 299,999 249,850  $62,605  1,702,191 1,524 76,336 

5 300,000 499,999 163,429  $55,823  1,140,202 1,019 50,170 

6 500,000 749,999 244,294  $125,540  1,621,494 1,242 72,694 

7 750,000 1,999,999 166,525  $167,137  1,096,445 803 50,243 

8 2,000,000 150m 29,084  $83,203  181,742 164 10,769 

Total   1,595,259         $582,508 10,715,326 13,885 513,846 

The highest amount band contained fewer than 2% of all policies. However, these policies 

accounted for more than 14% of the total face amount. The two highest bands together 

included fewer than 12.5% of policies but 43% of the total face amount, indicating a high level 

of concentration risk, which contributes to the overall volatility of the mortality results of the 

portfolio and influences the impact of reinsurance on these results. 

The Model 

 

We chose a simple log-linear Gompertz function for both the mortality and the lapse hazard 

rates, because both decrements largely follow a linear pattern on a logarithmic scale within the 

core age range. 

                                                           
12 A policy entering the study on January 1, 2000, and still exposed to risk on December 31, 2011, would have 
contributed 12 life-years of exposure. 
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Figure 6 Crude Hazard Rates against Age, Natural Logarithm of Actual Deaths over Exposure Time 

 

The crude mortality hazard rates in Figure 6 show a log-linear behavior between ages 40 and 

75. For older ages, the crude mortality rates appear to increase faster, which means that a 

more complex mortality law might have been more appropriate. 

Figure 7 Crude Hazard Rates against Age, Natural Logarithm of Actual Lapses over Exposure Time 

 

Since this case study is for illustration purposes only, we limit the analysis to the log-linear 

function.13 The lapse hazard rates by age in Figure 7 are roughly log-linear between ages 45 

and 75. Outside this age range the age pattern of lapses takes on a trough-like shape, which 

is often referred to as “bathtub hazard,” meaning that lapses are higher than average for 

younger ages as well as for advanced ages. A more rigorous analysis, which would also be 

based on lives instead of policies, would use a more complex function for lapses. However, 

                                                           
13 Generalized Linear Models commonly assume either a logarithmic or a logistic link, which implies that 
mortality rates decelerate at advanced ages.  Clearly the logistic function would not be appropriate for the 
experience data shown here. 
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we did not have the necessary information to deduplicate the policies for a lives-based 

analysis. 

For the purpose of our case study, however, we ignore the curvature, mainly because the age 

pattern of lapses is likely less important than the shape by duration since policy issue. Figure 

8 shows two lapse spikes in policy years 10 and 15, which is consistent with the prevalence of 

T10 and T15 products in the portfolio. We note briefly that there is no corresponding spike for 

T20. This is simply due to the fact that there are hardly any lives left at the end of policy year 

19, that is, 3,200 lives compared to 1.2 million lives in duration 1 or 165,000 lives at the end of 

policy year 14, because most of the observed policies were written less than 20 years ago. 

Note that the magnitude of the lapse spikes shown in Figure 8, which is aggregate across all 

guarantee periods, depends on the composition of the portfolio by term. Within our model, 

which is for the level-term period only, we project mortality and lapses only until each individual 

policy’s maturity date, when it is censored. Thus, the magnitude of the lapse spike itself has 

only a relatively small overall impact. When considering post-level-term mortality and its 

correlation with lapses at the end of the level term, it would be necessary to model the lapse 

spikes separately for each term product. 

Figure 8 Crude Hazard Rates against Duration 

 

Duration is an important risk factor for mortality as well. Insured lives mortality during early 

policy years is typically substantially lower than average due to the selection effect of the 

underwriting process. In Figure 9 we show the deviance residuals14 by duration for a simple 

model that does not include any allowance for duration. The residuals show how actual 

experience differs from the modeled (“expected”) deaths. A selection period of at least six 

years is apparent from the pattern of mortality by duration. 

                                                           
14 See Appendix A on Model Choice for the definition of deviance residuals. 
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Figure 9 Deviance Residuals for Mortality against Policy Duration 

 

The data used for our case study relate to a 12-year observation period. Reviewing the 

residuals of a simple model that does not incorporate time as a risk factor, we can observe a 

mortality improvement trend. For this reason, our models incorporate age, calendar year and 

policy duration as real-valued risk factors. 

Figure 10 Deviance Residuals for Mortality against Time 

 

We model the changes in mortality and lapse rates with step functions, because this makes it 

straightforward to model both the selection shape and the lapse spikes by duration. Both 

mortality and lapse hazard functions have the same structure: they include parameters 

𝛽𝑚𝑜𝑟𝑡, 𝛽𝑙𝑎𝑝𝑠𝑒 and  𝛿𝑚𝑜𝑟𝑡, which describe the increase of the hazard rates by age and a uniform 
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decrease over calendar time. In addition, we include adjustment factors for each selection 

period 𝛼𝑆𝑒𝑙𝑒𝑐𝑡
𝑚𝑜𝑟𝑡  and 𝛼𝜏

𝑙𝑎𝑝𝑠𝑒
: 

𝜇𝑥,𝑦,𝜏 =  exp (𝛼𝑚𝑜𝑟𝑡 + 𝛼𝑆𝑒𝑙𝑒𝑐𝑡
𝑚𝑜𝑟𝑡 + 𝛽𝑚𝑜𝑟𝑡𝑥 + 𝛿𝑚𝑜𝑟𝑡(𝑦 − 2000)),  

 

𝜆𝑥,𝜏 =  exp(𝛼𝑙𝑎𝑝𝑠𝑒 + 𝛼𝜏
𝑙𝑎𝑝𝑠𝑒

+ 𝛽𝑙𝑎𝑝𝑠𝑒𝑥). 

The adjustment factors 𝜶𝑺𝒆𝒍𝒆𝒄𝒕
𝒎𝒐𝒓𝒕  and 𝜶𝝉

𝒍𝒂𝒑𝒔𝒆
 describe the durational effects. As seen in Figure 8 

and Figure 9, mortality and lapse rates have distinct patterns by duration. We have modeled 
this by determining in advance which selection periods to fit and then estimating the values for 

𝜶𝑺𝒆𝒍𝒆𝒄𝒕
𝒎𝒐𝒓𝒕  and 𝜶𝝉

𝒍𝒂𝒑𝒔𝒆
. 

Table 3 Basic Parameter Estimates 

Model Type 
Parameter Estimate 

Std. 
error 

Significance15 

Mortality Intercept 𝛼𝑚𝑜𝑟𝑡 −11.41 0.06 *** 

 Age 𝛽𝑚𝑜𝑟𝑡 0.094 0.001 *** 

 Time 𝛿𝑚𝑜𝑟𝑡 −0.023 0.003 *** 

Lapse Intercept 𝛼𝑙𝑎𝑝𝑠𝑒 −2.94 0.02 *** 

 Age 𝛽𝑙𝑎𝑝𝑠𝑒 −0.0113 0.0002 *** 

Table 4 Parameter Estimates for 𝜶𝑺𝒆𝒍𝒆𝒄𝒕
𝒎𝒐𝒓𝒕  

Parameter 
Policy 
year 

Estimate Std. error Significance 

𝜶𝟎 1 −1.03 0.05 *** 

𝜶𝟏 2 −0.66 0.04 *** 

𝜶𝟐 3 −0.33 0.03 *** 

𝜶𝟑 4–6 −0.20 0.02 *** 

𝜶𝒖𝒍𝒕𝒊𝒎𝒂𝒕𝒆 7+ - - Baseline 

Figure 11 Adjustment Factors for Mortality by Duration 

 

                                                           
15 Statistical significance in relation to p-value:  ***p < 0.001, **p < 0.01, *p < 0.05. 
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Table 5 Parameter Estimates for 𝜶𝝉
𝒍𝒂𝒑𝒔𝒆

 

Parameter 
Policy 
year 

Estimate 
Std. 
error 

Significance 

𝜶𝟎 1–9 −0.038 0.02 . 

𝜶𝟏 10 1.11 0.02 *** 

𝜶𝟐 11–14 −0.12 0.02 *** 

𝜶𝟑 15 2.06 0.02 *** 

𝜶𝒖𝒍𝒕𝒊𝒎𝒂𝒕𝒆 16+ - - Baseline 

 

Figure 12 Adjustment Factors for Lapse by Duration 

 

Additional Risk Factors 

To capture the mortality differentials by risk group, we have incorporated categorical variables 

as described by Equation 3 for gender, product, underwriting class, policy size and whether a 

policy was issued standard or with a substandard rating. The results are shown in Table 6 and 

Table 7. 

Table 6 Parameter Estimates in Mortality Model for Different Risk Categories 

Category Risk group Estimate Std. error Significance 

Gender Male 0 - Baseline 

 Female −0.33 0.02 *** 

Underwriting Preferred −0.25 0.02 *** 

 Residual standard 0 - Baseline 

 Smoker 1.09 0.02 *** 

Rated Standard 0 - Baseline 

 Substandard 0.50 0.03 *** 

Policy size Amount band 1 0.17 0.03 *** 

 Amount bands 2, 3 0.07 0.02 *** 

 Amount bands 4–8 0 - Baseline 

Product T10, T15, T20 0 - Baseline 

 T30 0.16 0.04 *** 

 Other term 0.32 0.04 *** 

Table 7 Parameter Estimates in Lapse Model for Different Risk Categories 
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Gender Male 0 - Baseline 

 Female −0.164 0.003 *** 

Underwriting Preferred −0.302 0.003 *** 

 Residual standard 0 - Baseline 

 Smoker 0.298 0.005 *** 

Rated Standard 0 - Baseline 

 Substandard 0.334 0.006 *** 

Policy size Amount band 1 0.052 0.005 *** 

 
                            

2 0 - Baseline 

 
                            

3 0.042 0.005 *** 

 
                            

4 0.062 0.005 *** 

 
                            

5 0.056 0.006 *** 

 
                            

6 0.109 0.005 *** 

 
                            

7 0.157 0.006 
*** 

 
                            

8 0.372 0.01 
*** 

Product T10 0.993 0.004 *** 

 T15 0.273 0.004 *** 

 T20 0 - Baseline 

 T30 0.070 0.005 *** 

 Other term 1.316 0.007 *** 

 

The figures in Table 6 imply that someone in the preferred underwriting class would have 

exp(−0.25009) ≈ 22.1% lower mortality than the baseline residual standard underwriting class; 

a smoker has up to 197% higher mortality than a standard nonsmoker. Insureds with the 

largest policies have the lowest mortality, with the smallest policy sizes being associated with 

nearly 18.6% higher mortality rates. All term products had similar levels of mortality, apart from 

the T30 and Other categories, which had higher than average mortality. 

As far as lapses go, Table 7 shows that females appear to be less likely to lapse than males, 

a preferred policy is less likely to lapse than a residual standard underwritten policy, and a 

smoker is 35% more likely to lapse their policy. Interestingly, the larger a policy is, the greater 

the propensity of its policyholder is to lapse. 

Simulation Results and Reserve Margins 

 

Figure 13 shows the distribution of future claims that we obtain by running the Monte Carlo 

simulation for the entire term portfolio in our case study. The perturbation and simulation 

process was carried out 5,000 times. The resulting distribution for the PV of future claims is 

shown in Figure 13 and has mean $6.59 billion and standard deviation $220 million. We 

calculate percentiles and conditional tail expectation values for the purpose of determining 

principles-based reserves and capital. Note that these percentiles and CTE values are greater 

than the corresponding values for a Normal distribution. This means that the distribution of 
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liabilities for this case study has “heavy tails,” and therefore using the Normal distribution as 

an approximation would risk systematically underestimating reserves and capital. 

Figure 13 Simulated Distribution of Total Claims (PV at Interest = 0%) 

 

Table 8 Reserve and Capital Margins 

Measure 
Total 

portfolio 
50% of 

portfolio 
25% of 

portfolio 
10% of 

portfolio 

Mean PV of claims (BEL) [$ 
millions]  $5,992  $2,812 $1,481  $556  

Standard deviation $143 $93 $67 $43 

CTE70 $6,162 $2,921 $1,559 $607 

Reserve margin 2.8% 3.86% 5.3% 9.1% 

Mean annual claims [$ millions]  $453.7  $208.7 $111.6  $43.9  

Standard deviation $22.1 $14.4 $10.6 $6.6 

99.5th percentile $516.4  $248.0 $144.5 $64.4  

CTE99  $518.8  $249.5 $145.4  $66.5  

Economic capital  $65.0 $40.7 $33.7 $22.6 

Capital margin as percentage of 
BEL 1.1% 1.5% 2.3% 4.1% 

We evaluated the term life portfolio as a whole and ran the entire analysis on three subsets of 

the portfolio: randomly chosen 10%, 25% and 50% samples. The mortality and lapse models 

were fitted to each subset of the data, which means that both estimation error and idiosyncratic 

risk are taken into account for the three additional scenarios. 

The main finding summarized in Table 8 is that the size of the portfolio has a substantial impact 

on the level of uncertainty, which in turn increases both reserve and capital margins. 

Impact of Reinsurance Retention on Reserve Margins 
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Proportional reinsurance 

There are two basic types of proportional reinsurance: first dollar quota share reinsurance, 

where the same proportion is reinsured for each policy, and surplus reinsurance, where the 

ceding company retains the risk up to a fixed retention per life, and the surplus above the 

retention level is reinsured. Surplus reinsurance is also known as excess reinsurance. The 

reinsurer receives premiums for the proportion of each risk exceeding the retention and covers 

that same proportion in the event of a claim. 

First dollar quota share does not affect the reserve margin, because the distribution of retained 

claims is simply scaled to the quota share proportion retained. For excess reinsurance, we 

have the prior expectation that surplus reinsurance has an impact on reserve margins and 

capital, because limiting the maximum claim amount to the retention reduces the variability of 

claims in each period.  

We ran the simulation for a series of different levels of retention. Figure 14 summarizes the 

results for reserves, which we have defined to be CTE70 of the PV of claims. It shows that 

reinsurance has less impact on reserve margins than we expected. The required margin for a 

CTE70 reserve level hardly varies from the scenario without reinsurance, unless the company’s 

retention is below $1,000,000, and even then, the relative impact is small; for example, to 

achieve a 15% reduction in reserve margin, this particular life company would have to reinsure 

all risks above $100,000, which amounts to around 69% of its business. 

Figure 14 Relative Distance of CTE70 Reserve to Best-Estimate Liabilities (BEL) for Various Retention 
Levels 

 

2.35%

2.40%

2.45%

2.50%

2.55%

2.60%

2.65%

2.70%

2.75%

2.80%

 $-  $1,000  $2,000  $3,000  $4,000  $5,000

(X
 -

B
EL

) 
/ 

B
EL

Retention [$k]

Reserves (CTE70 )



– Page 25 –  

Figure 15 Ratio of Reserves and Capital to Face Amount 

 

Figure 15 shows that the retained portion of reserves based on our simulated distribution of 

future claims is greater than the retained portion of policy face amount. This is somewhat 

surprising, because we know that the reserve margin for the retained reserves is slightly lower 

than the gross reserve margin before reinsurance. The explanation for this phenomenon is that 

for excess reinsurance, the reinsurer is covering only a portion of larger policies, which have 

systematically lower mortality and higher lapse rates, as we saw in the previous sections. The 

mortality rates for lower policy sizes are higher than average and the lapse rates lower than 

average, which means that the reserves per unit of face amount for lower policy sizes are 

higher than average. 

In contrast, reinsurance has a much stronger impact on capital, which Figure 15 demonstrates 

clearly. The relative reduction in capital is much greater than the adverse impact of retaining 

policies with lower face amounts, which exhibit higher average mortality and lower average 

lapse rates. By purchasing excess reinsurance a life company can reduce its economic capital 

by a greater proportion than the ceded portion of face amount. This means that for the retained 

business the capital is relatively lower, and thus the cost of capital is reduced. The results of 

our analysis are summarized in Table 9 and Table 10. 

Table 9 Reserve Margins for Excess Reinsurance at Different Retention Levels 

Retention 
[US$ 

thousands] 

Total face 
amount  

[US$ 
billions] 

Retained 
portion of 
amounts 

Best-estimate 
liabilities 

(BEL) 
[US$ millions] 

CTE70 
reserves 

[US$ 
millions] 

Reserve 
margin 

[% of BEL] 

Retained 
portion 

of 
reserve 

Fully 
retained $359 100.0% 

 $5,992  
$6,162 2.83% 100.0% 

$10,000 $358 99.9%  $5,985  $6,153 2.81% 99.9% 

$5,000 $357 99.4%  $5,958  $6,124 2.79% 99.4% 

$1,000 $324 90.3%  $5,483  $5,631 2.70% 91.4% 

$750 $299 83.2%  $5,117  $5,254 2.66% 85.3% 

$500 $265 73.9%  $4,630  $4,751 2.62% 77.1% 

$250 $184 51.4%  $3,423  $3,509 2.52% 57.0% 

$100 $91 25.5%  $1,866  $1,910 2.40% 31.0% 
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Table 10 Capital Margins for Excess Reinsurance at Different Retention Levels 

Retention 
[US$ 

thousands] 

Best-
estimate 
reserves 

[US$ 
millions] 

Best-
estimate 
annual 
claims 
[US$ 

millions] 

Economic 
capital 
[US$ 

millions] 

Capital 
margin 

[% of BEL] 

Retained 
portion of 

capital 

Fully 
retained 

 $5,992  
$453.7 $65.0 1.09% 100.0% 

$10,000  $5,985  $452.8 $61.8 1.03% 95.0% 

$5,000  $5,958  $449.6 $58.7 0.98% 90.2% 

$1,000  $5,483  $410.6 $45.7 0.83% 70.2% 

$750  $5,117  $382.6 $40.5 0.79% 62.3% 

$500  $4,630  $343.4 $34.9 0.75% 53.7% 

$250  $3,423  $251.7 $23.9 0.70% 36.8% 

$100  $1,866  $134.5 $12.1 0.65% 18.6% 

 

Why Does Reinsurance Affect Reserves Much Less than Capital?  

We know that reinsurance reduces volatility in the annual claims amounts. However, when 

calculating reserves, we benefit from the fact that the business runs off over an extended 

period of time. The volatile annual claims amounts are smoothed out over time when we 

calculate the present value of liabilities. 

We illustrate this with a simple example: The shortest duration business, the 10-year term 

product, is analyzed on its own. T10 makes for roughly a quarter of the entire portfolio. We 

therefore compare the impact of reinsurance on the T10 business with a random sample of 

25% of the total business. We observe that the T10 policies remaining in-force at the end of 

the observation period (year-end 2011) have an average remaining duration of 3.9 years in 

comparison to an average remaining time till maturity16 of 11.5 years for the total portfolio. 

Therefore, the impact of reinsurance is substantially greater for the T10 business than for a 

block of the same size with a different business mix. 

Figure 16 Simulation Results: CTE70 Reserves against Retention Level for T10 and 25% of Entire Portfolio 

 

 

                                                           
16 Time until the end of the level-term period. 
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Optimizing return on economic capital 

We can now apply the finding that reinsurance has a substantial impact on Economic Capital 

(EC), which we have defined as the difference between the CTE99 of annual claims and the 

expected annual claims. We illustrate the optimization of EC with an example as follows: 

 As target return on EC before reinsurance we assume, say, 12%. This means that 

without any reinsurance the life company expects the business to yield a first-year profit 

of 12% of $65.0 million, that is, $7.8 million.  

 We further assume that expected profits are proportional to expected annual claims. 

 Cost of reinsurance is modeled as a percentage of ceded profits. We aim to show that 

lowering the company’s retention increases the cost of reinsurance, which in part 

offsets the benefit from reducing the required amount of EC. 

 We can thus find an optimum for given cost of reinsurance and cost of capital. 

In Table 11 we have assumed the cost of reinsurance to be 20% of expected annual profits for 

the ceded portion. The return on EC can thus be lifted by purchasing reinsurance, but when 

the retention drops below $500,000, the increased cost of reinsurance takes over and reduces 

the return on EC again. Thus, in this particular example for this specific portfolio the optimal 

retention for the life insurer would be $500,000 per life. 

Table 11 Return on Economic Capital 

Retention 

Best-estimate  
annual claims 
[US$ millions] 

EC 
[US$ 

millions] 

Retained 
profit 

Profit less cost of 
reinsurance 

[20% of profit] 
Return on  

EC 

 Fully 
retained $453.7 $65.0 

 $7.8   $7.81  12.0% 

 $10,000,000 $452.8 $61.8  $7.8   $7.79  12.6% 

 $5,000,000 $449.6 $58.7  $7.7   $7.72  13.2% 

 $1,000,000 $410.6 $45.7  $7.1   $6.92  15.1% 

$750,000 $382.6 $40.5  $6.6   $6.34  15.6% 

 $500,000 $343.4 $34.9  $5.9   $5.53  15.8% 

$250,000 $251.7 $23.9  $4.3   $3.63  15.2% 

 $100,000  $134.5 $12.1  $2.3   $1.22  10.0% 

 

The results for three different assumed costs of reinsurance are shown in Figure 17. We see 

that by purchasing reinsurance specifically gauged to the portfolio it is possible to improve the 

return on EC from 12% to nearly 17%. Reinsuring too large a portion of the business then 

reduces the return on EC. 
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Figure 17 Optimizing Return on Economic Capital 

 
Assumptions: Target gross return on Economic Capital = 12%, cost of reinsurance as a percentage of annual 

profits. 

Findings 

Reserve and capital margins directly reflect the uncertainty associated mortality and lapse risk. 

The results of our case study show the following: 

i. Prudent valuation assumptions based on the company’s own experience differ 

systematically by size of the life company. Smaller companies require higher reserve 

margins. 

ii. Reinsurance retention has a relatively low impact on reserves, even for different size 

companies. The impact of reduced volatility in liabilities can be more than offset by the 

impact of lighter mortality and higher lapses for larger policies. 

iii. Business mix and duration of the business have a material influence on how 

reinsurance affects reserves and capital.  

iv. Capital margins are calculated as the CTE99 of losses within any one-year period. 

Since this removes any time-smoothing effects implicit within the calculation of benefit 

reserves, reinsurance has a greater impact on the required capital level of a life insurer. 

This finding can be utilized by a life company to optimize its retention level with respect 

to return on Economic Capital. 

Further Considerations 

NONPROPORTIONAL REINSURANCE 

Within this context we note that nonproportional reinsurance such as Catastrophe Excess of 

Loss (Cat XL) reinsurance or Stop Loss reinsurance is not covered by this report. A Cat XL 

covers events in which multiple insured lives die from a single event. Due to the fact that our 

statistical model describing the portfolio experience is based on independent events, we 

cannot quantify the impact of a Cat XL using this framework. 

This technical restriction does not strictly apply to Stop Loss reinsurance. However, a Stop 

Loss, as is common in Property and Casualty reinsurance, covers only the losses arising 

during a single year or at most a relatively short time period no greater than three to five years. 

In contrast, the total claims of a block of life insurance policies unfold over the entire term of 

the business until the last policy has matured or the last insured has lapsed or died. It is 
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conceivable that reinsurers may one day offer model-based coverage of the performance of a 

block of life policies that is out-of-the-money like a typical Stop Loss. In fact, some forms of 

financial reinsurance effectively offer that kind of protection already. However, a discussion of 

such specialized solutions is beyond the scope of this report. We simply note that the most 

common method of derisking life insurance business is proportional reinsurance, that is, first 

dollar quota share and excess of retention reinsurance (aka surplus reinsurance). 

EQUIVALENT NET SINGLE PREMIUM CALCULATION 

Rather than expressing the reserve margin as a percentage of best-estimate liabilities, it is 

also possible to express both best estimate liabilities and the prudent reserves corresponding 

to a specific percentile or CTE value as percentages of a standard table. This could either be 

the industry valuation tables or a company-specific base table. This method is outlined in 

Richards (2012) and is based on solving for the percentage of a standard table, which gives 

the same reserve amount as the portfolio-specific assumptions from our statistical analysis. 

ANALYZE LIVES NOT POLICIES 

Due to the nature of the experience data provided for our case study, we were not able to 

ensure that deaths of individuals with several policies were treated as one event. It is important 

to keep in mind that the process of policy deduplication must be carried out rigorously when 

applying the proposed framework. 

CONSIDER MORE COMPLEX MORTALITY AND LAPSE RATE FUNCTIONS 

We also considered using a quadratic log function as the basis for our analysis. However, the 

improvement in fit was deemed to be spurious in light of the fact that we do not have truly lives-

based experience. The choice of mortality and lapse law will have an impact on the absolute 

level of total liabilities. However, the focus in this study is to show the relative impact of different 

reinsurance retention levels on the reserve margins. 

IMPORTANCE OF REINSURANCE FOR RUN-OFF 

In the above calculations, we considered only the capital margins for the first year. With our 

simulation, we are also able to show the entire run-off of the business over time.  
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Figure 18 Run-off of Term Life Business for Five Different Retention Levels17 

 

We see that reinsurance reduces the overall annual losses. Whether a company has a 

retention of US$5 million or no reinsurance at all makes little difference for reserves, as shown 

in Figure 18. However, required capital runs off in a different manner, leading to a dramatic 

increase in capital requirements in relation to liabilities. This is shown in Figure 19, where 

required capital does not reduce in line with the total liabilities as the business volumes drop, 

because the volatility of annual results increases substantially, as the business runs off and 

fewer lives remain. Therefore, a reinsurance strategy must not only consider the current level 

of capital, but should incorporate a projection of capital requirements over the term of the 

business. 

Figure 19 Run-off of Term Life Business for Five Different Retention Levels 

 

                                                           
17 A retention of US$150 million means that the business is fully retained without reinsurance. 
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MORTALITY TREND RISK 

Our model includes mortality and lapse trends as far as they occur within the period of the 

mortality investigation 2000–2011. Future trends beyond year-end 2011 and the risks 

associated with these are outside the scope of this report. The main reason is that 

incorporating future mortality improvements into life insurance reserves is likely to meet with 

considerable opposition from regulators. However, to the extent that mortality improvements 

are incorporated into a life insurer’s pricing basis, these assumptions should also be 

considered within the context of setting economic capital assumptions.  

In contrast, a life company’s annuity business is subject to a large degree of longevity trend 

risk. Therefore, the company’s reserves and capital for annuity business should allow for 

longevity trends. An extension of the framework discussed in this report to life annuities will 

therefore incorporate models for longevity trend risk, such as outlined in Richards, Currie and 

Ritchie (2014), for instance. 

INTEGRATION WITH VALUATION MANUAL 20 

VM-20 is fairly prescriptive with regard to setting company-specific assumptions. We have not 

considered in detail how the proposed framework could be incorporated within the methods 

outlined in VM-20. This will be the subject of future research. 
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VII. Appendix A: Model Choice 

 

We decide which risk factors to include in our model by applying a number of different criteria: 

1. The model should have the best goodness of fit for a given number of parameters. We 

compare models with different numbers of parameters using information criteria, such 

as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC), 

which balance the goodness of fit with the number of parameters. The general rule is 

that the fewer parameters a model needs to describe the data,18 the better. 

2. Each parameter should be broadly statistically significant, which means that the p-value 

for the parameter estimate should be 5% or less. 

3. The parameters should have an intuitive interpretation. For example, we expect 

smokers to have a higher level of mortality (𝛼𝑠𝑚𝑜𝑘𝑒𝑟 > 0) relative to the nonsmoker 

baseline. 

4. There should be no bias apparent in the residuals. 

5. The result should be suitable for financial applications based on a bootstrap test. 

Assuming that the count of deaths in each age group follows a Poisson distribution, the 

deviance residual 𝑟 is calculated from the actual number of deaths 𝐴 and the expected deaths 

𝐸:  

𝑟 = sign(𝐴 − 𝐸)√2[𝐴 log (
𝐴

𝐸
) − (𝐴 − 𝐸)] 

We can see that the lives with the smallest policies have significantly higher mortality than all 

others, and that there is a systematic trend of decreasing mortality by increasing policy size up 

to policies of $250,000 face amount. For larger policies, the size does not appear to make a 

difference. This example demonstrates that a simple model without size as a risk factor would 

not be sufficient and that we should include a risk factor that describes the differences in 

mortality by policy size. 

Financial Applicability: Bootstrap Experiment 

Criterion 5 reflects the fact that the death or surrender of different policies will not necessarily 

have the same financial impact, because they differ by risk amount. We can test the financial 

suitability of our model results by carrying out a simple stochastic test. We draw a random 

sample of 10,000 lives from our experience data and compare the observed deaths to the 

deaths predicted by our model. This comparison is done repeatedly for, say, 1,000 iterations.  

                                                           
18 A model with as few parameters as possible is referred to as being parsimonious. As a rule of thumb, a 
parameter that lowers the AIC score by at least four units can generally be considered a useful extension of the 
model. 
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Figure 20 Bootstrapping Simulation Comparing Lives-Based and Amounts-Based Mortality 

 

On a lives basis we should always have an Actual-to-Expected ratio centered upon 100%, 

because we have fitted the model with Maximum Likelihood Estimates. When we weight the 

observed deaths by amount, a model that does not take face amount into account will tend to 

overestimate mortality rates. In this case study, amounts-based mortality is on average 10% 

lower than lives-based mortality. We also see that the amounts-based A/E ratios have a much 

greater variability than the lives-based A/E ratios. This is a reminder that we have to consider 

the volatility caused by large face amount policies causing the outliers in Figure 20. It is not 

unusual to have mortality more than 50% greater than expected, but even three times the 

expected claims amount can also happen. 
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VIII. Appendix B: Misestimation Risk 

 

Our aim is to measure the estimation error for the liabilities of a life book. The rationale stated here 
follows the method described in Richards (2016).  

We fit a multidecrement survival model choosing an appropriate parametric form for the force of mortality 
and lapse hazard rates: 

ℎ𝑥,𝑦,𝜏 =  𝜇𝑥,𝑦,𝜏 + 𝜆𝑥,𝑦,𝜏. 

We have chosen the Gompertz mortality law for both hazards,19 in which selection is modeled by defining 
the intercept parameter stepwise: 

𝜇𝑥,𝑦,𝜏 =  𝑒𝛼𝜏
𝑑𝑒𝑎𝑡ℎ+𝛽𝑑𝑒𝑎𝑡ℎ𝑥+𝛿𝑑𝑒𝑎𝑡ℎ(𝑦−2000), 

𝜆𝑥,𝑦,𝜏 =  𝑒𝛼𝜏
𝑙𝑎𝑝𝑠𝑒+𝛽𝑙𝑎𝑝𝑠𝑒𝑥+𝛿𝑙𝑎𝑝𝑠𝑒(𝑦−2000). 

All in all, we have a hazard function ℎ𝑥,𝑦,𝜏 = ℎ(𝛼𝜏, 𝛽, 𝛿) = ℎ(𝜃), which is a function of the parameters 

that we estimate searching for that set of parameters that maximizes the likelihood function. Call the 

parameter vector 𝜃. From maximum likelihood theory, we know that the error term of each of the 

maximum likelihood estimates (MLEs) follows a Multivariate Normal (MVN) distribution. This means that 

we can perturb the parameter set 𝜃 in a way consistent with the data against which they were fitted.  

We generate an alternative set of parameters 𝜃′ by adding a perturbation term to the vector of parameter 

estimates 𝜃. The perturbation term is constructed from the so-called Cholesky decomposition of the 

variance-covariance matrix, which we obtain as part of the fitting process: 

𝜃′ = (𝛼′, 𝛽′, 𝛿′) =  𝜃 + 𝓒𝑧. 

Matrix 𝓒 represents the Cholesky decomposition of the variance-covariance matrix 𝓥 =  𝓒𝓒𝑇. 𝑧 is a 

vector of 𝑁(0,1)-distributed random numbers. We use the inverse of the Fischer Information matrix ℑ =

−ℋ(�̂�), that is, the negative Hessian of second partial derivatives of the likelihood function, as an 

approximation for the variance-covariance matrix. The Cholesky decomposition can be viewed as the 

multidimensional analogue of a square root of the variance, that is, the standard deviation. 

  

                                                           
19 For a more accurate valuation of the business, more complex mortality laws would likely be more 
appropriate. We have chosen a simple law for the sake of illustrating the method. 
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IX. Appendix C: Simulation of Future Lifetimes 

 

A Monte Carlo simulation is a stochastic experiment in which we randomly generate events from the 
realm of all possible events and then calculate the financial result. If we manage to generate the random 
events in a way consistent with their probability distribution, the Monte Carlo simulation will then give us 
a probability distribution for the financial results. 

In our case, the events in which we are interested are all the possible ways the life insurance book could 
run off—that is, how the insured lives will either lapse or die. Broken down to the level of the individual, 
the uncertain event we have to model is how much time each individual remains in the portfolio and 
whether he or she will exit the portfolio due to death or due to lapse.20 The good news is, we know 
exactly what the distribution of future lifetimes looks like, because we have already fitted a survival 
model. 

We can simulate the future lifetime of each individual in the portfolio. For each individual, we know the 
survival function, that is, the probability to remain within the portfolio without lapsing or dying until at 

least time 𝑡: 

𝑝𝑥𝑡 = exp (− ∫ ℎ𝑥+𝑠,𝑦+𝑠,𝑡+𝑠

𝑡

0

𝑑𝑠) = 𝑝𝑥𝑡

𝑑𝑒𝑎𝑡ℎ
× 𝑝𝑥𝑡

𝑙𝑎𝑝𝑠𝑒
. 

The cumulative distribution function 𝐹𝑇(𝑡) of future exit dates is therefore  

𝐹𝑇(𝑡) = 1 − 𝑝𝑥𝑡 = 1 − 𝑝𝑥𝑡

𝑑𝑒𝑎𝑡ℎ
𝑝𝑥𝑡

𝑙𝑎𝑝𝑠𝑒
. 

Since the distribution function is strictly monotonically increasing, it is possible to define its inverse, 

𝐹−1: (0,1) → ℝ+, which assigns a future lifetime to any given probability between 0 and 1. By randomly 

drawing uniformly distributed numbers from (0,1) we can generate a set of random numbers that are 

consistent with the distribution function for future lifetimes, or, rather, times till exit from the portfolio. 

Special attention must be given to the fact that the force of mortality and lapse hazard rate functions are 
defined stepwise for the different selection periods. Therefore, the inverse has to be calculated stepwise 
too. 

                                                           
20 For simplicity, we combine all forms of surrender or lapse that do not generate a claim into “lapse.” 


