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ABSTRACT 

It is assum('d that thf' forn.' of interest varies as an auto-regressive 

process of o)'del" 2, AR (2) • The moments of the accumulated val ue of 1 paid 

at the b~'gil1r:ing of each pt'l'iod, for n periods, are developed using 

momt:.'nt gen('ri.itln~l functions. 

Kl:,y'o,J O J '...! ~· : dillo-t~egl~essivc PCOCt; 'S$, moment gent"rating function, stochastic 

inter~'.st . 
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1. Lc.?t us assume tha t the fO/'ce of interest over the time period 

(t-l, t J is t = 1,2, .... Like Westcott (1981) we model as an 

auto-regressive process of order 2 (AR(2». For fixed and known constants 

(6 -6) 
t 

1,2, ... ( 1.1) 

wlH" , 6 is d constant about which the force of interest is expected to 

flUc-tUdtc'. Tlw sequence let} is a sequence of mutually independently and 

idL'ntic-ally dist,'ibuted (Ll.d.) normal random variables with zero mean and 

fini tl' vdrianct.~ 
2 a • This model of 6

t 
ensures that the force of interest 

g<'n,'rat('s stochastic interest. rates. Finally we assume that a and bare 

!"eal-valued Cllnstant.s, and, unlike Westcott (1981), a and b satisfy 

a 
2 

> t.b. This ensures that thf' roots of the characteristic equation of (1.1) 

a"L'rlid. Pal\j<", and Bellhousl' (1980, Table l} demonstrated that in most 

situati0lis the roots of this characteristic equation are ~. 

Followin\l :'!,'stcot" (1981, Section 2), (1.1) can be written as . 

(1. 2) 

6. Let and be the real roots of the equation 

i . t~. 

A 2 _ aA + b 0 

d±~ 
2 
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This leads to th(' following expr'ession for u
t 

satisfying (1.2) 

1.2 •••• (1.3) 

where. for given initial conditions u and 
a u -1' 

b
1 

"I 
b

2 

-"2 

" -A "1-"2 1 2 

"1"0-bu_l bu _1-"2u O 
u a 

1 "1-).2 2 ),1-),2 
( 1.1,) 

Let U>o n0W introouce the random variable B (t) which is the accumulated 
n 

vdlut' o! pdict <It the t)'..'ginning of the tth period and accumulated to the end 

of the' n til peri oct. t:. < n = 1.2.3.... • Thus 

B (t) 
n 

n 

exp( l: 6 j) 
j:t 

exp{(n+l-t)6 + 
n 

u.} • 
J 

(1. 5) 

SimiliJrly. the uC'C'umulated value of an annuity of 1 paid at t.he beginning of 

('rich pvt'iod llnt i 1 th", CIlO of the nth period is 

5 
n 

n 

l: 
t=l 

B (t). 
n 

S when' 
n 

In tilt.' ;-;~··.JlIc..·l wv d ... ·v(~lop ("xpr'E'ssions for tht' moments of b (\.) 
n 

anct S 
n 

(1. 6) 

by 

exp1Qiting th." fact that log[Bn(t)] is normally distributed (in fact it is 

a linear combination of e
1

.e
2 
••••• e

n
). and Sn represents the sum of 
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;{ . D, ' fine A (t) as 
n 

and its mgf is 

From (i.. 3), we Sl'~· that 

A (t) 
n 

n 

I 
j=t 

u. 
J 

Mn(t,e) for real e, 

A (t) is a linear combination of n 
n 

(2.1) 

(2.2) 

i. i. d. normal 

random variables. So the existcnce of M (t,e) is assured for -- c e c -. 
n 

A (') ~~n b~ written as 
n 

n 
A (t) 

n 
(n,t). yk(n,t)e

k
, t 

k=l 
1,2, • •• ,n 

fl 

" 

and 

C(n,t) 

Thus (2.3) immediately gives 

r·1 ( .. , e) 
n 

n-t. 

I 
j=O 

·34· 

r:::O.l,2 •.•. 

otherwise 

n 

k=l 

2 
hk(n,t» } 

(2.3) 

(2.4) 

(2.6) 

(2.7) 



and ht'nce from (1.5) and (2.7) 

n 

I (2.8) 
r=1 

for k = 0.1.2 ••.•• 

Let us now write the expressions for both yk(n,tl and ~(n,tl 

in terms of t.he 'known' constants b
l

• b
2

, A, and A
2

• Using (2.4) and (2.5) 

we find 

k 1,2, •••• tj 

(2.9) 

t,t+l, .... n. 

SimilrJ.r~v 101" 1~ 1 • ;: ••••• n , we find 

; (n. t) (2.10 ) 

•. ' , ... " n.)w in a posi tion t.O develop an expression for the moments of an 

annuity· of 

annuity S n' 

I.k"" p"riod p"yablt, at the start of each period. Call this 

i . ('. 

5 
n 

n 

I 
t=1 

B (t). 
n 
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10 f i n c! th t · k
t l

: mom"n t of Sn' k 0,1.2, ••• we proceed as follows: 

wllt' r',' the summitt ion is oVt' r the elements r of the set elk) and 

elk) = {r r i '" 0,1.2 •.•• ,k and 
n 

L 
'i =1 

r . 
1 

is thr' mllllinomidl coefficient necessary in the expansion of 

(1.:'1, (2.1) i.L' ; (2.3) we see that 

.' I ~ ) 

n 

r . [(n+1-i)6 • ~(n.j) • 
1 

n 

I 
j=1 

y . (n.i)e . )} 
J J 

(k) (>xP{ 1 Ir . (n+l-j)6 + rJ.~(n,j) + ~(n,j:r)C'J. l} 
c'{k) r j=l J 

".~ I\' r ~ ' 

~(n.j:r) 

n 

r 
i=l 

r . Y .{n.i). 
1 J 

(2.11 ) 

k} • and 

(2.12) 

From 

(2.13) 

(2.14) 

(2.15) 

Thus (;<.14) demonstrates that (5)k is the sum of log-normal variates. 
n 

It ,,1st' ",na blt's us to immediat.ely write down an expression for 

k ::: 0 lI t 2, • • • CiS 

n 
l (k)exp( I [r.(n+1-j)i+r . ~(n , j) • 

elk) r j=1 J J 
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and r 

f 
t, 

C(k) 

(n 6. (n-1l6 ••••• 26.6) lxn vector 

(t(n.l).(n.2) ••••• t(n.n-l).t(n.n» lxn vectol' 

(y, . (n» 
I J 

with y. (n. i) 
J 

for i • j 1 t 2 t ••• ,n t 

a and t. cllld I lit' matrix r 

(2.17) 

nxn matril 

ar'e 'krll ... ··.·.'11 t • Thl~ numbt'r of elt'mf'nts r in C(k) (sec for 

<'X""',, I.· F"l 1 .. " I C>h8. Chap! (.,. I 1.5). These vect.ors r can hJsi I y bL' found 

wilh !ht' "i·j ('I d cnmput"t' whilt> the matt'ix and vector multiplications can 

qui,'k]-" b .. - acc,-n;plished as '11(']1. Thus the moments of 5 car. be' found 
n 

'.'x.,,',I'.· using t i :ltt>t· equations (2.10) 0" (2.17) and a computer. It should 

b, I "ill\<'d '.>lIt th .. tt t.1lt:' summalion nv'''' C(k) can bE" written in th" form of 

Rf;'ft"Ct'nCL'S 
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