On The Moments Of Compound Interest Functions When Interest Varies As An AR(2) Process
 by
 Colin M. Ramsay
 Department of Statistical and Actuarial Sciences
 University of Western Ontario
 London, Ontario, Canada N6A 5B9

ABSTRACT

It is assumed that the force of interest varies as an auto-regressive process of order $2, \operatorname{AR}(2)$. The moments of the accumulated value of 1 paid at the begim:ing of each period, for n periods, are developed using moment generating functions.
keyivord-: chlo-regressive process, moment generating function, stochastic interost.

1. Let us assume that the force of interest over the time period $(t-1, t]$ is $\delta_{t}, t=1,2, \ldots$. Like Westcott (1981) we model δ_{t} as an auto-regressive process of order 2 (AR(2)). For fixed and known constants δ_{0} and δ_{-1} we have

$$
\begin{equation*}
\left(\delta_{t}-\bar{\delta}\right)=a\left(\delta_{t-1}-\bar{\delta}\right)-b\left(\delta_{t-2^{-}}-\bar{\delta}\right)+e_{t}, \quad t=1,2, \ldots \tag{1,1}
\end{equation*}
$$

wher $\bar{\delta}$ is a constant about which the force of interest is expected to fluctuate. The sequence $\left\{e_{t}\right\}$ is a sequence of mutually independently and identically distributed (i.i.d.) normal random variables with zero mean and finite variance σ^{2}. This model of δ_{t} ensures that the force of interest generates stochastic interest rates. Finally we assume that a and b are real-valucd consiants, and, unlike westcott (1981), a and b satisfy $a^{2}>4 b$. This ensures that the roots of the characteristic equation of (1.1) are rial. Patljor and Bellhouse (1980, Table 1) demonstrated that in most situations the roots of this characteristic equation are real.

```
Followiny :%nstcot: (1981, Section 2), (1.1) can be written as .
```

$$
\begin{equation*}
u_{t}=a u_{t-1}-b u_{t-2}+e_{t} \tag{1.2}
\end{equation*}
$$

where $u_{t}=\delta,-\bar{\delta}$ Let λ_{1} and λ_{2} be the real roots of the equation

$$
\lambda^{2}-a \lambda+b=0
$$

i.t.。

$$
\lambda_{1}, \lambda_{2}=\frac{a \pm \sqrt{a^{2}-4 b}}{2}
$$

This leads to the following expression for u_{t} satisfying (1.2)

$$
\begin{equation*}
u_{t}=a_{1} \lambda_{1}^{t}+a_{2} \lambda_{2}^{t}+\sum_{j=0}^{t-1}\left(b_{1} \lambda_{1}^{j}+b_{2} \lambda_{2}^{j}\right) e_{t-j}, \quad t=1,2, \ldots \tag{1.3}
\end{equation*}
$$

where, for given initial conditions u_{0} and u_{-1},

$$
\begin{align*}
& b_{1}=\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}}, \quad b_{2}=\frac{-\lambda_{2}}{\lambda_{1}-\lambda_{2}} \\
& a_{1}=\frac{\lambda_{1} u_{0}-b u}{\lambda_{1}-\lambda_{2}}, \quad a_{2}=\frac{b u}{-1}-\lambda_{2} u_{0} \tag{1.4}\\
& \lambda_{1}-\lambda_{2}
\end{align*} .
$$

Let us now introduce the random variable $B_{n}(t)$ which is the accumulated value u : 1 paid at the beginning of the $t^{\text {th }}$ period and accumulated to the end of the $\mathrm{n}^{\text {th }}$ period, $t \leq \mathrm{n}=1,2,3, \ldots$. Thus

$$
\begin{equation*}
B_{n}(t)=\exp \left(\sum_{j=t}^{n} \delta_{j}\right)=\exp \left((n+1-t) \bar{\delta}+\sum_{j=t}^{n} u_{j}\right\} \tag{1.5}
\end{equation*}
$$

Similasly, the accumulated value of an annuity of 1 paid at the beginning of each puriod until the end of the $n^{\text {th }}$ period is S_{n} where

$$
\begin{equation*}
S_{n}=\sum_{t=1}^{n} B_{n}(t) \tag{1,6}
\end{equation*}
$$

In the sefuel wo develop expressions for the moments of $E_{n}(t)$ and S_{n} by expboiting the fact that $\log \left[B_{n}(t)\right]$ is normally distributed (in fact it is a linear combination of $e_{1}, e_{2}, \ldots, e_{n}$, and S_{n} represents the sum of Feg-momal random variables.
2. Difine $A_{n}(t)$ as

$$
\begin{equation*}
A_{n}(t)=\sum_{j=t}^{n} u_{j} \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
\text { and its mgf is } & M_{n}(t, \theta) \text { for real } \theta, \\
& M_{n}(t, \theta)=E\left[\exp \left(\theta A_{n}(t)\right)\right] . \tag{2.2}
\end{align*}
$$

From (1.3), we see that $A_{n}(t)$ is a linear combination of n i.i.d. normal random variables. So the existence of $M_{n}(t, \theta)$ is assured for $-\infty<\theta<\infty$. $A_{n}(t)$ can be written as

$$
\begin{equation*}
A_{n}(t)=\xi(n, t)+\sum_{k=1}^{n} \gamma_{k}(n, t) e_{k}, \quad t=1,2, \ldots, n \tag{2.3}
\end{equation*}
$$

whe :r

$$
\begin{align*}
r_{k}(n, t)=\sum_{j=0}^{n-t} B_{j+t-k} \tag{2.4}\\
B_{r}= \begin{cases}b_{1} \lambda_{1}^{r}+b_{2} \lambda_{2}^{r} & r=0,1,2, \ldots \\
0 & \text { otherwise }\end{cases} \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\zeta(n, t)=\sum_{j=t}^{n}\left(a_{1} \lambda_{1}^{j}+a_{2} \lambda_{2}^{j}\right) \tag{2.6}
\end{equation*}
$$

Thus (2.3) immediately gives

$$
\begin{equation*}
M_{n}(t, \theta)=\operatorname{cxp}\left\{\theta \xi(n, t)+\frac{\theta^{2} \sigma^{2}}{2} \sum_{k=1}^{n}\left(\gamma_{k}(n, t)\right)^{2}\right\} \tag{2.7}
\end{equation*}
$$

and hence from (1.5) and (2.7)

$$
\begin{equation*}
E\left[\left(B_{n}(t)\right)^{k}\right]=\exp \left\{k(n+1-t) \bar{\delta}+k \xi(n, t)+\frac{k^{2} \sigma^{2}}{2} \sum_{r=1}^{n}\left(\gamma_{r}(n, t)\right)^{2}\right\} \tag{2.8}
\end{equation*}
$$

for $k=0,1,2, \ldots$.
Let us now write the expressions for both $\gamma_{k}(n, t)$ and $\xi(n, t)$
in terms of the 'known' constants $b_{1}, b_{2}, \lambda_{8}$ and λ_{2}. Using (2.4) and (2.5)
we find

$$
\gamma_{k}(n, t)=\left\{\begin{array}{l}
b_{1} \lambda_{1}^{t-k}\left(\frac{1-\lambda_{1}^{n-t+1}}{1-\lambda_{1}}\right)+b_{2} \lambda_{2}^{t-k}\left(\frac{1-\lambda_{2}^{n-t+1}}{1-\lambda_{2}}\right), k=1,2, \ldots, t ; \tag{2.9}\\
b_{1}\left(\frac{1-\lambda_{1}^{n-k+1}}{1-\lambda_{1}}\right)+b_{2}\left(\frac{1-\lambda_{2}^{n-k+1}}{1-\lambda_{2}}\right), k=t, t+1, \ldots, n .
\end{array}\right.
$$

Similarly for $t=1,2, \ldots, n$, we find

$$
\begin{equation*}
\xi(n, 1)=a_{1} \lambda_{1}^{t}\left(\frac{1-\lambda_{1}^{n-t+1}}{1-\lambda_{1}}\right)+a_{2} \lambda_{2}^{t}\left(\frac{1-\lambda_{2}^{n-t+1}}{1-\lambda_{2}}\right) \tag{2.10}
\end{equation*}
$$

\because ar nusw in a position 1.0 develop an expression for the moments of an annuity of 1 per poriod payable at the start of each period. Call this annuity S_{n}, i.e.

$$
S_{n}=\sum_{t=1}^{n} B_{n}(t)
$$

10 ijnd the $k^{\text {thi }}$ moment of $S_{n}, k=0,1,2, \ldots$ we proceed as follows:

$$
\begin{equation*}
\left(S_{n}\right)^{k}=\sum_{C(k)}\binom{k}{r}\left(B_{n}(1)\right)^{r_{1}}\left(B_{n}(2)\right)^{r_{2}} \ldots\left(B_{n}(n)\right)^{r_{n}} \tag{2.11}
\end{equation*}
$$

where the summation is over the elements r of the set $C(k)$ and
$C(k)=\left\{r \quad=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in R^{n}: r_{i}=0,1,2, \ldots, k\right.$ and $\left.\sum_{i=1}^{n} r_{i}=k\right\}$, and

$$
\left(\frac{k}{r}\right)=\left(\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{n} \tag{2.12}
\end{array}\right)
$$

is the maltinomial coefficient necessary in the expansion of $\left(S_{n}\right)^{k}$. From
(1.5), (2.1) ard (2.3) we see that

$$
\begin{equation*}
\left(s_{n}\right)^{k}=\sum_{\therefore}^{\ell}\left({\underset{r}{k})}_{k}^{r}\right) \exp \left(\sum_{i=1}^{n} r_{i}\left[(n+1-i) \bar{\delta}+\xi(n, i)+\sum_{j=1}^{n} \gamma_{j}(n, i) e_{j}\right]\right\} \tag{2.13}
\end{equation*}
$$

A slinitt fiutrangemerit of (2.13) yields

$$
\because_{u} \prime^{k}=\sum_{\because(k)}\left(\begin{array}{l}
k \tag{2.14}\\
r
\end{array} \exp \left\{\sum_{j=1}^{n} \mid r_{j}(n+1-j) \bar{\delta}+r_{j} \xi(n, j)+\phi(n, j: r) c_{j}\right]\right\}
$$

where.

$$
\begin{equation*}
\phi(n, j: r)=\sum_{i=1}^{n} r_{i} \gamma_{j}(n, i) \tag{2.15}
\end{equation*}
$$

Thus (2.14) demonstrates that $\left(S_{n}\right)^{k}$ is the sum of log-nomal variates. It also errables us to immediately write down an expression for $E\left[\left(S_{n}\right)^{k}\right]$, $k=0,1,2, \ldots$ as

$$
\begin{equation*}
E\left[\left(S_{n}\right)^{k}\right\rfloor=\sum_{C(k)}\left(\frac{k}{r}\right) \exp \left\{\sum_{j=1}^{n}\left[r_{j}(n+1 \sim j) \bar{\delta}+r_{j} \xi(n, j)+\frac{1}{2} \sigma^{2}(\phi(n, j: r))^{2}\right]\right. \tag{2.16}
\end{equation*}
$$

$$
E\left[\left(S_{n}\right)^{k}\right]=\sum_{C(k)}\left(\begin{array}{r}
k \tag{2.17}\\
r
\end{array} \exp \left(r(\delta+\xi)^{T}+\frac{1}{2} \sigma^{2}(r r)(r r)^{T}\right\}\right.
$$

where

$$
\begin{aligned}
\delta & =(n \bar{\delta},(n-1) \bar{\delta}, \ldots, 2 \bar{\delta}, \bar{\delta}), \quad 1 \times n \text { vector } \\
\xi & =(\xi(n, 1), \xi(n, 2), \ldots, \xi(n, n-1), \xi(n, n)), \quad 1 \times n \text { vector }
\end{aligned}
$$

and

$$
r=\left\{\gamma_{j j}(n)\right\} \text { with } Y_{i j}(n)=\gamma_{j}(n, i) \text { for } i, j=1,2, \ldots, n, n \times n \text { matri) }
$$

Wotc liat for 1 ixed n the vectors δ and E, and the matrix r
are 'knum'. The number of elements r in $C(k)$ is $\binom{n+k-1}{k}$ (sec for examinle Fefler lung, Chapter II.5). These vectors r can fasily be found with the aid of a computor while the matrix and vector multiplications can quickl; be decomplished as well. Thus the moments of S_{n} can be found extc: 1 : using ither equations (2.16) or (2.17) and a computer. It should be fointed omt that the summation ovar $C(k)$ can be written in the form of success:

Fiforinces
[1] Filler, W. (1968). An Introduction To Probability Theory And Its Applications, 3rd edition. Wiley.
[2] Pinjer, H.H. and Bellhouse, D.R. (1980). Stochastic Modelling of Inierest Rates with Applications to Life Contingencies. Thes Journal of Risk and lnsurance, Vol. XLVII, pp. 91-110.
[3] Westcott, 1.A. (1981). Moments of Compound Interest Functions under : 'quctuat ing Interest Rates. Scand. Act. J., pp. 237-244.

