
AUTOMATING PROBABILISTIC INFERENCE 

Ross D. Shachter 

Department of Engineering-Economic Systems 

Stanford University 

Stanford, CA 94305 

October 1984 

Presented at the 

Nineteenth Actuarial Research Conference 1984 

CREDIBILITY THEORY AND BAYESIAN APPROXIMATION METHODS 

University of California, Berkeley 

91 



ABSTRACT 

An influence diagram is a network used to represent random vari

ables, their conditional dependences, and their joint distribution. 

Hore compact and less cluttered than trees, influence diagrams are 

powerful communication tools when formulating a model, and are becoming 

increasingly powerful as solution tools as well. 

An algorithm is developed thst performs inference on a probabil

istic model represented as an influence diagram, vithout constructing or 

manipulating the full joint distribution. In fact, the algorithm can 

detect which information is relevant and needed to solve a given 

problem. Applications include automatic inference on probabilistic data 

sets, symbolic analysis, and decision making under uncertainty. 
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1 • INTROOUCfION 

The analysis of practical Bayesian models on the computer demands a 

convenient representation for the available knowledge and sn efficient 

algorithm to perform inference. An appealing representation ia the 

influence diagram, a network that makes explicit the random variables in 

a model and their probabilistic dependencies. Recent advances have 

developed solution procedures based on the influence diagram. In this 

paper, we examine the fundamental properties that underlie those 

techniques, and the information about the probabilistic structure that 

is available in the influence diagram. 

The influence diagram is a convenient reprebentation for computer 

processing while also being clear and non-mathematical. It displays 

probabIlistic dependence precisely, in a way that is intuitive for 

decision makers and experts to understand and communicate. As a result, 

the same influence diagram can be used to build, assess and analyze a 

model, facilitating changes in the formulation and feedback from 

sensitivity analysis. 

The idea behind this paper is that from a given probabilistic 

model, we want the ability to determine arbitrary conditional 

probability distributions. Given qualitative information about the 

dependence of the random variables in the model we can, for a specific 

conditional expression, specify precisely what quantitative information 

we need to be able to determine the desired conditional probability 

distribution. It is also shown how we can find that probability 

distribution by performing operations locally, that is, over subs paces 

of the joint distribution. These results are extended to include 
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maximal processing when the information available is incomplete and 

optimal decision making in an uncertain environment. 

Influence diagrams as a computer-aided modeling tool were 

developed by Miller. Merkofer. and Howard (1976) and extended by Howard 

and Matheson (1981). Good descriptions of how to use them in modeling 

are in Owen (1978) and Howard and Matheson (1981). The notion of 

solving a decision problem through influence diagrams was examined by 

Olmsted (1984) and such an algorithm was developed by Shachter (1984). 

The latter paper also shows how influence diagrams can be used to 

perform a variety of sensitivity analyses. This paper extends those 

results by developing a theory of the properties of the diagram that are 

used by the algorithm. and the information needed to solve arbitrary 

probability inference problems. 

Section 2 develops the notation and the framework for the paper and 

the relationship between influence diagrams and joint probability 

distributions. In Section 3 several examples of influence diagrams are 

shown to illustrate the modeling power and nature of the graphs. The 

general probabilistic inference problem is posed in Section 4. In 

Section 5 the transformations on the diagram are developed and then put 

together into a solution procedure in Section 6. In Section 7. this 

procedure is used to calculate the information requirement to solve an 

inference problem and the maximal processing that can be performed with 

incomplete information. These results are extended to models with one 

or more decisions in Section R. Section 9 contains a summary of results 

and suggestions for future research. 
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2. BASIC FRAHRWORlt 

Consider n random variables xl ••••• xn with corresponding sample 

spaces °1", .·.On and let N be the set of their indices {I ••••• n}. 

For any subset of indices J c N. let denote the random variables 

indexed by J and let OJ denote the corresponding cross product 

space. For each random variable there is a (possibly empty) set 

of conditioning variables xCi' indexed by Ci c N and a conditional 

probability distribution ~i for the probability of given xc· 1 
Any joint distribution for ~ can be factored into these conditional 

distributions and. if the conditioning sets {Ci } are chosen properly. 

the factored distributions correspond to exactly one joint distribution. 

Our goal is to use a network to represent and manipulate the joint 

distribution of ~. Let the set N be the nodes in the network and 

let A be a set of directed arcs where A - {(k.i) : k ~ Cit i ~ N}. 

These arcs do not represent causality, but merely indicate one possible 

view of the conditional probability dependence of the random variables. 

In order to ensure that there is exactly one joint distribution 

corresponding to the network, the directed graph may admit no cycles. 

An influence diagram Is a network consisting of an acyclic directed 

graph G - (N,A), associated node sample spaces {Oi}' and conditional 

probability distributions {~i}. 

Proposition 

Given an influence diagram. there is a unique jOint distribution 

corresponding to it. There may be many different influence 

diagrams corresponding to any joint distribution. 
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There is a standard result (Lawler (1976) in network theory that a 

directed graph is acyclic if and only if there is a list of the 

nodes such that any successor of a node in the graph follows it in 

the list as well. 

Given an influence diagram. it therefore follows that there is some 

permutation of the nodes. il ••••• i n • such that random variable 

may only be conditioned on variables 

The joint distribution is then simply 

Where is just the marginal for Xii 

Xi t •••• xi • 
I j-I 

tti (xi Ixc
i 

) • 
n n n 

since Ci 
1 

is the null 

set. On the other hand. given any joint distribution. an influence 

diagra!1l can be generated based on any permutation of N. 0 

Note that if the directed graph did contain a cycle. it might not 

be posaible to determine the joint distribution. or a valid distribution 

may not exist. 

The real power .. of. the influence diagra!1l emer/tes when there is 

considerable conditional independence. In that case. the graph does not 

contain the maximal number of arcs. but rather is sparse in arcs. For 

Ci must be a subset 
j 

of {il ••••• i j _
I
}. When there is conditional independence. it is a 

proper subset. 
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It is useful to define several set-to-set mappings based on the 

conditioning arcs. Let C(J) be the indices of the random variables 

which condition that is. 

The nodes in C(J) are called the direct predecessors of the nodes J 

in the graph. The inverse mapping C-1(J) is the set of indices of 

random variables conditioned by x
J

• or 

The nodes C-1{J) are known as the direct successors of the nodes J in 

the graph. Let D(J) be the set of nodes which can reach nodes J by 

(possibly triviai) directed paths in the graph. These are called the 

weak predecessors of nodes J and are recursively defined by 

D(J) ~ J U D(C(J» - J U C(J) U C(C(J» U •••• 

Similarly, D-1(J) is the set of nodes which are reachable from nodes 

J. They are called the weak successors of nodes J and are defined by 

the recursive formula 

It is sometimes helpful to restrict the graph being considered. Let 

D_K(J) be the weak predecessors of nodes J excluding nodes K. with 

recursive definition 
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- (J\K) U (C(J\K)\K) U (C(C(J\K)\K)\K) U ••• , 

where '\' denotes set subtraction. A similar definition applies to 

-I 
D_K(J), the weak successors of nodes J excluding nodes K. 
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3. INFLUKHCE DIAGRAM EXAHPLES 

This section illustrates the use of influence diagrams in building 

probabilistic models. For more information on this suhject, see Roward 

and Hatheson (1981) and Owen (1978). 

The possible influence diagram graphs with two random variables are 

shown in Figure 1. Cases (a) and (b) represent the general case of 

possible dependence, with both possible factorizations. The same joint 

distribution can be represented by either diagram and Bayes' Theorem is 

used to transform one into the other. Case (c) shows independence 

between the variables. Such a joint could also be represented by 

diagrams (a) or (b), but with a loss of information in the graph. 

Some of the possible diagrams when there are three random variables 

are shown in Figure 2. Case (a) corresponds to a particular 

factorization of the general case of dependence, While (b) represents 

mutual independence. Case (c) shows partial independence, and (d) 

represents conditional independence. The power of an influence diagram 

as a communications device is its ability to convey the distinction 

between these forms of independence, even to someone not trained in 

probability. Case (e) is an example of a cyclical graph, which is not a 

valid influence diagram. 

Figure 3 is the influence diagram representation for a Harkov 

chain, where the random variables are the value of the state at 

different points in time. (This is not the usual representation of a 

Harkov chain, in which nodes correspond to states.) This is an 

intuitive illustration of the Harkov property, that the future is 

independent of the past, given the present. Applying Bayes' Theorem 
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from left to right, it is possible to obtain the reverse chain Rnd to 

show that it is Harkov as well. 

An example of a reliability network is illustrated in Figure 4. 

The normal assumption of component independence is represented by the 

tree structure of the graph. It is straightforward to incorporate 

common cause failures in the influence diagram model. While this 

destroys the pure independence of the components, it does maintain much 

of the original structure. 

Figure 5 illustrates a simple example of a meter monitoring the 

temperature in a chemical process. Assuming that the influence diagram 

corresponds to the most straightforward way to assess the conditional 

probabilities for the variables in the model, this gives uS their rather 

complex jOint distribution in a clear and naturnl form. Other factors 

which are important can be noted and easily added to the model. 

All of these examples illustrate the graphs of influence diagram 

without discussing the sample spaces and probability distribution. This 

feature of influence diagrams allows the modeling process to be broken 

into two phases. The construction of the graph involves the broad 

picture, capturing the key variables and their dependencies. The other 

phase, determining values for the variables and distributions is much 

more technical. The focus in this paper is on what can be determined 

from just the graph, including which technical data need to be 

obtained. Huch can be learned about the nature and structure of a 

problem from the influence diagram graph alone. 
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4. PROBABILISTIC INFERENCE 

The general probabilistic inference problem considered in this 

paper is to find p(f(xJ)I~} where J snd K are arbitrary subsets 

of Nand f is an arbitrary measurable function on OJ. Given a set 

of random variables many such problems can be posed, which can be 

solved by the algorithm developed in the next sections. 

In the solution of the inference problem, a new random variable, 

~, is considered, where 

When node 0 is added to the graph, it has direct predecessors Co - J 

and no direct successors C-l«O}) Q~. The nature of the solution Is 

the elimi~ation of nodes and the transformation of conditioning arcs in 

the graph until only 0 and K remain, with CO c K In the revised 

graph. At that point, the updated conditional probability distribution 

Is the desired result. 

This same framework can be used to solve for the optimal decision 

In a stochastic dynsmic program. Let xd be a varisble which is not 

determined as a state-of nature, but rather Is under the control of a 

decision maker, seeking to maximize the expected value of a utility 

function u(xJ ). Let Bd be the indices of the random variables 

whose realizations will be observed by the decision maker before 

choosing the value of xd from the alternative set 0do The decision 

maker is solving the optimization problem 
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This is easily found, given a solution to the inference problem 
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5. TRANSFORMATIONS 

The nature of a solution procedure is to eliminate nodes from the 

graph without changing the probability distribution P(f(xJ}I~}. The 

process by which the structure of the graph is modified is based on two 

transformations--the elimination of -barren- nodes and the reversal of 

arcs. Using these transformations, any node can be eliminated from the 

graph. 

Consider a node i { J U K which has no direct successors, 

C-1({i}) - a. Such a node is worth noting because it is irrelevant to 

the problem being solved, its distribution supplies no information about 

the probabilistic inference P{f(xJ}I~}. Clearly removing such a 

node from the influence diagram is the first step in a solution 

procedure. However, in the process of modifying the diagram, more such 

nodes may be created. These are nodes outside of J U K whose only 

direct successors were the nodes that were just removed. 

A node 1 will be called ~ with respect to J and K 1f 1t 

is not a weak predecessor of J or K, that is, if 1 {D(JUK}. For 

example, in Figure 6, suppose that J - {2l. If K - {S,7} then nodes 

I and 3 are barren. If. however, K - {I}, then no nodes are barren. 

Proposition. Barren Node Removal 

If node i 1s barren with respect to J and K then it can be 

eliminated from the influence diagram without changing the value of 
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Proof 

Conslder the set of weak successors of 1. M - D-1({i}). Clearly 

H n (JuK) -~. slnce node 1 'D(JUK). On the other hand. 

because the graph is acycllc at least one of the nodes in M has 

no successors and may be removed from the graph. This process can 

continue until node i is the only node left in M. It must then 

have no successors and may, itself. be removed. Note that if node 

i were deleted on the first step. the other nodes in M would 

still be barren. o 

It should be remembered that a node is not inherently barren. but 

only barren with respect to a particular J and K. Essentially. the 

information about a barren random variable is orthogonal to the 

inference problem being solved. 

The other basic transformation to the influence diagram is the 

reversal of an arc. an application of Bayes' Theorem. It is shown in 

Figure 7. 

Theorem. Arc Reversal. 

Given an influence diagram containing an arc from i to j but no 

other directed path. from i to j. then it is possible to 

transform the diagram to one with an arc from j to i instead. 

In the new diagram. both i and j inherit each other's direct 

predecessors (conditioning random variables). 
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Proof 

The ne~ conditional probability distribution for Xj is found by 

conditional expectation, 

p{xjlxc u c \{Ol - E[p{xjlxi}lxc u c \(1)1 
i j i j 

- 10 x(xjlxc )x(xilxc )dxi • 
i j i 

The new conditional probability distribution for xi can then be 

computed using Bayes' Theorem, 

The addition of conditioning variables can be interpreted 

either as a necessary consequence of the expectations, or as 

bringing both random variables xi and Xj to the same state of 

information before applying Bayes' Theorem. Like~ise. the 

requirement that t~ere be no other directed (i.j)-patb is necessary 

and sufficient to prevent creation of a cycle, but it also allo~9 

the new conditional probability for Xj to be computed by a simple 

expectation. 0 
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6. SOLUTION PROCEDURE 

Theorem. Node Removal 

Proof 

Any node in an influence diagram may be removed from the diagram. 

First. order its successors. if sny. and reverse the arcs from the 

node to each successor in order. At that point it has no 

successors and is barren. so it may be eliminated from the diagram 

It is only necessary to show that it is possible to perform all of 

the arc reversals. Because the graph is acyclic. all of the 

successors can be ordered so that none' of the others is an indirect 

predecessor of the first one. This guarantees that there is no 

other directed path from the node being removed to its first 

successor. The arc can then be reversed and the process continues 

until no successors remain. o 

The reason that a node that is relevant can become barren is that 

the arc reversals. incorporating Bayes' Theorem, perform probabilistic 

inference. By the time all of the arcs have been reversed, all of the 

relevant information has been extracted from the node. As a result. it 

is possible for any node to become barren. Given a set K in the 

problem P{f(xJ)I~}. it would not make sense to remove any node in 

K. However, in the course of solving the problem a new random variable, 

XU - f(xJ >. ·is added, and the nodes in J\K may now be made barren 

with respect to CO} and K when solving p(xOI~}. 

Note that when there is only one successor of a node, the removal 

process may be simplified to just II conditional expectation. It is n"ot 
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necessary to compute the new conditionsl probability distribution for 

the variable being removed, since it is, in fact, about to be removed. 

Corollary. Solving the Inference Problem 

In order to solve the general inference problem P{f(xJ)I~}, 

create new variable Xo - f(XJ ) with conditional variables J, 

and remove all variables except 0 and K in any order. The 

desired expression is the resulting conditional probability 

distribution for 

While the variables other than 0 and K may be removed in any 

order, clearly some orders may be more efficient than others. 
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7 • INFORMATION REQOIRJm 

In this section, formulae for the information needed to solve 

several variations of the inference problem are derived. These 

results are based on the topology of the influence diagram graph and do 

not depend upon the actual sample spaces or probability distributions. 

Since arcs may be present in the graph even when random variables are 

conditionally independent, these results may overstate the need for 

information. It is therefore important to capture a natural influence 

diagram in the first place, which would tend to show considerable 

conditional independence. It is also important not to manipulate it too 

much before processing a particular J and K. .Every time the 

influence diagram is transformed some information may be lost in the 

graph through the addition of arcs. 

The following algorithm calculates the set R(J,K}, the nodes 

that will have to be removed to solve the inference problem 

R + rJ 

S + J 

While s'; rJ do 

begin 

R + R U (D(J U K) n n=i(D_K(S}}) 

S + C( K n C -1 ( R)} \ R 

end 

R(J ,K} + R 
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Theorem. Nodes to be Ignored. 

Proof 

Given an inference problem P{f(xJ)I~} the nodes in the set 

R(J,K) must be removed and the nodes in the set N\R(J,K)\K may 

be ignored. If there is additional conditional independence in the 

diagram not revealed by the graph, the set R(J,K) may be smaller. 

First eliminate all nodes which are barren with respect to J and 

K. The remaining nodes are given by D(J UK), the weak 

predecessors of J or K. Next, add random variable x -o 
and corresponding node 0 with direct predecessors J. At every 

step, remove a node not in K from the current set of direct 

predecessors of O. (When all of the direct predecessors of 0 

are contained in K, then the conditional probability distribution 

for is the desired result.) The set R(J,K) is the set of 

all nodes which would be removed in this process. 

To compute the set R(J,K), first consider the set of 

weak predecessors of J, D(J), which clearly cannot contain any 

barren nodes. Each of these predecessors would be contained in 

R(J,K) unless all of the directed paths from that node to 0 go 

through K, since nodes in K are not removed. Instead, 

consider -the set of weak predecessors of J excluding K, 

D_K(J). Any node in this set cannot be barren and must, in fact, 

be contained in R(J,K). Likewise, any indirect successors of 

these nodes excluding K, -1 
D_K(D_K(J», will also become 

direct predecessors of 0 as nodes are removed, unless they are 

barren nodes. 
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These are all of the nodes which must be removed, unless s 

node in K needs to be reversed in the course of the solution and 

it has another predecessor. In that case, in the process of 

reversal the predecessor gets to -see" node 0 and so can its 

predecessors. This results in the algorithm above to compute 

R(J ,K). 

The remaining set of nodes can be simply eliminated, either 

because they are barren, or because they are shielded from becoming 

predecessors of 0 by nodes in K. 

Note that, without the ability to recognize additional 

conditional independence and to remove the corresponding arcs, all 

of the nodes in R(J,K) would become direct predecessors of 0 no 

matter what order the nodes were removed. Thus, this set is 

minimal, given the topology of the graph. 0 

A tricky part of the above proof dealt with nodes in K that have 

more than one predecessor. For example, in Figure 5, in calculating 

P{explosionlmeter reading}, the meter error must be included in the 

analysis. In Figure 4, if we consider the probability a component has 

failed given that the system is working, then we need to include all of 

the variables in our analysis. 

Corollary. Nodes to be Ignored. 

Given an unconditional inference problem P{f(x
J

)} then nodes in 

the set R(J,~) a D(J) must be removed and the other nodes, 

N\D(J), may be ignored. 
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Theorem. Sufficient Information to Perform Inference 

Proof 

In order to solve the inference problem P(f(xJ)I~}, it is 

necessary to have sample space 0i and conditional distribution 

wi for every i in the set N.(J,K) given by 

and a sample space 0i for every i in NQ(J,K) given by 

Neither a sample space nor a probability distribution is needed for 

any other variables. 

The nodes to be ignored may be eliminated directly by the previous 

theorem, so there is no information required for these variables. 

Information may be needed instead for the nodes in R(J,K) and K. 

A probability distribution and sample space are needed for 

both nodes when the arc between them is reversed. Since none of 

the nodes in R(J ,K) is barren, this information will be needed to' 

remove everyone of them. Some of those removals will involve 

reversing arcs from nodes in R(J,K) to nodes in K, and this 

informatio~-will be needed for those as well. Therefore. 

probabilities and sample space are needed for variables with 

indices in the set 
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No information is needed for those random vsriables in 

that are irrelevant in the solution of P{f(xJ)I~}. These 

correspond to nodes that have no arcs outside of K during the 

course of the procedure, 

Finally, a sample space is needed for each random variable in 

~ that does becomes a conditioning variable for ~ D f(xJ ) 

during the course of the procedure, but that does not require a 

probability diatribution. These are the nodes in K not already 

accounted for, 

Ng(J,K) D C(N~(J,K» \ Nn(J,K) • o 

These formulae can be used effectively in an object oriented and/or 

parallel processing environment to determine which information it is 

necessary to obtain before a solution procedure is invoked. 

corOllary. Haximal Processing with Hissing Information. 

Consider the inference problem P{f(xJ)I~} when no conditional 

probability distributions are available for the random varisbles 

indexed by L. The maximal processing that can be performed 

computes P{f(xJ)lxH} where 

H - D(J U K) n (K U L U C(L» 

The nodes that must be removed to compute this are given by 

R(J,K,H) computed by the following algorithm: 
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R .. rJ 

s .. J 

whUe S -I rJ do 

begin 

R .. R u (D(J U K) n D=~(D_H(S») 
S .. e(K n e-1(R» \ R 

end 

R(J,K,H) .. R 

and the nodes that may be ignored are given by N \ R(J,K,H) \ H. 

Proof 

By the previous theorem, if L is disjoint from R(J ,K) U (K n 

e-1(R(J ,K») ,. (equivalent to R(J,IO disjoint from (L n e(L»), 

then the complete problem p( f(x
J

) I~} lIIay be solved. 

Otherwise, it is not possible to remove nodes in L or nodes that 

directly precede L unless they are barren with respect to J or 

K. o 

It is important to distinguish between two different uses for the 

conditional probability distribution P{f(xJ)I~}. In one case, the 

conditioning variables bave been observed and this expression gives the 

probability distribution for f(x
J

) taking that into account. In the 

other case, however, it is possible to compute an unconditional 

distribution for f(x
J

) a priori by conditional expectation under 

varying scenarios for the distribution of the conditioning variables. 

In this latter case, sometimes called "stochastic sensitivity" (Matheson 
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and Howard (1968», there is the danger thdt a particular distribution 

for the conditioning variables WRS used in computing p{f(xJ>lxK} in 

the first place. The proper technique is to treat the conditioning 

variables ag if there were no probability distribution available, and to 

ua.e the previous result to allow maximal inference without resorting to 

circular logic. 
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8. INCORPORATING DECISIONS 

The results already derived may be applied not just to problems of 

inference but also to sequences of decisions. There are several 

conditions that must be satisfied for decisions to be analyzed in this 

framework. 

A decision is represented as a random variable that is uncondi

tioned but for which there is no probability distribution. The actual 

choice of outcome is determined by maximizing the expected value of a 

utility function u(x
J
}. 

For each decision d. there is a set of indices B
d

• 

corresponding to the variables that will be observed before a decision 

is made. There is an sssumption of -free will.- which requires that 

d 'D(B
d

}. If this were violated. it would be possible to infer 

something about the decision being made from the information available 

to the decision maker. On the contrary. we assume that the decision 

maker is free to chose a utUity function such that any alternative may 

be selected. 

We assume that there is a single. rational decision maker. It 

follows that the decisions to be made can be totally ordered. that is. 

for any two decisions either one is made first or they are made 

simultaneollsly" (really combined into one decision). We also assume "no 

forgetting.- that information available at the time of one decision will 

be available for all subsequent decisions. Therefore. we can order all 

of the decisions. d1 ••••• dm and it follows that if i < j then 
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Theorem. Making Multiple Oecisions. 

Consider an influence diagram with one or more decisions. Starting 

with the latest decision, dm, find that alternative which 

maximizes E[U(XJ)/Xdm,XBdm] for each combination of 

variables Then proceed to the next earlier decision 

and repeat. 

This is just the standard technique for solving a stochastic 

dynamic program, incorporati,~ the previous results on solving the 

inference problem. o 

Corollary. Maximal Decision Making with Missing Information 

Consider an influence diagram with one or more decisions ~len no 

conditional probability distributions are available for the random 

variables indexed by L. Decisions can be determined, starting 

with the latest decision, d
m

, provided that D(J U Bd
m 

U {d
m

}) 

n (L U C(L» is contained within Bd
m 

U {dm}. Otherwise, there 

is insufficient information to determine optimal decisions earlier 

than the latest decision for which this is violated. For that 

latest decision. d
j

• the maximal processing which can be 

performed computes 
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(X)NCLUSIONS 

There are a number of good reasons to represent a probabilistic 

model as an influence diagram. Because it is concise and intuitive, it 

fosters good communications among people building, analyzing, and using 

the model. At the same time, it is a convenient structure with which to 

implement a solution procedure. Finally, it permits us to determine how 

much information we need to obtain a desired result, and what results 

are poasible with the information available. 

One main application of this research is in the construction of a 

decision system, an automated tool to assist a decision maker.' The 

influence diagrams processed by the algorithm can be constructed and 

interpreted by programs within the system. (In Roltzman[1984) such 

influence diagrams are automatically constructed using an expert 

system.) The ability to determine the information needed to answer a 

given question is critical in such an environment. Of course, once 

supplied with the necessary information, the algorithm developed here 

is able to find the answers as well. 

The algorithm and results apply not just to computing a solution, 

but can be used on symbolic problems as well. Given an influence 

diagram graph with no quantitative information, one can determine what 

information it"yould take to solve a given problem and what steps, i.e., 

conditional expectationa and applications of Bayes' Theorem, will be 

necessary to obtain an analytical result. This kind of analysis can be 

done without even assuming a form for the random variables. 

There are two important directions in which this research can 

continue in order to make it more useful. First, it is necessary to 
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investigate the optimal order in which nodes should be removed in 

solving an inference problem. Even using influence diagrams it is 

possible for the intermediate sample spaces to be too large to 

realistically process. Further wo['k is needed on optimal algorithms or 

heuristics to fully exploit the conditional independence and maintain 

the smallestp09aible state spaces for computation. 

Another area of research would be to take advantage of the 

asymmetries in problems. As developed so far, influence diagrams are 

inherently symmetric. When a problem's stucture is not very symmetric, 

the representation becomes forced and unnatural and the solution 

procedure must perform redundant work. It would take a fundamental leap 

to develop the theory for some sort of "tree of influence diagrams" but 

it would be of considerable practical value. 
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