2017 Predictive Analytics Symposium

Session 22, TensorFlow (workshop)

Moderator: Stuart Klugman, FSA, CERA, Ph.D.

Presenter: Jeff T. Heaton, Ph.D.

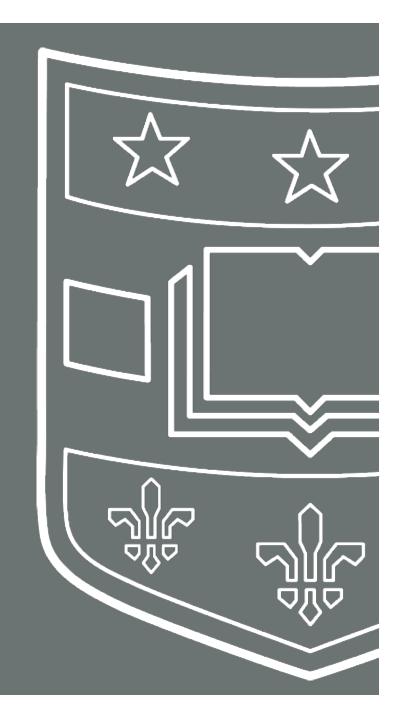
SOA Antitrust Compliance Guidelines SOA Presentation Disclaimer

Session 22: TensorFlow (workshop)

Presented by Jeff Heaton, Ph.D.

September 14, 2017 – SOA Predictive Analytics Symposium.

Washington University in St. Louis



Jeff Heaton, Ph.D.

- Lead Data Scientist at RGA
- Adjunct Instructor at Washington University
- Fellow of the Life Management Institute (FLMI)
- Senior Member of IEEE
- Kaggler (Expert level)
- http://www.jeffheaton.com
 - (contact info at my website)

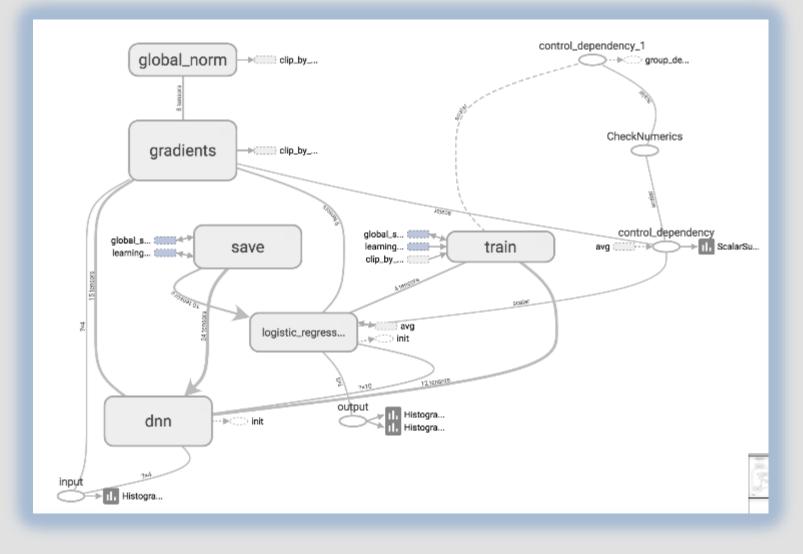
T81-558: Applications of Deep Learning

- Course Website: https://sites.wustl.edu/jeffheaton/t81-558/
- Instructor Website: https://sites.wustl.edu/jeffheaton/
- Course Videos: https://www.youtube.com/user/HeatonResearch

Presentation Outline

- TensorFlow as a Compute Graph/Engine
- Keras and TensorFlow
- Keras: Classification
- Keras: Regression
- Keras: Computer Vision and CNN
- Keras: Time Series and RNN
- GPU

TensorFlow as a Compute Graph/Engine



What are Tensors? Why are they flowing?

- Tensor of Rank 0 (or scaler) simple variable
- Tensor of Rank 1 (or vector) array/list
- Tensor of Rank 2 (or matrix) 2D array
- Tensor of Rank 3 (or cube) 3D array
- Tensor of Rank 4 (tesseract/hypercube) 4D array
- Higher ranks (hypercube) nD array

What is a Computation Graph?

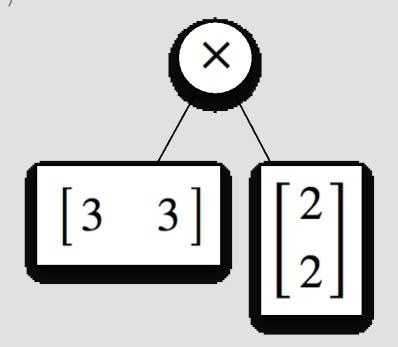
import tensorflow as tf

```
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
```

```
with tf.Session() as sess:
    result = sess.run([product])
```

print(result)

 $\begin{bmatrix} 3 & 3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \times 2 + 3 \times 2 \end{bmatrix} = \begin{bmatrix} 12 \end{bmatrix}$



Computation Graph with Variables

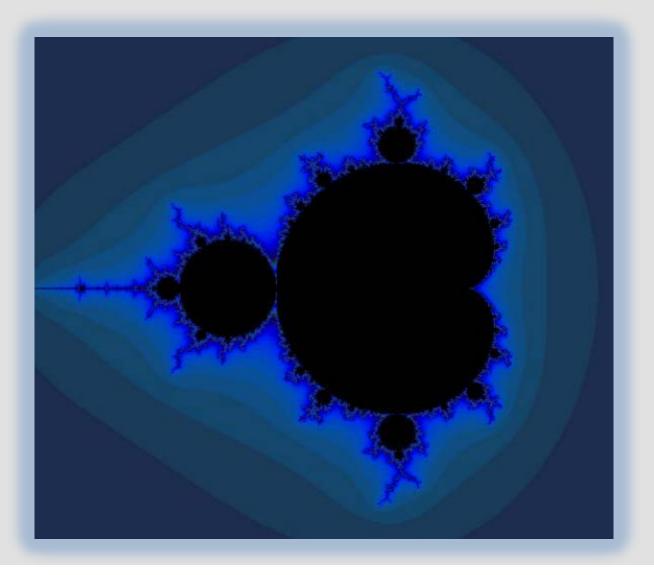
```
import tensorflow as tf
sess = tf.InteractiveSession()
```

```
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
x.initializer.run()
```

```
sub = tf.subtract(x, a)
print(sub.eval())
# ==> [-2. -1.]
```

```
sess.run(x.assign([4.0, 6.0]))
print(sub.eval())
# ==> [1. 3.]
```


Computation Graph for Mandelbrot Set



Mandelbrot Set Review

- Some point *c* is a complex number with *x* as the real part, *y* as the imaginary part.
- $Z_0 = 0$
- $Z_1 = C$
- $Z_2 = Z_1^2 + C$
- ...
- $Z_{n+1} = Z_n^2 + C$

Mandelbrot Rendering in TensorFlow

```
xs = tf.constant(Z.astype(np.complex64))
```

```
zs = tf.Variable(xs)
```

```
ns = tf.Variable(tf.zeros_like(xs, tf.float32))
```

```
tf.global_variables_initializer().run()
```

```
# Compute the new values of z: z^2 + x
```

```
zs_ = zs^*zs + xs
```

```
# Have we diverged with this new value?
```

```
not_diverged = tf.abs(zs_) < 4</pre>
```

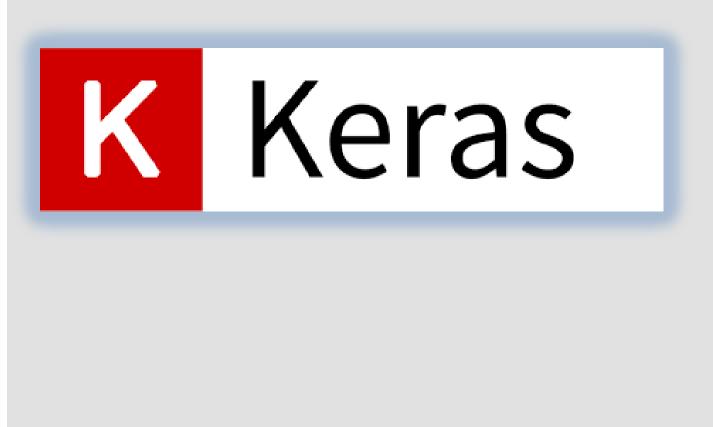
```
step = tf.group(
```

```
zs.assign(zs_),
```

```
ns.assign_add(tf.cast(not_diverged, tf.float32))
```

```
for i in range(200): step.run()
```


Keras and TensorFlow





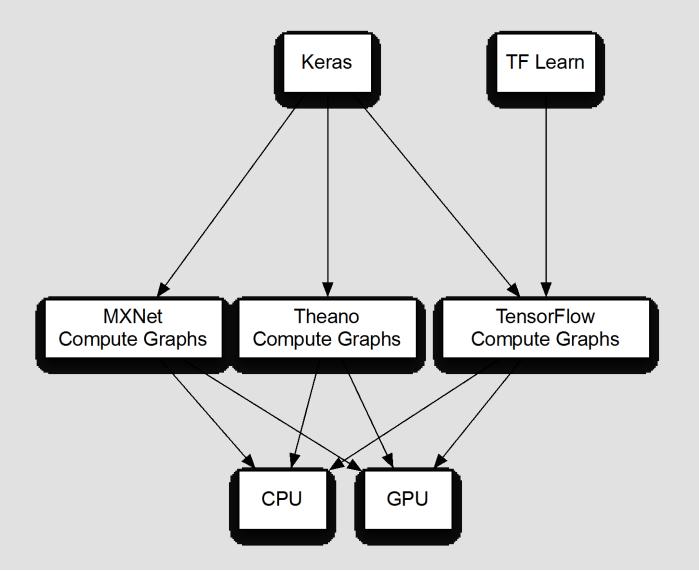
Tools Used in this Presentation

- Anaconda Python 3.6
- Google TensorFlow 1.2
- Keras 2.0.6
- Scikit-Learn
- Jupyter Notebooks

Installing These Tools

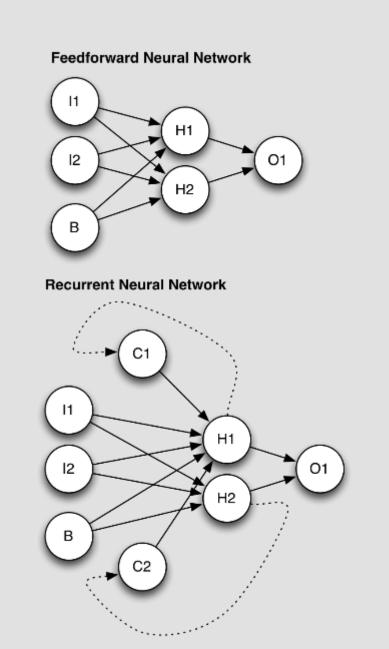
- Install Anaconda Python 3.6
- Then run the following:
 - conda install scipy
 - pip install sklearn
 - pip install pandas
 - pip install pandas-datareader
 - pip install matplotlib
 - pip install pillow
 - pip install requests
 - pip install h5py
 - pip install tensorflow==1.2.1
 - pip install keras==2.0.6

Keras and TensorFlow



Anatomy of a Neural Network

- Input Layer Maps inputs to the neural network.
- Hidden Layer(s) Helps form prediction.
- **Output Layer** Provides prediction based on inputs.
- **Context Layer** Holds state between calls to the neural network for predictions.



What is Deep Learning

- Deep learning is almost always applied to neural networks.
- A deep neural network has more than 2 hidden layers.
- Deep neural networks have existed as long as traditional neural networks.
 - We just did not have a way to train deep neural networks.
 - Hinton (et al.) introduced a means to train deep belief neural networks in 2006.
- Neural networks have risen three times and fallen twice in their history. Currently, they are on the rise.

The True Believers – Luminaries of Deep Learning

- From left to right:
- Yann LeCun
- Geoffrey Hinton
- Yoshua Bengio
- Andrew Ng

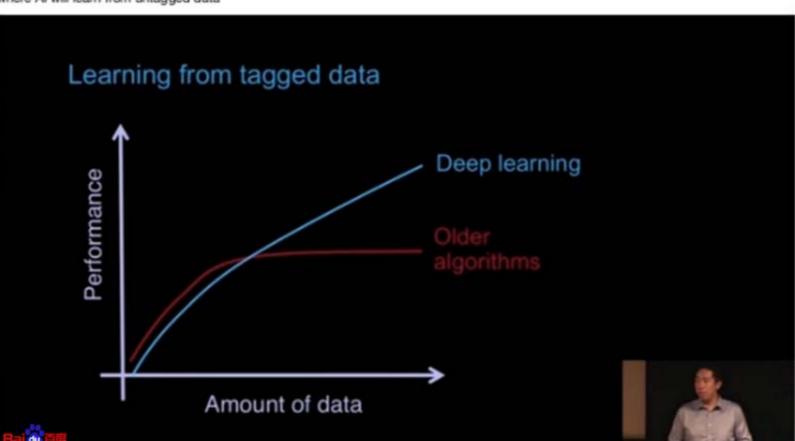
Why Use Deep Learning

- Deep neural networks often accomplish the same task as other models, such as:
 - Support Vector Machines
 - Random Forests
 - Gradient Boosted Machines
- For many problems deep learning will give a less accurate answer than the other models.
- However, for certain problems, deep neural networks perform considerably better than other models.

Why Deep Learning (high y-axis is good)

Andrew Ng on Deep Learning

where AI will learn from untagged data



Supervised or Unsupervised?

Supervised Machine Learning

- Usually classification or regression.
- For an input, the correct output is provided.
- Examples of supervised learning:
 - Propensity to buy
 - Credit scoring

Unsupervised Machine Learning

- Usually clustering.
- Inputs analyzed without any specification of a correct output.
- Examples of unsupervised learning:
 - Clustering
 - Dimension reduction

Types of Machine Learning Algorithm

- **Clustering**: Group records together that have similar field values. For example, customers with common attributes in a propensity to buy model.
- **Regression**: Learn to predict a numeric outcome field, based on all of the other fields present in each record. For example, predict the amount of coverage a potential customer might buy.
- **Classification**: Learn to predict a non-numeric outcome field. For example, learn the type of policy an existing customer has a potential of buying next.

Application of Machine Learning Algorithm

	Predictive Modeling	Computer Vision	Time Series
Classification	Intrusion Detection	Face Recognition	Buy, Sell, or Hold?Intrusion Detection
Regression	 Normal Operating Levels 	Age Determination	 Tomorrow's opening stock price
Clustering	 Product Recommendation 	 Design Recommendation 	Anomaly Detection

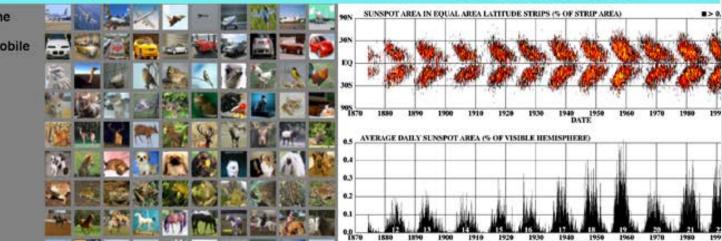
Time Series

Problems that Deep Learning is Well Suited to

Predictive Modeling

5.1 3.5 1.4 0.2 <i>I. setosa</i> 4.9 3.0 1.4 0.2 <i>I. setosa</i> 4.7 3.2 1.3 0.2 <i>I. setosa</i> 4.6 3.1 1.5 0.2 <i>I. setosa</i> 5.0 3.6 1.4 0.2 <i>I. setosa</i> 5.4 3.0 1.7 0.4 <i>I. setosa</i>	airplane
4.3 5.0 1.4 6.2 1. selosa 4.7 3.2 1.3 0.2 <i>l. selosa</i> 4.6 3.1 1.5 0.2 <i>l. selosa</i> 5.0 3.6 1.4 0.2 <i>l. selosa</i> 5.4 2.0 1.7 0.4 <i>l. selosa</i>	
4.6 3.1 1.5 0.2 <i>I. setosa</i> 5.0 3.6 1.4 0.2 <i>I. setosa</i>	automob
4.6 3.1 1.5 0.2 <i>I. setosa</i> 5.0 3.6 1.4 0.2 <i>I. setosa</i> 5.4 2.0 1.7 0.4 <i>I. setosa</i>	bird
5.0 3.0 1.4 0.2 7. Selosa	
5.4 3.9 1.7 0.4 I. setosa	cat
	deer
4.6 3.4 1.4 0.3 <i>l. setosa</i>	
5.0 3.4 1.5 0.2 <i>l. setosa</i>	dog
4.4 2.9 1.4 0.2 <i>l. setosa</i>	frog
4.9 3.1 1.5 0.1 <i>I. setosa</i>	10
5.4 3.7 1.5 0.2 <i>I. setosa</i>	horse

Computer Vision



Keras: Classification

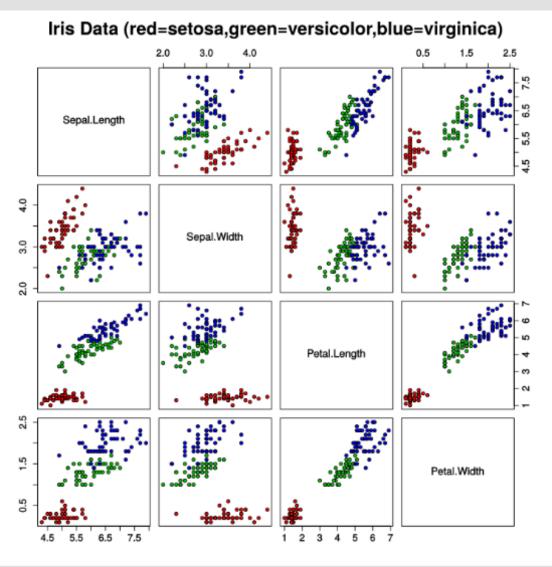
The Classic Iris Dataset

- Classic classification problem.
- 150 rows with 4 predictor columns.
- All 150 rows are labeled as a species of iris.
- Three different iris species.
- Created by Sir Ronald Fisher in 1936.
- Predictors:
 - Petal length
 - Petal width
 - Sepal length
 - Sepal width

The Classic Iris Dataset

sepal_length	sepal_width	petal_length	petal_width	class
5.1	3.5	1.4	0.2	Iris-setosa
7.0	3.2	4.7	1.4	Iris-versico
6.3	3.3	6.0	2.5	Iris-virginica
6.4	3.2	4.5	1.5	Iris-versicolor
5.8	2.7	5.1	1.9	Iris-virginica
4.9	3.0	1.4	0.2	Iris-setosa

Are the Iris Data Predictive?



Keras Classification: Load and Train/Test Split

```
path = "./data/"
```

```
filename = os.path.join(path,"iris.csv")
df = pd.read_csv(filename,na_values=['NA','?'])
```

```
species = encode_text_index(df, "species")
x,y = to_xy(df, "species")
```

```
# Split into train/test
x_train, x_test, y_train, y_test = train_test_split(
        x, y, test_size=0.25, random_state=42)
```

Keras Classification: Build NN and Fit

```
model = Sequential()
```

```
model.add(Dense(10, input_dim=x.shape[1],
kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
model.add(Dense(y.shape[1],activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3,
patience=5, verbose=1, mode='auto')
```

model.fit(x,y,validation_data=(x_test,y_test),callbacks=[monitor],ve
rbose=2,epochs=1000)

Keras Classification: Build NN and Fit

Evaluate success using accuracy

raw probabilities to chosen class (highest probability)
pred = model.predict(x_test)

pred = np.argmax(pred,axis=1)

y_compare = np.argmax(y_test,axis=1)
score = metrics.accuracy_score(y_compare, pred)
print("Accuracy score: {}".format(score))

Keras: Regression

Predict a Car's Miles Per Gallon (MPG)

- Classic regression problem.
- Target: mpg
- Predictors:
 - cylinders
 - displacement
 - horsepower
 - weight
 - acceleration
 - year
 - origin
 - name

Predict a Car's Miles Per Gallon (MPG)

			horsepow		accelerati			
mpg	cylinders	ment	er	weight	on	year	origin	name
18	8	307	130	3504	12	70	1	chevrolet chevelle malibu
15	8	350	165	3693	11.5	70	1	buick skylark 320
18	8	318	150	3436	11	70	1	plymouth satellite
16	8	304	150	3433	12	70	1	amc rebel sst
17	8	302	140	3449	10.5	70	1	ford torino
15	8	429	198	4341	10	70	1	ford galaxie 500
14	8	454	220	4354	9	70	1	chevrolet impala

Regression Models - MPG

- Models such as GBM or Neural Network can predict the MPG to around +/-2.7 accuracy.
- Result of regression can be given in equation form (though not as accurate as a model):

$$mpg = 0.002 \left(acc + \frac{1}{3} (-dsp - 1) - wgt \right) + 29.6$$

Keras Regression: Load and Train/Test Split path = "./data/"

```
filename_read = os.path.join(path,"auto-mpg.csv")
df = pd.read_csv(filename_read,na_values=['NA','?'])
```

```
cars = df['name']
df.drop('name',1,inplace=True)
missing_median(df, 'horsepower')
x,y = to_xy(df,"mpg")
```

Keras Regression: Build and Fit

```
model = Sequential()
```

```
model.add(Dense(10, input_dim=x.shape[1],
kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
model.compile(loss='mean_squared_error', optimizer='adam')
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3,
patience=5, verbose=1, mode='auto')
model.fit(x,y,validation_data=(x_test,y_test),callbacks=[monitor],ve
rbose=2,epochs=1000)
```


Keras Regression: Predict and Evaluate

Predict

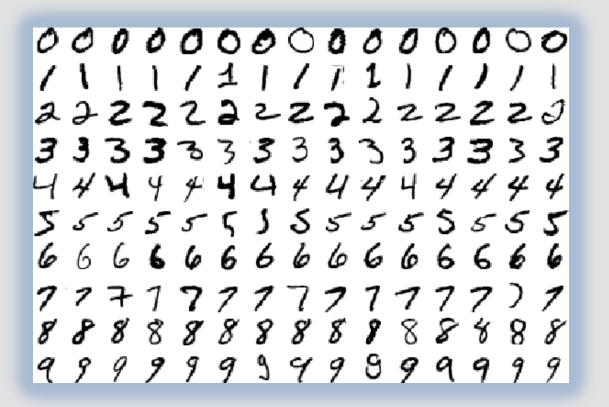
```
pred = model.predict(x_test)
```

Measure RMSE error. RMSE is common for regression. score = np.sqrt(metrics.mean_squared_error(pred,y_test)) print("Final score (RMSE): {}".format(score))

Preparing Data for Predictive Modeling is Hard

- The iris and MPG datasets are nicely formatted.
- Real world data is a complex mix of XML, JSON, textual formats, binary formats, and web service accessed content (the variety V in "Big Data").
- More complex security data will be presented later in this talk.

Keras: Computer Vision and CNN



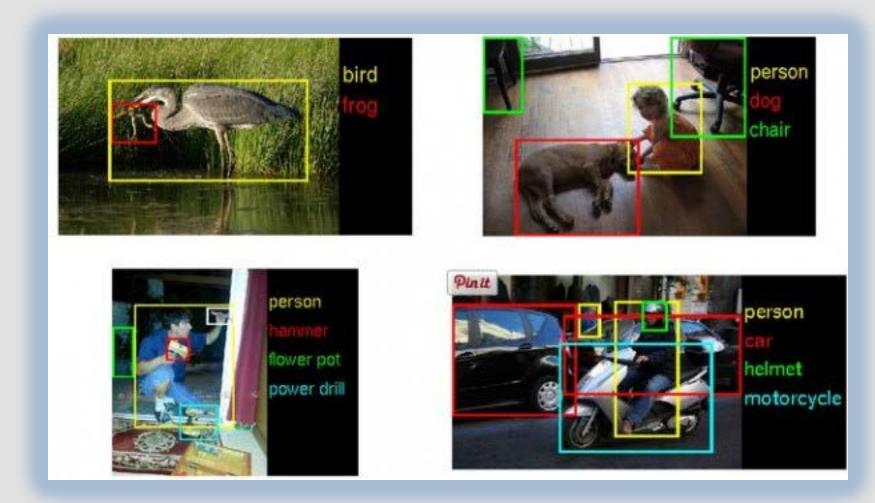
Predicting Images: What is Different?

- We will usually use classification, though regression is still an option.
- The input to the neural network is now 3D (height, width, color).
- Data are not transformed, no zscores or dummy variables.
- Processing time is usually much longer.
- We now have different layer types: dense layers (just like before), convolution layers and max pooling layers.
- Data will no longer arrive as CSV files. TensorFlow provides some utilities for going directly from image to the input of a neural network.

Sources of Image Data: CIFAR10 and CIFAR100

airplane automobile bird cat deer dog frog horse ship truck

Sources of Image Data: ImageNet



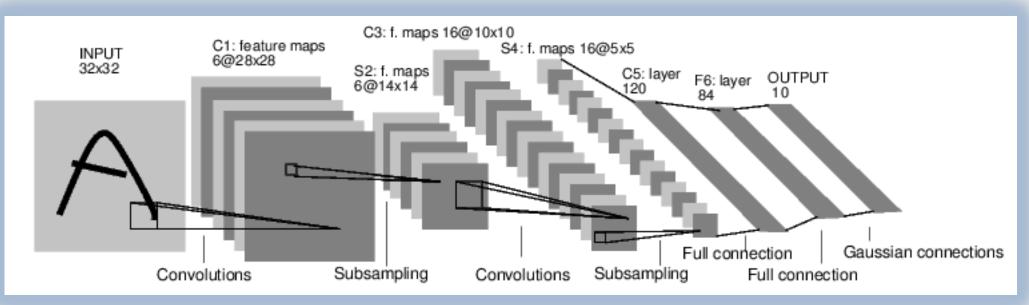
Sources of Training Data: The MNIST Data Set

I.D. NUMBER	AF			
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3	2 2 3 3 4 4 5 5 6 6 7 7	00 11 22 33 44 55 66 77 88 99	000 111 222 333 444 555 666 777 888 999	0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9
LAST NAME FIRST NAME M.I. CODE				

Recognizing Digits

/ \ \ \ / 1 / 7 1 / 7 1 / / / | ファチョアファファファファファ

A LeNET-5/CNN Network (LeCun, 1998)



Dense Layers - Fully connected layers.
Convolution Layers - Used to scan across images.
Max Pooling Layers - Used to downsample images.
Dropout Layer - Used to add regularization.

Loading the Digits

```
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print("Shape of x_train: {}".format(x_train.shape))
print("Shape of y_train: {}".format(y_train.shape))
print()
print("Shape of x_test: {}".format(x_test.shape))
print("Shape of y_test: {}".format(y_test.shape))
```

→Shape of x_train: (60000, 28, 28)
→Shape of y_train: (60000,)

→Shape of x_test: (10000, 28, 28)
→Shape of y_test: (10000,)

Display a Digit

%matplotlib inline

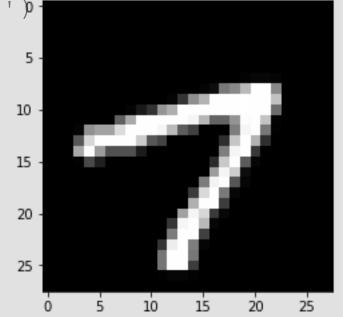
import matplotlib.pyplot as plt

import numpy as np

digit = 101 # Change to choose new digit

```
a = x_train[digit]
```

plt.imshow(a, cmap='gray', interpolation='nearest')
print("Image (#{}): Which is digit '{}'".
format(digit,y_train[digit]))



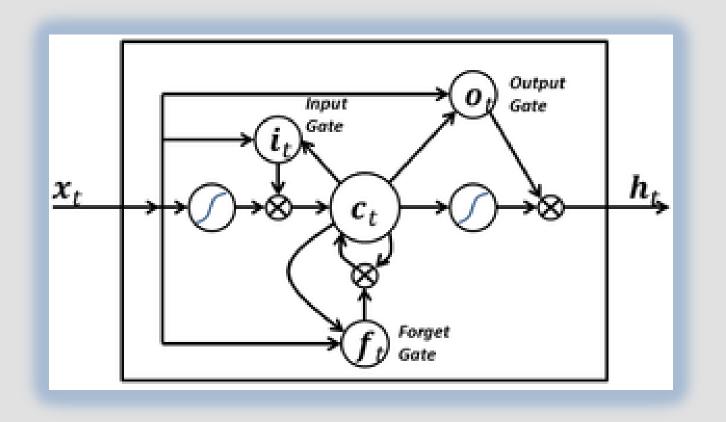
Build the CNN Network

```
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input shape=input shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])
```


Fit and Evaluate

→Test loss: 0.03047790436172363
→Test accuracy: 0.9902
→Elapsed time: 1:30:40.79 (for CPU, approx 30 min GPU)

Keras: Time Series and RNN

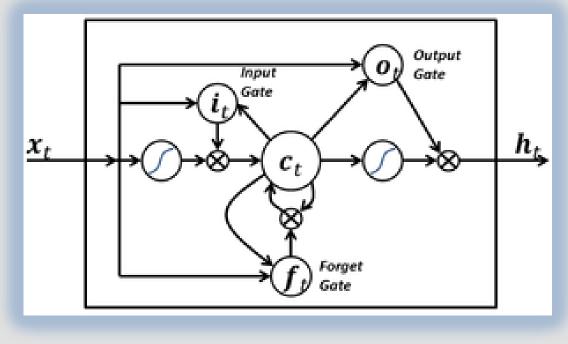


How is a RNN Different?

- RNN = Recurrent Neural Network.
- LSTM = Long Short Term Memory.
- Most models will always produce the same output for the same input.
- Previous input does not matter to a non-recurrent neural network.
- To convert today's temperature from Fahrenheit to Celsius, the value of yesterdays temperature does not matter.
- To predict tomorrow's closing price for a stock you need more than just today's price.
- To determine if a packet is part of an attack, previous packets must be considered.

How do LSTM's Work?

- The LSTM units in a deep neural network are short-term memory.
- This short term memory is governed by 3 gates:
 - Input Gate: When do we remember?
 - Output Gate: When do we act?
 - Forget Gate: When do we forget?



Sample Recurrent Data: Stock Price & Volume

x = [

[[32,1383],[41,2928],[39,8823],[20,1252],[15,1532]], [[35,8272],[32,1383],[41,2928],[39,8823],[20,1252]], [[37,2738],[35,8272],[32,1383],[41,2928],[39,8823]], [[34,2845],[37,2738],[35,8272],[32,1383],[41,2928]], [[32,2345],[34,2845],[37,2738],[35,8272],[32,1383],[41,2928]],

 $\nabla =$

1,

-1,

0,

-1,

LSTM Example

```
max_features = 4 # 0, 1, 2, 3 (total of 4)
x = [
     [[0], [1], [1], [0], [0], [0]],
     [[0], [0], [0], [2], [2], [0]],
     [[0], [0], [0], [0], [3], [3]],
     [[0], [2], [2], [0], [0], [0]],
     [[0], [0], [3], [3], [0], [0]],
     [[0], [0], [0], [0], [1], [1]]
x = np.array(x, dtype=np.float32)
y = np.array([1,2,3,2,3,1],dtype=np.int32)
```


Build a LSTM

```
model = Sequential()
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2,
input_dim=1))
model.add(Dense(4, activation='sigmoid'))
```


Test the LSTM

```
def runit(model, inp):
    inp = np.array(inp,dtype=np.float32)
    pred = model.predict(inp)
    return np.argmax(pred[0])
```

print(runit(model, [[[0],[0],[0],[0],[3],[3]]]))

→3

print(runit(model, [[[4],[4],[0],[0],[0],[0]])))

→4

GPU's and Deep Learning

Low Level GPU Frameworks

• CUDA

CUDA is NVidia's low-level GPGPU framework.

• OpenCL

An open framework supporting CPU's, GPU's and other devices. Managed by the Khronos Group.

Thank you!

- Jeff Heaton
- <u>http://www.jeffheaton.com</u>