
2017 Predictive Analytics Symposium

Session 22, TensorFlow (workshop)

Moderator:
Stuart Klugman, FSA, CERA, Ph.D.

Presenter:

Jeff T. Heaton, Ph.D.

SOA Antitrust Compliance Guidelines
SOA Presentation Disclaimer

https://www.soa.org/legal/antitrust-disclaimer/
https://www.soa.org/legal/presentation-disclaimer/

Session 22: TensorFlow (workshop)

Presented by Jeff Heaton, Ph.D.
September 14, 2017 – SOA Predictive Analytics Symposium.

Jeff Heaton, Ph.D.

• Lead Data Scientist at RGA
• Adjunct Instructor at Washington University
• Fellow of the Life Management Institute (FLMI)
• Senior Member of IEEE
• Kaggler (Expert level)
• http://www.jeffheaton.com

– (contact info at my website)

http://www.jeffheaton.com/

T81-558: Applications of Deep Learning

• Course Website: https://sites.wustl.edu/jeffheaton/t81-558/
• Instructor Website: https://sites.wustl.edu/jeffheaton/
• Course Videos: https://www.youtube.com/user/HeatonResearch

https://sites.wustl.edu/jeffheaton/t81-558/
https://sites.wustl.edu/jeffheaton/
https://www.youtube.com/user/HeatonResearch

Presentation Outline

• TensorFlow as a Compute Graph/Engine
• Keras and TensorFlow
• Keras: Classification
• Keras: Regression
• Keras: Computer Vision and CNN
• Keras: Time Series and RNN
• GPU

TensorFlow as a Compute Graph/Engine

What are Tensors? Why are they flowing?

• Tensor of Rank 0 (or scaler) – simple variable
• Tensor of Rank 1 (or vector) – array/list
• Tensor of Rank 2 (or matrix) – 2D array
• Tensor of Rank 3 (or cube) – 3D array
• Tensor of Rank 4 (tesseract/hypercube) – 4D array
• Higher ranks (hypercube) – nD array

What is a Computation Graph?
import tensorflow as tf

matrix1 = tf.constant([[3., 3.]])

matrix2 = tf.constant([[2.],[2.]])

product = tf.matmul(matrix1, matrix2)

with tf.Session() as sess:

result = sess.run([product])

print(result)

Computation Graph with Variables
import tensorflow as tf

sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])

a = tf.constant([3.0, 3.0])

x.initializer.run()

sub = tf.subtract(x, a)

print(sub.eval())

==> [-2. -1.]

sess.run(x.assign([4.0, 6.0]))

print(sub.eval())

==> [1. 3.]

Computation Graph for Mandelbrot Set

Mandelbrot Set Review

• Some point c is a complex number with x as the real part, y as
the imaginary part.

• z0 = 0
• z1 = c
• z2 = z1

2 + c
• ...
• zn+1 = zn

2 + c

Mandelbrot Rendering in TensorFlow
xs = tf.constant(Z.astype(np.complex64))

zs = tf.Variable(xs)

ns = tf.Variable(tf.zeros_like(xs, tf.float32))

tf.global_variables_initializer().run()

Compute the new values of z: z^2 + x

zs_ = zs*zs + xs

Have we diverged with this new value?

not_diverged = tf.abs(zs_) < 4

step = tf.group(

zs.assign(zs_),

ns.assign_add(tf.cast(not_diverged, tf.float32))

)

for i in range(200): step.run()

Keras and TensorFlow

Tools Used in this Presentation

• Anaconda Python 3.6
• Google TensorFlow 1.2
• Keras 2.0.6
• Scikit-Learn
• Jupyter Notebooks

Installing These Tools

• Install Anaconda Python 3.6
• Then run the following:

– conda install scipy
– pip install sklearn
– pip install pandas
– pip install pandas-datareader
– pip install matplotlib
– pip install pillow
– pip install requests
– pip install h5py
– pip install tensorflow==1.2.1
– pip install keras==2.0.6

Keras and TensorFlow

Anatomy of a Neural Network

• Input Layer – Maps inputs to
the neural network.

• Hidden Layer(s) – Helps form
prediction.

• Output Layer – Provides
prediction based on inputs.

• Context Layer – Holds state
between calls to the neural
network for predictions.

• Deep learning is almost always applied to neural networks.
• A deep neural network has more than 2 hidden layers.
• Deep neural networks have existed as long as traditional neural

networks.
– We just did not have a way to train deep neural networks.
– Hinton (et al.) introduced a means to train deep belief neural networks in

2006.
• Neural networks have risen three times and fallen twice in their

history. Currently, they are on the rise.

What is Deep Learning

The True Believers – Luminaries of Deep Learning

• From left to right:

• Yann LeCun
• Geoffrey Hinton
• Yoshua Bengio
• Andrew Ng

• Deep neural networks often accomplish the same task as other
models, such as:
– Support Vector Machines
– Random Forests
– Gradient Boosted Machines

• For many problems deep learning will give a less accurate
answer than the other models.

• However, for certain problems, deep neural networks perform
considerably better than other models.

Why Use Deep Learning

Why Deep Learning (high y-axis is good)

Supervised or Unsupervised?

Supervised Machine Learning
• Usually classification or regression.
• For an input, the correct output is

provided.
• Examples of supervised learning:

– Propensity to buy
– Credit scoring

Unsupervised Machine Learning
• Usually clustering.
• Inputs analyzed without any

specification of a correct output.
• Examples of unsupervised learning:

– Clustering
– Dimension reduction

Types of Machine Learning Algorithm

• Clustering: Group records together that have similar field values.
For example, customers with common attributes in a propensity
to buy model.

• Regression: Learn to predict a numeric outcome field, based on
all of the other fields present in each record. For example,
predict the amount of coverage a potential customer might buy.

• Classification: Learn to predict a non-numeric outcome field. For
example, learn the type of policy an existing customer has a
potential of buying next.

Application of Machine Learning Algorithm

Predictive Modeling Computer Vision Time Series

Classification • Intrusion Detection • Face Recognition • Buy, Sell, or Hold?
• Intrusion Detection

Regression • Normal Operating
Levels

• Age Determination • Tomorrow’s opening
stock price

Clustering • Product
Recommendation

• Design
Recommendation

• Anomaly Detection

Problems that Deep Learning is Well Suited to

Keras: Classification

• Classic classification problem.
• 150 rows with 4 predictor columns.
• All 150 rows are labeled as a species of iris.
• Three different iris species.
• Created by Sir Ronald Fisher in 1936.
• Predictors:

– Petal length
– Petal width
– Sepal length
– Sepal width

The Classic Iris Dataset

The Classic Iris Dataset

sepal_length sepal_width petal_length petal_width class

5.1 3.5 1.4 0.2 Iris-setosa

7.0 3.2 4.7 1.4 Iris-versico

6.3 3.3 6.0 2.5 Iris-virginica

6.4 3.2 4.5 1.5 Iris-versicolor

5.8 2.7 5.1 1.9 Iris-virginica

4.9 3.0 1.4 0.2 Iris-setosa

… … … … …

Are the Iris Data Predictive?

Keras Classification: Load and Train/Test Split
path = "./data/"

filename = os.path.join(path,"iris.csv")

df = pd.read_csv(filename,na_values=['NA','?'])

species = encode_text_index(df,"species")

x,y = to_xy(df,"species")

Split into train/test

x_train, x_test, y_train, y_test = train_test_split(

x, y, test_size=0.25, random_state=42)

Keras Classification: Build NN and Fit
model = Sequential()

model.add(Dense(10, input_dim=x.shape[1],

kernel_initializer='normal', activation='relu'))

model.add(Dense(1, kernel_initializer='normal'))

model.add(Dense(y.shape[1],activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam')

monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3,

patience=5, verbose=1, mode='auto')

model.fit(x,y,validation_data=(x_test,y_test),callbacks=[monitor],ve

rbose=2,epochs=1000)

Keras Classification: Build NN and Fit
Evaluate success using accuracy

raw probabilities to chosen class (highest probability)

pred = model.predict(x_test)

pred = np.argmax(pred,axis=1)

y_compare = np.argmax(y_test,axis=1)

score = metrics.accuracy_score(y_compare, pred)

print("Accuracy score: {}".format(score))

Keras: Regression

• Classic regression problem.
• Target: mpg
• Predictors:

– cylinders
– displacement
– horsepower
– weight
– acceleration
– year
– origin
– name

Predict a Car’s Miles Per Gallon (MPG)

Predict a Car’s Miles Per Gallon (MPG)

mpg cylinders
displace
ment

horsepow
er weight

accelerati
on year origin name

18 8 307 130 3504 12 70 1

chevrolet
chevelle
malibu

15 8 350 165 3693 11.5 70 1

buick
skylark
320

18 8 318 150 3436 11 70 1
plymouth
satellite

16 8 304 150 3433 12 70 1
amc rebel
sst

17 8 302 140 3449 10.5 70 1 ford torino

15 8 429 198 4341 10 70 1

ford
galaxie
500

14 8 454 220 4354 9 70 1
chevrolet
impala

• Models such as GBM or Neural Network can predict the MPG to
around +/-2.7 accuracy.

• Result of regression can be given in equation form (though not as
accurate as a model):

Regression Models - MPG

Keras Regression: Load and Train/Test Split
path = "./data/"

filename_read = os.path.join(path,"auto-mpg.csv")

df = pd.read_csv(filename_read,na_values=['NA','?'])

cars = df['name']

df.drop('name',1,inplace=True)

missing_median(df, 'horsepower')

x,y = to_xy(df,"mpg")

Keras Regression: Build and Fit
model = Sequential()

model.add(Dense(10, input_dim=x.shape[1],

kernel_initializer='normal', activation='relu'))

model.add(Dense(1, kernel_initializer='normal'))

model.compile(loss='mean_squared_error', optimizer='adam')

monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3,

patience=5, verbose=1, mode='auto')

model.fit(x,y,validation_data=(x_test,y_test),callbacks=[monitor],ve

rbose=2,epochs=1000)

Keras Regression: Predict and Evaluate
Predict

pred = model.predict(x_test)

Measure RMSE error. RMSE is common for regression.

score = np.sqrt(metrics.mean_squared_error(pred,y_test))

print("Final score (RMSE): {}".format(score))

• The iris and MPG datasets are nicely formatted.
• Real world data is a complex mix of XML, JSON, textual formats,

binary formats, and web service accessed content (the variety V
in “Big Data”).

• More complex security data will be presented later in this talk.

Preparing Data for Predictive Modeling is Hard

Keras: Computer Vision and CNN

• We will usually use classification, though regression is still an
option.

• The input to the neural network is now 3D (height, width, color).
• Data are not transformed, no zscores or dummy variables.
• Processing time is usually much longer.
• We now have different layer types: dense layers (just like before),

convolution layers and max pooling layers.
• Data will no longer arrive as CSV files. TensorFlow provides

some utilities for going directly from image to the input of a neural
network.

Predicting Images: What is Different?

Sources of Image Data: CIFAR10 and CIFAR100

Sources of Image Data: ImageNet

Sources of Training Data: The MNIST Data Set

Recognizing Digits

Convolutional Neural Networks (CNN)
A LeNET-5/CNN Network (LeCun, 1998)

Dense Layers - Fully connected layers.
Convolution Layers - Used to scan across images.
Max Pooling Layers - Used to downsample images.
Dropout Layer - Used to add regularization.

Loading the Digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()

print("Shape of x_train: {}".format(x_train.shape))

print("Shape of y_train: {}".format(y_train.shape))

print()

print("Shape of x_test: {}".format(x_test.shape))

print("Shape of y_test: {}".format(y_test.shape))

Shape of x_train: (60000, 28, 28)

Shape of y_train: (60000,)

Shape of x_test: (10000, 28, 28)

Shape of y_test: (10000,)

Display a Digit
%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

digit = 101 # Change to choose new digit

a = x_train[digit]

plt.imshow(a, cmap='gray', interpolation='nearest')

print("Image (#{}): Which is digit '{}'".

format(digit,y_train[digit]))

Build the CNN Network
model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu',

input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(),

metrics=['accuracy'])

Fit and Evaluate
model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

verbose=2,

validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss: {}'.format(score[0]))

print('Test accuracy: {}'.format(score[1]))

Test loss: 0.03047790436172363

Test accuracy: 0.9902

Elapsed time: 1:30:40.79 (for CPU, approx 30 min GPU)

Keras: Time Series and RNN

• RNN = Recurrent Neural Network.
• LSTM = Long Short Term Memory.
• Most models will always produce the same output for the same input.
• Previous input does not matter to a non-recurrent neural network.
• To convert today’s temperature from Fahrenheit to Celsius, the value

of yesterdays temperature does not matter.
• To predict tomorrow’s closing price for a stock you need more than just

today’s price.
• To determine if a packet is part of an attack, previous packets must be

considered.

How is a RNN Different?

• The LSTM units in a deep neural network are short-term memory.
• This short term memory is governed by 3 gates:

– Input Gate: When do we remember?
– Output Gate: When do we act?
– Forget Gate: When do we forget?

How do LSTM’s Work?

Sample Recurrent Data: Stock Price & Volume
x = [

[[32,1383],[41,2928],[39,8823],[20,1252],[15,1532]],

[[35,8272],[32,1383],[41,2928],[39,8823],[20,1252]],

[[37,2738],[35,8272],[32,1383],[41,2928],[39,8823]],

[[34,2845],[37,2738],[35,8272],[32,1383],[41,2928]],

[[32,2345],[34,2845],[37,2738],[35,8272],[32,1383]],

]

y = [

1,

-1,

0,

-1,

1

]

LSTM Example
max_features = 4 # 0,1,2,3 (total of 4)

x = [

[[0],[1],[1],[0],[0],[0]],

[[0],[0],[0],[2],[2],[0]],

[[0],[0],[0],[0],[3],[3]],

[[0],[2],[2],[0],[0],[0]],

[[0],[0],[3],[3],[0],[0]],

[[0],[0],[0],[0],[1],[1]]

]

x = np.array(x,dtype=np.float32)

y = np.array([1,2,3,2,3,1],dtype=np.int32)

Build a LSTM
model = Sequential()

model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2,

input_dim=1))

model.add(Dense(4, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

optimizer='adam',

metrics=['accuracy'])

Test the LSTM
def runit(model, inp):

inp = np.array(inp,dtype=np.float32)

pred = model.predict(inp)

return np.argmax(pred[0])

print(runit(model, [[[0],[0],[0],[0],[3],[3]]]))

3

print(runit(model, [[[4],[4],[0],[0],[0],[0]]]))

4

GPU’s and Deep Learning

Low Level GPU Frameworks

• CUDA
CUDA is NVidia's low-level GPGPU framework.

• OpenCL
An open framework supporting CPU’s, GPU’s and other

devices. Managed by the Khronos Group.

Thank you!

• Jeff Heaton
• http://www.jeffheaton.com

http://www.jeffheaton.com/

	Cover page
	Heaton

