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Introduction

• The goal of this project is to provide systematic tools for the 
quantification of model error (or model misspecification) in actuarial 
risk analysis.

• The systematic approach proceeds as follows:
• The methodology starts from a baseline model which was calibrated using an 

arbitrary procedure. 

• Using the baseline model, we compute the worst case risk among all possible 
models which are within a “plausible” distance of the baseline model.

• The methodology can be implemented using Monte Carlo experiments.



A Toy Example: Illustrating the Impact of 
Model Error
• A potential loss, X, is assumed to be distributed Exponential.

• The actuary estimates the mean to be 1 (say $1M=1 million).

• Capital requirement = b is computed to withstand losses with .995 
probability.

• Solve for b so that P(X>b)=exp(-b)=.005, yielding b≈5

• BUT: X was only ASSUMED to be exponentially distributed.

• Section 5.1, equation (16) uses the methodology to show that b≈20 in 
this example reflects the quantification of model error.

• So, what is the methodology and how to use it? Can we add certainty 
to the model to reduce b? If so, how?



The Methodology: What’s the Main Idea?

• How does the methodology work?

• Ans: We want to estimate 
𝐸𝑡𝑟𝑢𝑒(ℎ 𝑋 )

The expectation 𝐸𝑡𝑟𝑢𝑒 is unknown. We consider a baseline model 𝑃0 (like the exponential 
on the previous page), which is convenient (maybe because of tractability). 

We then evaluate the following optimization problem:
max{𝐸 ℎ 𝑋 : 𝑜𝑣𝑒𝑟 𝑃 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐷 𝑃 𝑃0 ≤ δ .

In words, we maximize (or minimize depending on the context) the worst case expectation 
and the optimization is performed over ALL models which differ from 𝑃0 by an amount less 
than δ.

We call this optimization problem the “Basic Distributionally Robust” (BDR) formulation. 

Section 3 of the paper explains how find the worst case P maximizing the expectation in 
the BDR formulation and also the value of maximization problem.



The Methodology: Comparing Models…

• What does it mean to optimize over all models?

• Ans: This means that we must assess the difference between two models, say 
𝑃 𝑎𝑛𝑑 𝑃0, using a criterion which is non-parametric (because we don’t want to 
make specific assumptions on alternative models). This is why choosing 𝐷(𝑃||𝑃0)
in terms of the Kullback-Leibler divergence is useful. The definition is given in 
page 4 of the paper.

• Intuitively, as explained in Section 5.2 Kullback-Leibler reweights the probabilities 
to favor outcomes that have higher adverse impact in the expectation of interest. 

• Other notions of discrepancy can also be used. Kullback-Leibler is advantageous 
because it has been extensively studied in engineering and economics.

• The methodology we advocate has its roots in the robustness approach 
introduced by the Nobel prize winners Hansen & Sargent.



The Methodology: The Size of the Feasible 
Region of Models…
• How does one select δ?

• Ans: This is the hardest part of the procedure. The advantage is that 
at least we are not aiming at pinning down the true model, but only 
finding 𝛿 such that 𝐷(𝑃𝑡𝑟𝑢𝑒||𝑃0) ≤ 𝛿.

• In Section 6.1, equation (19) we establish a connection between this 
method and Empirical Likelihood. If there are n observations used for 
non-parametric inference, then 2nδ should be the 95% quantile of a 
chi-squared distribution with 1 degree of freedom (because there is 
only one expectation to estimate, the one appearing in the objective 
function of the optimization problem). 

• More generally, we also discuss how to calibrate δ in Section 6.2.



The Methodology: How to Improve the 
Bounds?
• But what if my bound just “feels” too pessimistic?
• Ans: The ONLY way to get too pessimistic bounds is if there is a significant 

possibility for model misspecification or model error. Observe that if 𝛿=0 
we recover model 𝑃0, and implicitly we are assuming that there is NO 
model error.

• The ONLY way then to reduce the bound is by adding available information 
on the true model. 

• For example, if we know the additional information that 𝐸𝑡𝑟𝑢𝑒𝑔1(X) = 𝑎1,…,
𝐸𝑡𝑟𝑢𝑒𝑔𝑚(X) = 𝑎𝑚 then solve instead the expanded optimization problem: 

max{𝐸 ℎ 𝑋 : 𝐷 𝑃 𝑃0 ≤ δ, 𝐸𝑡𝑟𝑢𝑒𝑔𝑖(𝑋) = 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑚 .

• Now 2nδ is chosen as the 95% quantile of a chi-squared distribution with 
(m+1) degrees of freedom (again due to the connection to empirical 
likelihood).



What About the Impact of Dependence?

• Can we use the methodology to assess the impact of dependence?

• Ans: Yes, a situation that arises in practice is when one is interested in 
𝐸𝑡𝑟𝑢𝑒h(X,Y), for a pair of risks (X and Y), say X and Y represent the 
time-until-death of a couple. The mortality of X is well understood 
marginally, and the same is true for Y, but the joint mortality might be 
less certain. This example is considered in Section 4.1 in the paper. 

• The optimization problem has fixed marginal distributions, thus only 
the dependence structure is to be optimized. 



How Does One Solve the Optimization 
Problem?
• How to solve the optimization problem?
• Ans: As explained in Section 3 of the paper, the Basic Distributionally 

Robust formulation (even with additional information to improve bounds) 
leads to a convex optimization problem. This is important because there is 
widely available computational packages (many of them free) which can be 
used to solve convex optimization problems. In the case of discrete 
distributions with finite support the optimization problem is “standard” 
and we provide a quick summary of the relevant aspects (for what we 
study here) of the Karush-Kuhn-Tucker conditions in the paper.

• The general case, in which the models possess density and therefore are 
not discrete, leads to a infinite dimensional optimization problem which 
falls under calculus of variations theory. The results are completely 
analogous to the discrete case and they are also discussed in the paper 
(see Section 5).



Can One Solve These Optimization Problems 
Practically?
• Can one solve these problems say in Excel?

• Ans: Yes, these problems can be solved by Monte Carlo sampling in 
Excel. We have implemented several examples to illustrate how to do 
this. A companion Excel file has been submitted with the paper, with 
worked out examples, which are explained in Sections 5.1, 7, and 8.1. 
The examples include the evaluation of Conditional Value at Risk and 
examples involving the use of t-copulas.


