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Abstract 

Suppose that several systems, e.g. airplanes, computers, etc., 

are operating independently and are subject to failure and re

pair. The failure times are assumed to have been generated by 

a stochastic point process, and the repair times are assumed to 

be negligible. In this paper the homogeneous Poisson process 

is assumed as the stochastic point process. If the ,systems are 

similar. for example, they might have been produced in the same 

factory in the same time period, then it seems appropriate that 

information from ~ ~ystems could be used to estimate the 

failure intensities of one particular system. Here. we treat 

the failure intensities·of the systems as random quantities 

which were generated from a gamma or a log-normal prior distri

bution whose' parameters are considered fixed but unknown. The 

marginal maximum likelihood estimators of the parameters of the 

prior distribution are found by using numerical techniques. 

Point estimates for the failure intensities are then obtained 

by finding the mean of the posterior distribution given the 

estimated values of the prior distribution. 

Key Words: Empirical Bayes, Repairable'system, EM algorithm, 

Poisson process. 

180 



1. Introduction 

Suppose that N similar systems, e.g. airplanes. computers, etc .• are 

operating independently and are subject to failure at random points in time. 

Repair time is assumed to be negligible. In most cases. the parameter(s) of 

~he stochastic point process are unknown and must be estimated from the past 

history of the systems. The classical approach would be to treat this 

problem as N separate problems. That is, the parameters of the stochastic 

point process for system i, say, are estimated using only the data gathered 

from that system. However. if the systems are similar, manufactured in the 

same factory in the same time period, say, then it seems appropriate that 

data from all the systems could be used to estimate the parameters of system 

1. To this end, we assume that the p~rameters of the N stochastic point 

processes make up a random sample from some prior distribution. If this ,. 
prior distribution is known completely, then a Bayesian analysis is 

appropriate and straightforward. If the prior distrubution is not known, one 

of three approaches may be taken. First, a parametric form may be chosen for 

the prior distribution, with the parameters of this distribution considered 

fixed but unknown quantities. This leads to a parametric empirical Bayes 

(PEB) model. Most work on PEB models involves the normal distribution; see 

Morris (1983). Second, there may be no specific parametric. form chosen for 

the prior. This leads to a nonparametric empirical Bayes model similar to 

the models introduced by Robbins (1955). For a third approach, a parametric 

form may be chosen for the prior, and the parameters of this distribution are 

themselves considered random quantities with a completely specified prior 

distribution. In this paper, the first approach, the PEB approach, will be 

the one t.aken. For simplicity, the homogeneous Po i sson process will be used 
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to model the failure times. Martz (197:i) 9ives a non~drJlI1~t.ric empirical 

Bayes analysis for this sa;ne type of problem. lIere, the prior distribution 

is taken to be the gamma distribution or the log-normal distribution. The 

values of the parameters I~hich maximize.the marginal likelihood function, 

called the marginal maximum likelihood estimates (MMLE's), are found by using 

numerical methods. For the ganl11a prior, the MMLE's are obtained by applying 

the Newton-Raphson algorithm. For the log-normal prior, the MMLE's are found 

by applying the EM algorithm of Dempster, Laird and Rubin (1977). Once the, 

MMLE's are obtained, point estimates for the failure intensities are obtained 

by taking the posterior expectations given the MMLE's. Approximate posterior 

probability intervals can also be calculated. 

In Section 2, the details are shown for the case of the gamma prior 

distribution. The details for the log-normal prior distribution are shown in 

Section 3. In Section 4, two sets of data are discussed. One involves the 

·times between failures of the airconditioning equipment in thirteen Boeing 

720 aircraft. The other set of data involves the number of entries between 

errors for five bookkeepers. This set of data was first discussed by Davis 

(1952) • 
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2. Gamma Prior Distribution 

In this section. the details of the PEB model are presented when the 

stochastic point process is assumed to be the homogeneous Poisson process and 

the prior distribution of the failure intensities is the gamma distribution. 

Let ~'l' A2' •••• AN be the failure intensities of the N systems. The density 

of the gamma prior is then 

Let ti.l < t i •2 < ••• < ti.n(i) be the observed failure times of system i. We 

assume that it was predetermined that system i would be observed until neil 

failures occurred. This is called failure truncation. It is analagous to 

failure. or Type II censoring when referring to nonrepairable systems. Let!i 

Since the 

distributions of times between failures for each system are independent and 

exponentially distributed. and since the systems operate independently. the 

dens i ty of ! given A is 

p(lIA) = nN ,n.(i} (, t ) 
A exp - Ai i,n(i)· 

i=1 .1 

The density'of ~given a and e is then 

N 
n ).. 

i=1 1 

(1) 

(2) 

At this point it should be made clear that the A's are unobservable random 

variables. Equations (1) and (2) were derived so that the density of ! 

given a and e may be obtained, since inference for a and e must be based 

solely on!. This yields 
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p(!la,e) 

I p(!I~) p(~la,e) d~ 

NIl r ,n
i
(i)+a-1 [( t )] d 

1\ exp - e + . ( . ) A. A. • . 1 .1 ,n 1 1 1 
1= .0 

(3) 

Once estimates for a and e are obtained, point estimates for the A's can be 

based on the posterior distribution of ~ given the estimated values of a and 

e. We propose that the marginal maxi'!lum likelihood estimates (MMLE's) be used 

as point estimates for the failure intensities. The.logarithm of the marginal 

likelihood ·function, which is the function that needs to be maximized, is then 

found to be 

log p('!la,e) N a log e - N log rea) 

N 
+ L 

1=1 

N 

i~l . 
~~/.::.. ... 

log rene 1) + a) 

(n(i) + a) log (e + t. (--». l,n 1 (4) 

Given observed data!, (4) can be maximized by applying the 

Newton-Raphson algorithm. Algorithms for evaluating the digamma (phi) 

function 1jI(x) = (d/dx) loge rex»~ and the trigamma function 1jI'(x) can be 

found in Bernardo (1976) and Schneider (1978), respectively. 
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^ ^ 

Once tile MMLE's n and 0 are obtained, point estimates for the ~'s can be 

obtained by taking the posterior expectations. The posterior distribution of 
^ 

~i givent, aand ~ is the gamma distribution with density 

p(~iI~.~.~) 

: [ r(,(i) + ~) (~ + ti.,(i)),(i)÷~ ]-i ~vCi)+~1 exp[-(8 + t i , n ( i ) )  Xi ] .  

Thus all posterior moments have closed form expressions. In particular, the 

posterior mean, which is used as the point estimate for ~i is 

~i = (n(i) + ~1 (~ + t~.,(i)). 

Estimated posterior probability intervals can be evaluated since 
^ A 

2 ~i (t i ,n(i) +B) has a chi-square distribution with 2(n(i)+~ degrees of 

freedom. Many computer routines that compute the tabled values of the chi- 

square distribution wil l  work correctly even for noninteger degrees of 

freedom. 
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3. Log-Normal Prior Distribution 

In this section the details of the PEB model are presented when the prior 

distribution is the log-normal distribution. The reason that this section is 

included is so that the effect of the particular parametric form of the prior 

can be determined. In section 4, where two examples are discussed, it will be 

seen that this effect is almost negligible. We will continue to use the same 

notation as in the previous section. 

The density of the prior is now 

2 2 
exp[ -(log \ - lJ) /2 a ]. 

The density of ! given lJ and a is then found to be 

(5) 

(6) 

x ~ . ro A~(i)-l exp[ -(log A. - lJ)2/2a2 - A·t. C')] dA. 
1=1 JO 1 1· 1 l,n 1 1 • 

This expression, or the logarithm of this expression, must be maximized. 

Here. however. evaluation of the log marginal likelihood function invloves 

evaluating a ,sum of improper integrals. This makes direct maximization of the 

log marginal likelihood function more difficult. If we consider ~ to be 

missing data from t-he complete data (!~), then the EM algorithm of Dempster. 

laird and Rubin (1977) may be applied. In this case, we must use the extended 

form of the EM algorithm since the distribution of the complete data does not 
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l 

belong to the exponential family of distributions. The [~I algorithm consists 

of alternating between the E (expectation) step and the M (maximizdtion) 

step. Initially, a guess (llO'OO) for the MMLE of (1l,0) is chosen, and k is 

set equal to 1. The E step consists of evaluating 

(7) . 

presumably, for all values of (\.1,0). The M step involves finding that value 

of (\.1,0) which maximizes (7). (In practice (7) is not evaluated at all 

values of (\.1,0) ; it is maximized directly, in the M step. Thus, the 

extended form of the EM algorithm involves, in essense, only an M step.) The 

value of (\.1,0) which maximizes (7) then becomes (Pk,ok) .k is 

incremented, and this process is repeated until convergence is attained. 

Because of an error in Theorem 2 in Dempster, Laird and Rubin (1977), it 

is not guaranteed that this iterative process converges. nor that it 

converges to the glo~al maximum if indeed it does converge. For a further 

discussion of this problem, see Wu (1983) and Boyles (1983). Despite this, 

the estimates of (\.1,0) and the point estimates of the A's. obtained from 

applying the EM algorithm have been reasonable in the cases examined so far. 

Improper integrals still need to be evaluated, even though the EM 

algorithm is applied. These can be numerically evaluated using 

Gauss-Laguerre quadrature formul as; see Stroud and Secrest (i966). Whereas 

the posterior moments of the A's, given the MMLE's of the prior parameters, 

have closed form expressions -·when the prior is the garrma distribution, such 

is not the case here. The posterior moments must be evaluated using 

numerical integration techniques such as GaUSS-Laguerre quadrature. 

Approx imate posterior probab iIi ty i nterv a I s for the A's can be found by 

finding the posterior standard deviation and treating the posterior 

distribution as if it were a normal distribution. 
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.,. [xamp les 

To illustrate the PEa approaches to estimating failure intensities of 

several repairable systems, we will use two sets of data. The first is the 

well known set of data on the operating times between failures of the aircon-

ditioning equipment in thirteen Boeing 720 aircraft. This data was presentcd 

.and first discussed by Proschan 11963). The second set of data contains the 

number of entries between errors for five bookkeepers. This set of data was 

given in a paper by Davis (1952). While the random variable ~Ihich governs the 

number of entries between errors is actually discrete (the geometric distri-

but ion), the numbers are large enough so that the geo~etric distribution can 

be appro,ximated by the exponential distribution. The goal of this section is 

to illustrate the PEB approaches to estimating failure intensities and to 

. / compare the results obtained by choosing two different forms for the prior. 

The goal is not to reanalyze these particular sets of data • 

. 4.1 .Aircraft Airconditioning Equipment 

The collection of time.s between failures of the airconditioning equipment 

of the thirteen aircraft, is given in Table 1. As mentioned previously. the 

. Newton-Raphso.h algorithm was used to find the MMLE's of. a and e (the param

eters of the gamma prior distribution). This yielded the following estimates: 

a = 18.41 

e 1733.10. 

2 The EM algorithm was used to find the MMlE's of P and a when the prior 

distribution was the log-normal distribution. The EM ~lgorithm yiclded the 

following estimates: 
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11 -4.57 

"'2 o 0.0522 • 

Classical ML~s and PEB point estimates of failures per 1000 hours (1000 li) 

are shown in Table 2. Also in Table 2 are the classical confidence intervals, 

the posterior probability intervals when the gamma distribution is the prior, 

and the approximate posterior probability intervals when the log-normal dis

tribution is the prior. It can be seen that the PEB point and interval 

estimate~ obtained from the gamma prior and the log-normal prior are nearly 

identical. It can also be seen that the PEB point estimates of the failure 

• intensities are considerably less disperse than the classical ML~s. The most 

extreme case of this "shrinkage" effect is for aircraft number 11 which exper-

lenced only two failures. Here, there is little information available from 

aircraft 11. Thus more information is "borrowed" from the collection of 

aircraft. In general, the more data available for a particular system, the 

less the discrepancy between the classical and the PEB estimates. The inter

val estimates using the PEB method are somewhat narrower than the classical 

interval estimates •. This is the result of the added assumption concerning thE 

prior distributton for the l's. 

4.2 Entries Between Errors for Bookkeepers 

Now we discuss the data given by Davis (1952) on the number of entries 

between errors for five bookkeepers. The entire set of data is somewhat 

voluminous, so it will not be rcproduced hcre. It is however summarized 1n 

Table 3. The M~ILE's of C1 and 0 were found to be 
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a 4.074 

e 1597.44 

IOd the MMLE's of Il and 
2 

0 were found to be 

II -6.10 

~2 0.240. 

rhe classical and PEB point and interval estimates of the "error" intensities 

are shown in Table 3. Again, the PEB estimates obtained from the gamma prior 

and the log-normal prior are nearly identical. For this set of data. the 

:lassical and the PEB point and interval estimates are approximately the same. 

This appears to be due to there being so few systems (bookkeepers) and so many 

observat ions for each. 
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5. Conclusions 

We have discussed the problem of estimating the parameters of several 

stochastic processes simultaneously. 

assumed throughout much of the paper. 

The homogeneous Poisson process was 

The failure intensities of these 

processes were assumed to make up a random sample from some parametric prior 

distribution whose parameters are condidered fixed but unknown quantities. 

This is commonly called a parametric empirical Bayes (PEB) model. The 

details were presented for the cases of the gamma prior and the log-normal 

prior. Within this PEB framework, we have obtained point and approximate 

interval estimates for the failure intenSities. The point and interval 

estimates obtained from the gamma .prior and the log-normal prior 

distributions were found to be nearly'identical in the examples considered. 

We believe that the results would be similar for most two parameter prior 

distributions. In general, the PEB point estimates are less disperse than 

the classical MLE's. When there are few systems and many observed failure 

times per system, the point estimates are only slightly less disperse. PEB 

posterior probability interval estimates are generally narrower than the 

classical confidence intervals. 

The problem addressed in this paper appears to be somewhat common in 

statistics. That is, it is clear that the parametrers of i~terest were 

generated from some prior distribution. This prior distribution is often 

unknown ho\~ever. In this paper we have described how to find point estimates 

and approximate interval estimates of the parameters of interest in one 

particular statistical problem, the problem of simultaneously estimating the 

failure intensities of several systems. 
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TABLE 1 

OPERATING TIME BETWEEN FAILURES OF AIRCONDITIONING 

EQUIPMENT IN THIRTEEN BOEING 720 AIRCRAFT 

Plane Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 

194 413 90 74 55 23 97 50 359 50 130 487 102 

15 14 10 57 320 261 51 44 9 254 493 18 209 

41 58 60 48 56 87 11 102 12 5 100 14 

29 37 186 29 104 7 4 72 270 283 7 57 

33 100 61 502 220 120 141 22 603 35 98 54 

181 65 49 12 239 14 18 39 3 12 5 32 

9 14 70 47 62 142 3 104 85 67 

169 24 21 246 47 68 15 2 91 59 

447 56 29 176 225 77 197 438 43 134 
. 184 20 386 182 71 80 188 230 152 

36 79 59 33 246 1 79 3 27 

201 84 27 15 21 16 88 130 14 

ll8 44 153 104 42 106 46 230 
34 59 26 35 20 206 5 66 
31 29 326 5 82 5 61 

18 ll8 12 54 36 34 
18 25 120 31 22 
67 156 II 216 139 
57 310 3 46 210 
62 76 14 III 97 
7 26 71 39 30 

22 44 11 63 23 
34 23 14 18 13 

62 11 191 14 
130 16 18 
208 90 168 

70 1 24 
101 16 
208 52 

95 
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TABLE 2 

CLASSICAL AND PEB POINT AND INTERVAL 

ESTIMATES OF FAILURES PER 1000 HOURS 

FOR AIRCRAFT AIRCONDITIONING DATA 

Plane No. of Total Cl ass ical Gamma log-Normal 
No. Fai 1. Time MLE 9S% C.1. Pt.Est. 95% P. 1. Pt.Est. 9S% P. r. 

1 6 493 12.17 (4.46,23.67) 10.97 {7.06,lS.72} 10.92 (6.S8,lS.27) 

2 23 2201 1O.4S (6.62,lS.07) 10.S3 {7.S7.13.97} 10.49 (7.33.13.6S) 

3 29 2422 11.97 (8.02,16.71) 11.41 (8.40,1S.12) 11.33 (8.11.14.55) 

4 15 1819 8.25 (4.62,12.91) 9.41 (6.49.12.8S) 9.41 (6.34.12.49) 

5 14 1832 7.64 (4.18,12.13) 9.09 (6.23,12.43) 9.12 (6.13.12.12) 

6 30 1788 16.78 (11.32,23.29) 13.75 (10.lS.17.88) 13.84 (9.78.17.90) 

7 27 2074 13.02 (8.S8,18~37) 11.93 (8.71.15.64) 11.89 (8.40.15.38) 

8 24 1539 15.59 (9.99,22.42) 12.96 (9.36.17.14) 12.99 (8.89.17.09) 

9 9 1800 5.00 (2.29, 8.76) 7.76 (5.13.10.92) 7.96 (5.26.10.67) 

10 6 639 9.39 (3.44,18.26) 10.29 (6.62.14.76) 10.27 (6.28.14.25) I 

11 2 623 3.21 (0.39, 8.94) 8.66 (5.32.12.81) 8.81 (5.31.12.32) I 
12 12 1297 9.25 (4.78,15.17) 10.04 (6.79.13.90) 10.01 (6.54.13.47) 

I 13 16 1312 12.20 (6.97.18.86) 11.30 (7.84.15.38) 11.24 (7.44,15.03) 

.~/..- I 
\ 

I 
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TABLE 3 

CLASSICAL AND PEB POINT AND 

INTERVAL ESTIMATES OF ERRORS 

PER 1000 ENTRIES FOR FIVE BOOKKEEPERS 

Bkpr No. of Total No. Classical 
No. Errors Entries MLE 95% C.I. 

Gamma Log-Normal 
Pt.Est. 95% P.I. Pt.Est. 95% P.I. 

1 31 

2 26 

3 26 

4 54 

5 81 

17,991 1 .72 (1.17,2.38) 

17,533 1.48 (0.97,2.10) 

18,742 1.39 (0.91,1.97) 

18,273 296 (2.22,3.79) 

15,446 5.24 (4.16,6.45) 

1.79 (1.25,2.43) 1 . 7 8  (1.20,2.36) 

1.57 (1.06,2.18) 1 .57  (I.03,2.11) 

1.48 (1.00,2.05) 1 .48  (0.97,1.99) 

2.92 (2.22,3.72) 2.90 (2.15,3.65) 

5.00 (3.99~6.11) 5 .03  (3.94,6.12) 
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