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I. Abstract. Up to now, the main aim of credibility theory has 

been to provide statistical models which allow for estimating 

(net) risk premiums appropriately. 

In the present note, a simple credibility model based on the 

percentile principle is introduced. It turns out that there are 

close connections between the resulting credibility premiums 

and statistical tolerance limits. 

2. The credibility model. We consider the following simple model of 

credibility theory: Let 0,XI,X2,... be random variables on some 

probability space (~,A,P) such that the "risks" XI,X2,o.. are real- 

valued, and given @ = 8, X = XI,X2,... are lid with distribution- 

function F%, i.e. 

F~(x) =pXEO=~((-~,x]) =P(X~xl~=~), x 6 m. 

Moreover, we assume that for all % 

F~(O-) =P(X<Ol0=~) =0. 

Now let H denote a real functional on some set of distribution 

functions containing the FD(a "premium calculation principle") and 

let L:~2 ~ ~ be a "loss function". Then for fixed n, we are looking 
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for a function , : ~n ~ ~ such that 

JL(H(F%),,(X I ..... Xn))P(G'XI .... ,Xn) (d(%,x I ..... Xn)) 

= ;L(H(F~),,(x I ..... Xn))F~(dXl)...F%(dXn)PO(d%) 
I 
& Min. 

(All necessary measurability conditions are assumed to hold.) 

The minimum is achieved by the function ." if and only if for 

p ( X l ' ' ' ' ' X n ) - a l m o s t  a l l  ( X l , . . . , X n )  ,* min imizes  the  e x p r e s s i o n  

SL(H(F%),~lx I .... ,Xn))P81 (Xl ..... Xn)=(Xl ..... Xn) (d~). (I) 

If H(F%) =EsX = S xF%(dx) ("net premium principle"), an appropriate 

loss function is L(a,b) = (a-b) 2, and the usual credibility model is 

obtained. 

3. Th e pe[centile principle. For a distribution function F, let F -I 

denote the pseudo-inverse of F, i.e. 

F-1(p) =inf {t 6 ~ : F(t) ~p}, p 6 [O,1]. 

Then 

-I 
F (p) ~x - p <_F(x), 

F(F-I(p)) >p, pe (O,I), 

F-I(F(t)) <_t, t£ IR . 

If F is continuous, 

F(F-I(p)) =p, p 6 (O,I), 

if F is strictly increasing, 

-I 
F (F(t)) = t, t £m. 

Similar results can be obtained for other types of monotone 

functions. 

For some fixed E £ (O,1) (usually close to O7, we now put 

-I 
H(F) =F (I-~) (the (l-£)-quantile of F) (2) 

to obtain the percentile principle. Despite its formal simplicity 

and intuitive appeal, this principle is not very customary. The 
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main reason for this seems to be that the percentile premium does 

not have the form "net }gremium plus loading". In general, H does 

not provide for a nonneqative safety loadinq and is neither 

additive (not even sub- or super-additive) nor iterative. It is 

consistent, homogeneous and fulfills the "no ripoff"-condition 

(cf. GERBER [6]). A nonnegative safety-loading could of course be 

achieved by simple modifications of (2), e.g. 

EX if EX ~F-1(1-e) 

H~(F) = { F-I (l-e) if EX < F-I (l-e) 

7 7 i R e m a r k ,  L e t  u = E X  = x F ( d x )  = ( l - F ( x ) ) d x = f F -  ( s ) d s  b e  p o s i t i v e  
O O O 

a n d  f i n i t e ,  a n d  f o r  p 6  ( O , 1 )  

l ( p )  = _1 ~ F - l ( s I d s  ( " L o r e n z  c u r v e " ) ,  
tl o 

t(p) = 1 F-I/P)(I_F(s))ds = 1 (p) + .!I-p)F-I (e) (3) 

u o 

("scaled total time on test transform"), 

cf. Heilmann [9]. 

F-l(1-e) 
Then H(F) _" u ~" U _> I 

t(1-e)-l(1-e) > e. (4) 

As an example, consider the Pareto-type distribution given by the 

failure rate function 

B 
r(t) s+t ' t >O,_ s >O, S ~ I, (5) 

which obviously is of type DFR. 

Then 

t(p) I-(I-p) (8-I)/B = 

l(p) =S(1-(1-p) (8-I)/B)- -p(B-1). 

For ~=2, we obtain 

t(p) = 1 - f i ~  , 

l(p) = (I-/1-/~) z , 

I 
and (4) is fulfilled J f and only if e < -- 

-- 4 " o 
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For ~ 6 (O,1), let d3(s) denote the a-quantile of F3, and 

Z(%) = d3(1-E) =H(F3). 

Now for real numbers a,b let 

ko(a-b) if a ~b 
L(a,b) = (6) 

k1(b-a) if a < b 

k o 
with positive constants ko,k I. With q = ko+kl , (I) is minimized 

if ,(Xl,...,Xn) eGuals d(q), the q-quantile of P Z°OI (XI'''''Xn)=(xI''''p 

(cf. BERGER [4], FERGUSON [5]). Let x (n) = (x1,...,Xn) , and assume 

that % is a real parameter such that Z is continuous and strictly 

decreasing in 3. Then, since Z(3) ~d(q) ~ % ~Z-I (d(q)), 

p@I (X1,. ,Xn)=X (n) 
"" ((%:Z(0) ~d(q) }) =q, 

Z-1(d(q)) equals d(n)(1-q), 

the (1-q)-quantile of P Ol(X1'''''Xn)=x(n) 

~d(q) = Z(d (n) (l-q)). 

Thus, 

_dd(n) (l-q) (1_e) ,(X (n)) _ (7) 

is a solution to the above minimization problem and the desired 

credibility premium. 

Example. Let 

pX]@=% 
=r (gamma distribution) 

with density function 

%v -%x v-1 
f%, :x ~ ~ e x 1(O,~)(x) , 

hence 
~x 

I tu-1 -t F~(X) - r ( ~ )  ; e dt, x LO. (8) 
o 

Obvious, Z(%) =F3(1-e) is continuous and strictly decreasina in 3. 

Let r%, (q) (resp. ×2m(q)) denote the q-quantile of r3,~ (resp. 

2 denotes the chi-squared 2 = r , where mE IN, and, of course, ×m ×m I m 
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d i s t r i b u t i o n  w i t h  m d c g r f ~ e s  o f  f r e ~ , d o m ) .  

Then 

z ( o )  = r %,v 

2 ( 1 - c )  
(=  ×2v 

Now let 

pO = Fa,b " 

then (n) 
p0[(xl ..... Xn)=X 

I 
~ 1 - c )  = ~ l'1 2v  ( 1 - ~ )  

2 ' 2  

i n  c a s e  2v E ~ )  . 

= ra+z,b+nv 

whe re z -- X 

Then 

d(n) 

+ ... +X . 
I n 

(l-q) = Fa+z,b+nv(1- q) 

I 
= ~ FI 2(b+nv) (l-q) 

Y' 2 
I 

(= 2(a+'~-~- X2 b+nv)z (l-q) if 2(b+nv) 6 IN]. 

Hence 

~(x (n)) (n) = Z(d (l-q)) 

I 
rl 2~ (I-~) 

2d (n) (l-q) y,-~ 

r (I-~) 
1 2v 
7,~/- 

(a+z) FI 2(b+nv) ('l-q) 

2' 2 

X~v ( l - E )  
(: (a+z) 

×~ (b+nv) (l-q) 

if 2v, 2(b+nv) £ IN), (10) 

where, as introduced before, c denotes the tolerated probability of 

loss (or "ruin"), and q = k° is given by the coefficients of the 

. ~ x(n) loss function (6). Notice that ~( ) is increasin~ in q, hence 

decreasing in kl, which is in agreement with (6) - the greater the 

loss incurred for positive deviations n(x(n))-H(F%), the smaller 

{n) 
the premium n(x ). 

In the special case ~=I, i.e. P XI@=% is an exponential distribution 

with distribution function 
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-~x 
F%(x) = 1-e , x ~O, 

Z(0) is simply the solution of the equation 

-SX 
1-e  = l - c  , 

In c 
i.e. Z(%) - 0 ' 

hence .(x (n)) = - in E 
2(a+z) 

F 1 2(b+n) (l-q) 

2' 2 

4. Tolerance intervals. The concept of a confidence interval, i.e. 

an interval based on a random sample constructed to capture an 

unknown parameter of the underlying distribution, is very familiar 

in statistics. In many cases, however, one is mainly interested in 

some information on future observations from the same population. 

This leads to the concept of a tolerance (or prediction) interval. 

To be specific, let the assumptions on O,XI,X2,... be as in the 

second paragraph. Then a function u:IR n ~ ~ is said to be an upper 

B-content tolerance limit at level y if 

p(Xl, .... Xn) lO=8({(Xl,...,Xn ) 

: pXn+IIO=8 
({x : X~U(Xl,...,Xn)}) ~B) !¥ (11) 

where the lhs does not depend on %. 

The funct~ %n u is said to be a Bayesian upper B-content tolerance 

limit at level y if 

p01 (XI,. ,Xn)=X (n) I0=0 _ (x (n) "' ({%:P Xn+1 ({x : x <u ) }) ~B}) ~y. (12) 

Now if the function Z 8 : 8 ~d%(8) is continuous and strictly 

decreasing, we may conclude as in the third paragraph that 

(l-y)) = d d(n) (I-¥) (8) u(x (n)) = ZB(d(n) 

is a Bayesian upper 8-content tolerance limit at level y (cf. 

AITCHISON [I]). 
ko 

Thus, if ko,k 1 are chosen such that y = ~  and if 1-e equals 8, 

the credibility premium equals the Bayesian upper S-content tolerance 

limit at level y. 

In the above example, the corresponding (non-Bayesian) upper 

8-content tolerance limit at level y is 
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u(x (n) 
] 2v 

) = z 

F1 2 n v  , 
~,Tt l-Y) 

2z 
( = -in(l-S) 

X2"nz ( 1-y ) 
if v=1) (13) 

(cf. GUENTHER [7]), which corresponds to the case a=b=O of the 

Bayesian result. 

In risk theory, DFR distributions are particularly important (cf. 

HEILMANN [8]). Tolerance limits for distributions of this class 

(and other classes of distributions based on failure rate proper- 

ties) have been derived by BARLOW/PROSCHAN [3]. E.g., for an 

ordered sample O =X(o ) <_x(1 ) <_... < X(n ) and r = 1,2,...,n, let 

r 
1 

Tr, n = ~ • (n-i+]) (x(i)-x(i_l)) 
i = 1 

I 
= r (x(1) + "'" + X(r-1) + (n-r+1)X(r)) 

(where the term in brackets is the "total time on test up to the 

r-th failure" connected to the transform (3)). 

Then for the class of DFR distributions 

u(x (n)) = Tr, n • min( r -In(l-B) 2r ) (14) 
n ' ×~r(1_y) 

is an upper ~-content tolerance limit at level y. 

If r=n (i.e., there is no "censoring") and the minimum in (14) is 

achieved by the second term, we obtain 

u(x (n)) = -in(1-~) 2z 

X~n(1-Y) 

which coincides with (13); the exponential distribution underlying 

(]3) is both IFR and DFR. 

A distribution-free upper B-content tolerance limit at level y is 

a function u* : ~n ~ ~ with 

P (XI .... 'Xn) ({ (x I , . . . ,x n) :P Xn+1 ({x : x <_ u" (x I , . . . ,x n) }) >_ 8 }) >_.y 

Ruch a limit can b~ obtained in the followin~ way. Choose 

u*(x] ..... x n) =x(j) 
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where the index j is such that 
n n) kBn-k 

(k (I-S) ~y (15) 
k=n-j+1 

(cf. GUENTHER [7]). The condition (15) is equivalent to 

n-~+l 8 
] I-~ ~ F2j;2(n-j+1) (Y) (16) 

where the rhs of (16) is the y-quantile of the F-distribution with 

2 9 and 2(n-j+1) degrees of freedom. 

5. The "collective premium". This is defined to be H(G) where G is 

the distribution function of X, i.e. 

G(x) = ;Fo(x) p0(d%). 

We confine ourselves to the above example with (8), (9) where G has 

the density function 

g(x) = [ f%, (x)fa,b(%)d% 

a b x v- I 
- , x>O, (17) 

B (b,~) (x+a) b+v 

where B(b, ~) F(b)F(v) 
.... F (b+~) 

A distribution with density 

v-1 1 x 
h(x) = , x >__O, 

B(b,v) (1+x) b+v 
(18) 

is sometimes called (second kind) Beta. If X has density (17), then 

iX has density (18), and if Y has density (18) with b,v 6 ~, then ~Y a v 
is distributed according to an F-distribution with 2v and 2b degrees 

of freedom. Hence for b,v E 

H(G) = a.v b F2v;2b(1-~)" (19) 

Since, symbolically, 

;2b 

X~v/2v b ×~v 

~b/2 b v 2 X X2b 

(where X~ u and ×~b are independent), formula (19) corresponds in 

a sense to (10) (with n=O, hence z=O, and E=q). 
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Remark. If, instead of g, we introduce q*, where 

(n )  
" v ( x )  p O I ( X 1  . . . .  , X n ) = X  g (x) = [ f%, (d%), x ~O, 

we obtain 

g*(x) - 
( a + z )  b + n v  x v - 1  

B ( b + n v , v )  ( x + a z )  b + ( n ~ l )  v 

with distribution function G*, and 

(a+z)~ 
H(G*) = ~ F2v,2(b+nv) (I-~), 

cf. ( l o ) .  

In case v=1, 

g*(x) _ b+n ( a+z 
a+z x+a+z" 

b+n 
( a+z 

I - G*(x) = x--~-/~a+z) 

b+n+ I 

(2O) 

(21) 

r'(x) b+n ( = b__~_ if n=O) (22) 
x+a+z x+a 

i.e. a Pareto-type failure rate (5). 

This is an example of the well-known phenomenon that the mixture 

of IFR distributions is DFR, resolving in a way the "failure rate 

paradox" mentioned by BARLOW [2]. D 

If b < I, EX = S xG(dx) is not finite, i.e., in the sense of premium 

principles based on EX, X is not insurable, whereas H(G) is finite 

(but goes to infinity if b goes to 0). 
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