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Two series formulas for the probability of eventual ruin are derived by operational calculus method. 

This paper is dedicated to Henk Boom, who introduced me to the beautiful subject of Risk Theory. 

1. Introduct ion and notat ion 

Consider the classical collective risk model, in which insurance claims occur 

according to a Poisson process N(t), t >_ O, and the individual claim amounts X~, X 2, X 3 .... 

are mutually independent positive random variables, each with probability distribution 

Pr(X < x) = P(x) and with mean E(X) = Pl < =o. Assume that the number of claims process 

N(t) is independent of the claim amount random variables {X~. Let E[N(t)] = Xt. For a 

given relative security loading O, e > o, let c denote the premium rate, 

c = (1 + e)p~.. 

Put S o = 0 and, for k 2 1, 

S k = Xl . x 2 . " -  .X . .  (1.1) 

The ruin function V(u) is defined as the probability that the risk reserve 

U + 6"t - SN( 0 (1.2) 

is ever negative. The argument of the ruin function is the amount of risk reserve at time O. 

Let a denote the Lundberg security factor, 

a = Zc -~ = [(1 + O)pl] -1. (1.3) 

For ~ ;~ O, define 

{ x  = x ~ 0 
x:+= 0 x < O  " (1 ,4) 

We shaTI prove that, for u > O, 

1 v(u)  = 1 - ~ E [ ( u - S i ) . e  ( t .5)  
l + e . .  

and 
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- u)+ e ] (1.6) ~v(u) = 1 + e j .  ~ ~ E[(si  

This paper is mot ivated and st imulated by Gerber's (1988) fun. Gerber  presented 

his paper  in last year's Actuanal  Research Conference in Toronto. 

2. A convolut ion  series for the probabi l i ty  of eventual  ruin 

Consider  a small  t ime interval (0, s). By the Poisson assumpt ion,  the probabil i ty 

that a claim will occur in the interval is Zs + o(s). Hence, for u ~ O, the ruin function u/(ut 

satisfies the relation [Ross (1983, section 6.6.3)]: 

~(u) = ;~.sE[v(u + cs - X)] + (1 - ),,s)~(u + cs) + o(s). (2.1) 

Dividing (2.1) by s, rearranging and letting s tend to 0, we obtain the integro-differential 

equat ion 

c~(u )  = ~.~'(u) - ~ .E [~(u-  X)], 

o r  

~/(u)  = a { v ( u )  - E [~V(u-  X)]}. 

Since ~J(negative number) = 1, 

E[~(u - X)] = f ~(u - x) dP(x) 

u 

= , r ~ ( u - x )  dP(x) + [1 - P(u)] .  
0 

For u >- O, in tegra t ing (2.2) from 0 to u yields 
u 

~'(u) - ~'(0) = a l~(u)* [1 - P(u)] - ! [1 - P(y)] cly}, 

where 
x x 

f l  (x) * f2 (x) = j" f l (x - Y)f2(Y)dY = j" fl(Y)f2(x - y)dy.  
0 0 

Letting u t end  to +~, in equa t i on  (2.4), we h a v e  

0 - ~(o) = a(0 - p~), 

o r  

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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V(0) = apl = 1/(1 +e). 

Hence, with the definitions 
a[1 - P (u ) ]  

k(u) = 0 

and 

equation (2.4) becomes 

ififu<0U 2 0 }  : a[u~ - P(u)] 

u U 

0 

(2.6) 

(2.7) 

(2.8) 

1 
NI(u) - N~u) * k(u) - - -  K(u), u >0.  (2.9) 

1 . e  

Let the set of all continuous functions defined on the nonnegative real line be 

denoted by C[0, ~). With the usual addition and scalar multiplication, C[0, ,~) is a linear 

space. With the convolution operation (2.5) as multiplication, C[0, oo) becomes a 

commutalive ring. By the Titchmarsh convolution theorem, the ring has no zero divisors 

and we can construct the quotient field Q of the ring [Mikusinski (1959), Erd~lyi (1962), 

Yosida (1984)]. The unit element for multiplication in Q is 5, the Dirac delta function. One 

o 
u÷ 

~(u) * 15(u)- k(u)} : - -  - K(u). (2.10) 
l + e  

may rewrite (2.9) as 

0 

1 u. 
Note that the constant - -  in {2.9) is replaced by the function - -  

1 + 0  1 + 0  
in (2.10). 

where 

To solve for ~/(u) in (2.10), we invert 5(u) - k(u) as a power sedes, i.e., 
0 

u+ 
V(u) [5(u) - k(u)} -1 = '~ [ - K(u)] 

l + e  

= 1~.~ k ' i (u ) ]  * [ u - - ~ - °  - K ( u ) ] ,  
l + e  

j -o 
(2.11) 

k'°(u) = ~(u) 

a n d ,  for n = 1 . 2 ,  3 . . . . .  
u 

k'"(u) = k '(°- ~l(u) • k(u) -- ~ k °(~- ~)(u - y) k(y) dy. 
o 

(2.12) 

With the definition 
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equation (2.11 ) becomes 

i o K°n(u) = k'n(y) dy = k'n(u) * u . ,  

0 

(2.131 

1 ~'(u) = 1 - - ~ _ .  ' K'~(u) - ~., KH÷I)(u) 
j -o j -o 

= K'°¢ul + K'icul 
j -O 

o B_ ~ ,  K'i(u) (2.141 
= u+ 1 + 6  

j -o 

Note that formula (2.14) is derived under the restriction that u is nonnegative. 

Formula (2.11) is formula (26) on page 246 of Dubourdieu (1952). I thank Francois 

Dufresne for this reference. J.A. Beekman has consistently promoted the use of (2.14) for 

evaluating ~/(u). The formula has been rediscovered several times and in different 

contexts, see Shiu (1988, p. 42). 

3. F3rst formula 

A major difficulty with (2.14) is the calculation of the convolutions {K'i}. For the 

moment, let us assume that the random variables {Xi} are discrete. Let 

Pr(X = x) = c x , (3.1) 

c x ; ~ O a n d ~ , c  x = 1. Then, 

P(y) = ~ c, ( y -  x)°.. (3.2) 
x 

c + c + c  
1 2 3 

C l + C  2 

1 2 3 4 Claim Size 



Using E to denote the translation operator (forward shift operator), we can write 

(3.2) as 
= ' ~  E-X o P(Y) (Z.~ °x ) y+. (3.3) 

x 

Let g(z) denote the probability generating function of X, 

g(z) = E(z x) (3.4) 

= ' ~ C x  Zx. 
x 

Thus, formula (3.3) becomes 
-1 0 

P(y) = g(E )y+.  (3.5) 

Substituting (3.5) into (2.7) yields 
o 

k(y) = a[] - g(E-1)] y+. (3.6) 

Formula (3.5) may be considered as an inversion formula for (3.4). In deriving it, we 

use the assumption that X is a discrete random variable. However, by considering P(x) as 

a limit of step functions, we see that the discreteness assumption is not necessary [cf. 

Hirschman and Widder (1955, p. 8), Mikusinski (1959, p. 327) and Erd~lyi (1962, p. 57)]. 

It is easy to check that, for each real number r, 

Er 01 * f2) = ( Er f l) * f2 = fl * ( Er f2) ' (3.7) 

Hence, for n = 1,2, 3 . . . . .  the n-fold convolution of k is 
o k,n(y) = a n [[ _ g(E-1)]n (yO+, Y+, ... ) .  

Since 

we have 

o - ]  ~ - i  a + ~ - !  
Y+ Y Y+ 
- -  * - , ( 3 . 8 )  
r(~) r(~) F(e + ~) 

n-1 
Y+ 

k*n(y) = 8 n [I - g(E-1)} n ( n -  1)1" 

It follows from (2.13) and (3.8) that 
- I  v n  K*n(y) = a n [I - g(E )]n _~(. 

Substituting (3.10)into (2.14)yields 
- a j 

~(u) 1 g ~ - [ 1  -1 J J = - - g(E )] u+, 
1+Oi.oJ" 

(3.9) 

(3.1o) 

U > 0 .  (3.11) 
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To simplify writing, put G = g(E-1). Formula (3.11 ) can be writlen symbolically as 
0 a(1-G) u. 

~u)  = 1 - T T - ~ e  , u;~O. (3.12) 

Motivated by the formal identity 

exp[a(l - G)u+] = exp(--aGu.) exp(au+), 

we conjecture the formula 
J 

e_ ' ~ . ( - a ) ^ J  j ,,. 
~(u )  = 1 1 + e ~ - ~  (u+e "). (3.13) 

j .0 

To prove (3.13), note that 

( l - G ) n = . .  (-1) j G J = n! . .  j !(n-j)!  " 

Substituting (3.14) into (3.11 ) and interchanging the order of summation yields (3.13). 

Since g(z) = E(z x) and the random variables (X~} are identically and independently 

distributed, 

[g(z)]j = E(zX,÷ x~ . . . .  5) = E(z'~). (315) 

Hence, 

Gff(y) = [g(E-1)]if(y)= E[f(y-S~)] (3.16) 

and, for u -> 0, 

~u)  = 1 - {I E [ ( u -  -'~)'1, (3.17) 
1 + 0 .  • 

which is (1.5). 

Using (3.17), Willmot (1988) has obtained formulas for V(u) when X is gamma (with 

arbitrary non-scale parameter) or cont inuous uniform. As in Shiu (1988), let us now 

consider the case that the individual claim amount random variable X takes on positive 

integer values only: 

P r (X=n)  = c  n, n = 1 , 2 , 3  . . . . .  (3.1') 

Let 
J 

c k = Pr( X = k) = Pr(Sj = k). 
i=1 

Since c o = 0, 
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(g(z))i = ~ ,  c~z k 
k=0 

= '~L.,C~J z k. 
k. j  

The coefficients {c~ J} can be evaluated recursively by the formula 
,(r~n) .m 

c, =T_,c, '° 
i + j - k  

An APL program for evaluating (3.19) can be found in Grenander (1982, p. 402). 

It follows from (3.17) and (3.18) that 

6 ~ ( - a ) J ' ~  c~J (u - k)i, 
v<u) = 1 1 To z..,--~z.., e ' ( ~ - ~  ] .  

) -0  k-j 

6 '~e,(U-k)~_(-a)Jc~i(u-k)J+j} 
= i 1 + e  

k.O j-o 

k Ck [a (k -  u)I 
e e,(U-~ ~ ,  J! =1 1+8 

k.O j=0 

(3.18) 

(3.19) 

(3.20) 

where LUj denotes the greatest integer less than or equal to u. 

Note that 

,,o f 1 k = 0  
ck = 0 otherwise 

For u ;~ 1, formula (3.20) can be wdtten as 

_ 0 . au ~ ~ * i [a(k-u) ]  j 
V(u) = 1 1--~---~(e + e a(U-k~ Ck J! ) 

k-1 j-1 
k "J 

ee "u [=k.~l ,~,,C k [a(k - u)] j = I - {I  + e -ak 1 + 0 j.~. jl. }. (3.21) 

The appeal of formula (3.21) is that it is a finite sum, not an infinite series. Since 

the number of terms depends on the size of u, the formula is inefficient for large u. 

However, for large values of u, Lundberg's asymptotic formula [Cram~r (1955, p. 68), 

Seal (1969, formula (4.64)), Feller (1971, p. 378), Beekman (1974, p. 52), Gerber (1979, 

formula (5.27)), Asmussen (1987, p. 284)] 

C e "Ru (3.22) 

is an effective method for evaluating ~v(u). In (322), R denotes the adjustment coefficient, 
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which is the positive number satish/ing the equation 

e P'xk(x) dx = 1 . 

Another way to express (3.23) is the equation 

E(e nx) = 1 + (1 +e)plR. 

The coefficient C in (3.22) is [Seal (1969, p. 130), Gerber (1979, (5.28))] 
N 

fo fE1 -  cy,l ox 
0 x 6 Pl 

= 
w m 

j'xe '[1 - P(x)]dx .J'xe '[1 - P(x)]dx 
o o 

By an integration by parts, the denominator in the right-hancl side of (3.24) can be written 

as 

(3.23) 

(3.24) 

E(Xe Rx - (1 +0)p 1. 

4. Second formula 

Formula (3.17) is an alternating series. From a numerical point of view, it might be 

better to have a formula whose terms have only one sign. Such a formula has been given 

by Prabhu (1965, formula (5.55)) and Gerber (1988, formula (27)). In this section, we 

derive this formula by means of operational calculus. 

Following Gerfand and Shilov (1964, p. 49), we define, for each nonnegative 

number a, 

Ixl" if x < 0  
. . ( 4 . 1 )  

0 i f x 2 0  

Note that, for each nonnegative integer n and for each real number x, 
r l  ~ X f l "  xo + (-1)  n x~ 

In particular, 
o ~ , = 1 .  X +  ÷ 

If we let 1 (x) denote the constant function that takes on the value 1 for all x, then it follows 

from (3.5) that 

P(x) = g(E-1)[l(x) - ~ ]  

= l(x) - g(E -1) ~ .  (4.2) 
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Hence, 

k(x) = a[x ° - P(x)] = a[g(E -1) - ]] L ° = a(G - I ) L  °. (4.3) 

Similar to (3.8). we have 
X O . - I  X I~-1 X a ÷ P -  1 

F(C0 * I~13 ) = r((z + I 3) (4.4) 

Here, we should remark that the usual definition for the convolution fl ~' f2 is 
w 

f l (x) * f2(x) = J' f l(x -y) f2(Y) dy.  (4.5) 

If the functions fl and f2 are assumed to take the value 0 on the negative axis, then (4.5) is 

reduced to (2.5). It follows from (3.7) and (4.4) that 

k'~(x) = a n [ G -  ]in x~-I (n -  1)!' (4.6) 

which is similar to (3.9). 

By (2.13), 
n j" n nx_ K'~(x) = X+0 , k'n(x) = [ l ( x )_x_~,  k'nlx) = k'n(y) dy - a [ G - I ]  ~ .  (4.7) 

Since (1 + 9)nk*n(y) is the n-fold convolution of the probability density function 
o y, - P(y) 

Pl 

the value of the integral in (4.7) is (1 + 6) 4 .  Substituting (4.7) into (2.14) and simplifying 

yields, for u _> 0, 

6 ~ ,  [a(G- ])1 j &  
~(u) = 1 + 0 j! (4.8) 

j .o 

: _e ~ [a(G-I)iuL 
l + e  j! 

j.1 

from which (1.6) follows. 

Comparing (3.11 ) with (4.8), one sees that 

[a (Z  - G ) ]  j [a(I-G)]Jj! [uJ÷ + (-1)'uJ-] : " ~ ' E 2  j! (4.9) e S e u i ' 
1 - 1 +  6 

i-o j .o 

Symbolically, (4.9) may be writlen as 1 + e -1 = e a(z-G)u = e-aGu e au. One may conjecture 

that 
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i i 

1 j ~ 0 ~  " ~ . d ~  Sj ) je.`u-S) 1 +~- = [Je .u] = E l (u -  ~], (4.10) 
j .o ' 

which turns OLd to be Theorem 1 .(b) of Gerber (1988). 

The formula that corresponds to (3.20) is: 
.j 

e ~ e..a(k_u ) ~ C k [ a ( k -u ) i  
~u)  - 1 +e ~ (4.11) 

k.Luj, 1 j .1 

Although each term in (4.11 ) is nonnegative, my student Aftab Ali has demonstrated that 

(4.11) is not a practical formula for computer implementation. 

5. Inversion formula 

In the discussion above, we rely on the relation that, if 

g(z) = E(z x) = J'z xdP(x), 

then 
- 1  o 

P(y) = g(E ) y , .  

A symbolic proof is as follows. By (3.4), the right-hand side of (3.5) is 

[ fE-=dP(x),y°.  = ~(y-x)°÷dP(x,  = (y -x ) :P (x ) I : : ' _ . . -  . r P ( x ) d 0 ' - x ) : .  

Since the derivative of the Heaviside unit function is the Dirac delta function 
d o ~ - x ,  = r~x), 

we have 

g(E-1)y~ = J" P(x)~(y-  x)dx = P(y), 

as required. 

For a discrete random variable X, that (3.4) implies (3.5) is straightforward. It is 

interesting to see how the implication works in a continuous case. Let X be an 

exponential random variable with mean 1. Then g(z) = (1 - Iogez) -1. Hence, 

g(E -1) = [ I - IOg,(E-1)}  -1 = [I + Iog,(E)] -1 = (l + D) -1, 

where D denotes the differentiation operator. Now, 

(I + D) -1 = D-I(I  + D- l )  -1 = D-I(I - D -1 + D - 2 -  D -3 + "'" ). 

Interpreting D -1 as integration yields 

g(E-') yO = D- l (yO_ Y+11 + ~ - "'" ) = D-I(y0* e-y) = yO. _ yO.e-y = p(y). 

( 3 . 4 )  

(3.5) 
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