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Traditionally, the study of the interest rate sensitivity of
the price of a portfolio of assets or liabilities has been performed
using single varjable price functions and a corresponding one
variable duration analysis. This unique variable was originally
defined as the yield to maturity of the portfolio, and later
generalized to reflect "parallel” charges in the underlying yield
curve. That is, a change in which each yield point moves by the
same amount. §till later,. this parallel shift model was gerneralized
to linear shifts, reflecting changes in both the level and slope of
the yield curve, as well as to other mathematical models of the

manner in which a yield curve is assumed to move.

In pereral, the ability of such a mcdel to predict price
sensitivity is dependent on the validity of this underlying yield
curve assumption. For general yield curve shifts, large errors are
possible. In practice, this will happen to a greater extent when
the portfolio contains both "long" and "short" positions, as is the
case for surplus or rnet worth. A classical duration analysis can
greatly understate price sensitivity to nonparallel yield curve
shifts in this case. Consequently, surplus changes can appear

urnpredictable, and duration matching strategies unsuccessful.
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In this paper, a general multivariate duration analysis is
introduced that does not depend on a mathematical formulation of the
way in which a yield curve moves. Consequently, complete price
sensitivity information is derived which is equally applicable in

all yield curve environments. In addition, this model is practical

and relatively easy to apply.

To motivate the multivariate approach, the one variable model
is analyzed in theory and through examples, with emphasis on its
effectiverness and limitations. Some riew results are introduced in
this classical setting. The limitations of this model are seen to
be overcome by a more gereral multivariate amnalysis, and these
models are then developed in detail. Examples are utilized
throughout to make the theory more accessible. The last section
focuses on applications of these models, as well as a variety of

practical considerations.
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O. INTRODUCTION

The concept of duration has received a great deal of
attention during its relatively short history. Bierwag, Kaufman
and Kharng (3] and Ingersoll, Skelton anq Weil [12] present
interesting historic summaries of this activity through 1977,
while the newer Bierwapg [1] provides additional information on
more recent developments. In addition, these socurces contain
extensive references to the literature, which will be only

highlighted here.

The notion of duration was independently discovered by at
least four authors. The earliest source is Macaulay [151, who
coined the term "duration" in 1338 as a refineﬁent of maturity for
gquantifying the length of a payment stream, such as a bond. His
focus was on better defining the mean time to prepayment. At
about the same time, Hicks [10] developed the same duration
formula, naming it the “average.period," by analyzing the price
sensitivity of an income stream to changes in the underlying

interest rate. Specifically, the Macaulay duraticn equals the

elasticity of the price of a bond with respect to v = (1 + i)-1,

A number of years later, Redington [16] and Samuelson [17]
again discovered this formula by analyzing questions in what has

come to be known as immunization theory. Redington sought to
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"immmunize" a liability stream with an asset stream, which meant
that each was to be equally responsive to changes in the
underlying interest . rate. This was accomplished by equalizing
first derivatives of the associated present value functions,
thereby introducing this particular approach to the definition of
a duration which has come to be known és "modified duration."
Similarly, Samuelson's focus was on immunization, analyzing the
sensitivity of a firm’s net worth to changes in the underlying

interest rate.

For the above one variable formulations, duration was defined
in terms of "the interest rate,"” which typically equalled the
yield to maturity. This approach was also followed in Vanderhoof
£131, L[20] which adapted the Redington model and became what to
most actuaries represented "the" intraduction to this field of
thought. At about the same time, Fischer and Weil [3]1 gerneralized
the definition of duration to reflect a complete yield curve,
rather than the yield to maturity. There, a change in yields was
modelled in terms of a parallel shift, whereby each yield rate is
changed by the same amount. This duration measure is often
referred to as Dg, to distinguish it from the Macaulay duration,
dencted Dj. Corresponding to other models of yield curve
dynamics, other duration measures have been defined (see (11, (21,

[3], (41, [13) and [14], for example).

More recently, Stock and Simonson (181 have analyzed after-—

tax adjustments to price sensitivity, while Chambers, Carleton and
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McEnally [6]1 have explored the notion bf a duration vector in
immunizing bond portfolios. There, the various components of the
duration vector correspond intuitively to weighted averages of the
adjusted times to maturity raised to various powers. The first
component is similar to Dz, while the second reflects a measure of
the average time squared, then average time cubed, etc. The

adjustment made to the time values is a reduction of one period.

In this papery; a general multivariate approach to duration
analysis and price sensitivity is developed which is applicable to
virtually any model of yield curve movements. Of course,
multivariate models have been used elsewhere (see [1], for
example). The purpose here is to explore the general mathematical

theory and its application in some detail.

Ta mativate the approach taken and introduce some new noticons
in a familiar environment, section 1 focuses on the one variable
models in theory and through examples. Here, duration and
convexity are defined and used to estimate relative price
sensitivity based on the well—~known Taylor series approximations.
In addition, exponential approximation models are developed based
on an identity between price changes and the integral of duration,
which is reminiscent of similar identities involving the force of

interest, or, the force of mortality.

The various approximation formulas are alsc compared and

characterized in terms of their underlying assumptions concerning
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the functional form of duration. In addition, the various
exponential formulas are seen to be limiting cases of the more
traditional formulations. The notion of a "compound duration," or
the "duration of duration," is also introduced and the second
order approximations are seen to be equivalent to intuitively
appealing composites of first order apbroximations. The examples
developed illustrate the efféctiveness of these models to

approximate relative price changes when price is truly a function

of a single yield variable.

Section & focuses on the limitations of these models to
estimate price changes in the real world, where yields defined
from a yield curve and the associated yield chanpges are truly
multivariate. Examples are developed corresponding to the yield
to maturity approach, and the parallel yield curve shift appreoach.
In each case, apparently anomclous price behavior is exemplified.
In the first example, the units used to define yield changes are
seen to have a material effect on price sernsitivity conclusions.
For the second example, it is shown that for yield curve shifis
which are not parallel, the standard formulas can produce

estimates which are orders of magnitude in error.

As part of the analysis of this second example, the notions
of "directional duration" and "directicnal convexity" are
introduced. Intuitively, these measures reflect price sensitivity
to yield curve shifts which in a multivariate sense, are in

directiors other than the parallel shift vector, M= (1,1,...,1).
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Here, each component of the shift vector is interpreted as the

change in the corresponding yield curve point.

Section 3 then develops a multivariate duration calculus in
detail. Starting with formal definitions of the directional
measures noted above, prcperties are developed which parallel the
single variable case of section 1. In particular, polynomial
approximations analogous to the traditional formulas are
established, as well as exponential approximations based on an
exponential identity. Bounds are also determined for the size of
directional durations, based on the familiar estimates involving

the gradient of a multivariate function.

The concepts of "partial duration” and "partial convexity"”
are next developed, as well as the corresponding "total duration
vector" and "total convexity matrix."™ ARgain, polynomial
approximations follow, as do exponential_approximations based on
an exporerntial identity. These formulations are shown to reduce
to the one variable formulas when yield curve shifts are parallel,
and this corresponds to the results that duration equals the sum
of the partial durations, and similarly, convexity equals the sum
of the partial convexities. The examples from section 2 are then
revisited and more formally analyzed in the context of these

models,

A variety of results are then derived between the partial

models and directional models. Not surprisingly, as is true for

- 106 -



partial and directional derivatives, the directional duration ard
convexity values can be readily calculated from the corresponding
partial duration and convexity values. Directional duration
bourds are revisited in the more natural context of the total
duration vector, which is alsoc analyzed in terms of its potential
length. Derivatives of the various durations are also derived, as
are the associated compound duration concepts. As was the case in
section 1, second order multivariate approximations are seen to
reduce to natural composites of first order approximations via

these compound duration values.

Section 4 then develops some applications in more detail.
For noncallable bonds, partial duration and convexity formulas are
seen to naturally decompose the classical duration and convexity
formulas. For securities which contain options, the standard
derivative formulas are inappropriate. Consequently, finite
differernce formulas are reviewed which are suitable for use with
aption pricing models. These formulas are formally analyzed with
respect tao their estimation errors, although in practice, the
appropriate difference interval will often be chosen based on

trial and error, and judgement.

The price sensitivity implications of the estimated duration
values are next explored. The concept of "durational leverage" is
introduced and proves to be a useful quantitative measure for
understanding the potential price sensitivity compared with that

implied by the traditional duration value.
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Finally, two yield curve slope models are developed and shown
to be easily analyzed with the durational calculus developed in
section 3. The first model corresponds to the now relatively
common generalization of traditional duration, whereby parallel
yield curve shifts are generalized to include affine or linear
shifts (Bierwag [2]). That is, where both the level and slope of
the yield curve change. The second model is more general, in that
the yield curve is reparametrized in terms of its various

interpoint slopes.
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(1. 1)

1. ONE VARIABLE MODELS

a. Duration

Let P(i) deriote the price function which assigns to each
interest rate i ; 0, the present value of a given collection of
future cash flows. The actual rate i can be defined within any
system of units: annual, semi-annual, continuous, etc., and will
generally follew from the context of the problem. Alsc, the future
cash flows can be positivé or negative, fixed or dependent on i.
However, we will always assume that P(i) is at least twice

differentiable, and has a continucus second derivative.

As an example, if i = .08 is a semi-annual rate, and future cash

flow equals 5 at time i year, and 10 at time 5 years, we have:

P(i) = S5v@ + 10viO0,
P(.08) = 11,38,
where v = (1 + i/2)~1,

Definition 1.1 Given a price function P(i), the (modified) duration

function, D(i), is defined for P(i) # 0 as follows:



(1.2)

(1.3)

(1.4)

(1.5

dP 7/
D(i) = - —— / Pi). 11
di/

For the price function given in (1.1),

Dei) = (5v3 + S0vll) / p(i)y D(.08B) = 3.25.

As defined above, the duration function quantifies the
approximate relative change in price caused by a given change in

interest rates. This is because the Taylor series approximation:

P(i) = P(ig) + P i) (i - i),
can be rewritten:
Pti)/P(ig) = 1 - D(ip) Ai,

where Aai = i - igQ.

In the above example with ;o = .08 and i = ,085, the actual
relative price change is .9840, which reflects a decrease of 1.60%,
while the approximation in (1.5) gives .9838, for a decrease of

1.62%.

Of course, the approximation given by (1.4) is just the
traditional tangent line approximation to P(i) at igp. In this
light, the duration D(igp) is seen to be -1 times the slope of the
tangent line to P(i)/P(ig) at ip. Intuitively, D(ig) approximates
the percentage change in price due to a yield change of 100 basis

points, or Ai = .01. For positive D(ig), price decreases are
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associated with yield increases, and conversely. For negative
D(ig), price and yield changes move with the same orientation. Far
the above example, (1.3) therefore implies that the price function
in (1.1) will chanpe about 3.85% for a 100 basis point chanpge in
rates from ip = .08. The actual relative change is calculated to be
-3.17% for a 100 basis point increase, and 3.32% for a rate 7

decrease.

When the cash flows are fixed and independent of interest rates,
ancther interpretation of duration is possible which relates to the
timing of the cash flows. In particular, the duration function in
(1.2) is proportional to the weightéd average of the times to
receipt of the various cash flows. Here, each weight equals the
proportion of the total brice encompassed by the given cash flow,
and the propartionality constant is 1 for continuwous i, and
(1 + i/m)~1 for nominal i compourded m times per year. In the abave
example with ig = .08, the weighting on the first cash flow is .41,
that on the second is .59, and the weighted average time to receipt
is 3.37 years. Scaling by (1.04)~1 produces the duration calculated

above.

As noted in the Introduction, this "weighted average time"
concept is the basis of the original definition of duration, today
referred to as the Macaulay Duration, while the definiticn given in
(1.2) is rnow known as the Modified Duration. The appeal of the
ariginal definition is that in terms of average time, no
proportionality constant is necessary. In particular, the duration

of a single cash flow equals the time to receipt of that cash flow.

- M-



(1.6)

(1.7)

(1.8)

The disadvantage of the Macaulay Duration is that to estimate a

relative change in price, its value would have to be scaled before

applying (1.5).

In addition to the standard approximation given in (1.5),
duration can also be used as part of an exponential approximation to

P(i). To this end, we have the following:

Proposition 1 Let P(i) be a price function which is non-zero in an

interval I. Then forbio, i€ I

i
P(i)/P(ig) = exp [- .r D(y) dyl.
io

Proof PBecause P(i) # 0, we have that:

d
D(i) = — —— 1n IP(idL,
di

for 1 € I. Integrating (1.7) between ip and i, and exporentiating

the result produces (1.6). |1}
Proposition 1 motivates the approximation:

P(i)/Plig) % exp [-D(ig) Ail,

where Ai = i - ig. For small values of Ai, this exponential

approximation will produce values which are close to those based on
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the traditional formula (1.5). This is easily verified by

considering the Taylor series expansion of the exporential function

in (1.8).

Applying (1.8) to the example in (i.1) yields better
approximations than those produced by the traditional approximation
(1. 5). For example, given a 100 basis point yield change, we would
estimate a .price change of ~-3.20% if positive, and 3.30% if
negative, based on (1.8). These values compare more favorably ta
the actual respective values of -3.17% and 3. 32%, than the

traditional estimate of *3.85%.

b. Convexity

The fact that reither approximation (1.5) ror (1.8) tends to
produce exact answers sugpests that price furctions tend to be more
complicated than linear or simple exponential models can reflect.
More formally, it is virtually always the case that the second
derivative of the price functicon, P"(i), is not identically 0. One
exception is given by a simple discount price function with one cash
flow, P(0), at time equal to duration, D(0). That is,

P(i) = pP(O)Y(1 -~ D(OY1i).
Te accomodate the effect of the second derivative of P(i), the

concept of convexity is defined analogously to duration, as a

relative change function.
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Definition_1.2 Given P(i), the convexity function, C(i), is defined

for P(i) # 0 as follows:

d2p
(1.9 Cti) = ——= /7 P, 11

di2
For the price function given in (1.1),
(1.10) Cei) = (7.5v4 + 275v12) 7 P(i1)y C(.08) = 15.66.

Using the second order Taylor series:
(1.11) P{i) = Plig) + P'lig) (i — 1pr + WP (ig) (i = ip)&,

we get the following quadratic pgeneralization of (1.5):

(1.12) P(i)/P(ig) = 1 - D(ip) Ai + MC(ig) (A1)2.

For example (1.1) with ip = .08 and 1 = .085, a calculation
produces an exact relative price change of .9840 (-1.60%), while the
approximation in (1.12) gives .9842 (-1.58%). In this example, the
absolute error of the second order approximation is no better than
that produced by the first order estimatej; both are .02%. For
small values of Ai in gereral, the sign of the error asscciated
with a given Taylor series approximation is equal to the sign of the
next higher order term. That is, the sign of the product of:

(a) the next derivative evaluated at ip, and (b)) Ai raised to the

corresponding power. Consegquently, because convexity is positive in

the above example and (A2 is always positive, the duration
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approximation in (1.35) of .9838 understated the actual relative

price change of .9840.

As for the second order approximation using (1.12), the sign of
the error depends on both the sign of the third derivative of P(i),
and the sign of Ai, since its exponent will be odd. For the above
example the third derivative is negative, so it is predictable that
(1.12) will overstate price changes associated with small interest

rate increases, and understate these changes for small decreases.

In order to develop a second order counterpart to the

exponential approximation in (1.8), we need to first expand the

exponent function in (1.6) into a Taylor series. In particular,
let:
i
(1.13) fti) = I D(y) dy.
io

We then have:
(1.14) F7¢i) = D(i), F"(i) = DE(i) - C(i).

The second derivative is easily obtained by differentiating the

identity, P' = -DP, and solving for D'. Consequently,

(1.15) fi) = D(ig) (i - i) + ®ID&(ig) —~ Clig)l¢i - ip)&.
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(1.16)

(1.17)

Substituting (1.15) into (1.6):

P(1)/Plig) ® exp{~D(ig) Ai + RICtig) - D2(ig)I(AlR?.

When the approximation in (1.16) is applied to the price
function in (1.1), the price change predicted due to an increase in
interest rates from .08 to .085 is .9842. This compares to the

correct answer of .9840, and equals the quadratic estimate using

(1.12).

Then for Ai sufficiently small:

exp(-D(ig) Ai) ¢ P(i)/Plig) c) b2
1 - DUig) Al ( P(i)/Plig) ( exp(~D(ig) Ai) o ¢(C (D2
P(i)/Plig) ¢ 1 - D{ig) Ai cC (o

where Ai = i - igy, D = Dlig)y € = Clig).

Proof Clearly, the bounds in (1.17) correspond to the linear and
first order exponential approximations in (1.5) and (1.8). The sign
of the error in these first order approximations equals the sign of
the second order terms in the respective expansions in (1.1&) and
(1.16). For the linear approximation, this term has the sign of
C(ip), while for the exponential approximation, this term has the

sign of C(ig) - D@(ip). The bounds in (1.17) follow from this and

the observation that 1 + x £ eX, I}
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(1.18)

(1.19)

c. The Duration_of_ Duratjon

As implied by (1.14), the derivative of the duration function

related to the convexity function. More formally:

D (1) = D2(i) - C(i).

Using this expression in the first order Taylor series for D(i):

D(i) % D(ig) + ID2(ig) - Clig)I1AIi.

For the example in (1.1), we have D' (.08) = -5.10. Consequently,
the approximation in (1.19) predicts that a yield increase of 100
basis points would decrease the duration by about .05. An actual

calculation shows that D(.09) = 3.19, for a decrease of .06.

From (1.19), cone can conclude that for a small increase in i,

is

Consequently, if convexity is negative at ig, D(i) will always be an

increasing function locally about ig. For positive convexity, D(i)}

will be an increasing function only if C(ig) ¢ D2(ig), and will be a

decreasing function, as in the above example, if Clig) ) DZ(ig).

By introducing the notion of the duration of duration, the

second order approximations in (1.12) and (1.16) can be interpreted

naturally as the corresponding first order approximations in (1.5)
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and (1.8), with an "adjusted duration" value. To this end, we

formalize this notion of a compound duration in the natural way:

Pefinition 1.3 6Given a duration function D(i), the duration_of

duration_function, DD(i), is defined for D(i) # 0 as follows:

(1.20) DD(i> = - 9D / pegy, B0
diy

From (1.18), we have that:
(1.21) DD(i) = C(i)/D(i) — D(i).

Also, the following version of Proposition 1 holds within any

interval in which D(i) does not change sign:
i

(1.22) D(i)/D(iq) = exp E—IDD(w dyl,
o

Rewriting the first order Taylor expansion in (1.19), we get:

(1.23) D(i) = D(ig)C[1 - DD(ig) Ail,

which is functionally equivalent to (1.5). Using this expression

in (1.6) and inteprating, we get:
(1.24) P(i)/P(ig) = exp [~ Ai D(ig)I{1 - DD(ig) A is2]1].

This approximation for price change is equivalent to the second
order exponential obtained in (1.16), as a calculation shows.

However, this format is intuitively more appealing to use, since it
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can be interpreted as an application of the first order exporential
approximation in (1.8) with an adjusted duration value. The
adjusted duration equals the approximation in (1.23) for

Dtio + Aisa).

For example, consider the price function in (1.1). R
calculation shows that DD(.08) = 1.57. Consequently, if yields
increased 100 basis points, the adjusted duration,

D(ig) E1 - DD(ig) Ai/21, will equal the original duration of 3.25,
decreased by ®(1.57)% to 3.2:2. Using this adjusted value in (1.8)
is equivalent to applying (1.24) directly, and a price decrease of

3.17% is estimated.

The quadratic approximation in (1.12) can also be rewritten in

terms of DD(i) as follows:

P(i)/P(ig) = 1 - Ai D(ig)f1 - (DD(ig) + D(ig)) Ais/21l.

PAralogous to (1.24), the expression in (1.25) can be interpreted as
an application of the standard linear approximation in (1.5) with an
adjusted duration. Here, however, the duration adjustment differs
from that in (1.24), reflecting both DD(ig) and D(ig). Applying
(1.85) to the price function in (1.1), DD(.08) + D(.08) = 4.8&, sao
the adjusted duration corresponding to lﬁi = 100 basis points equals
the original duration of 3.25, decreased by %(4.82)% to 3.17. Using
this adjusted value in (1.5) produces an estimated price decrease of

3.17%.
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(1.26)

d. A_Characterization of the PAoproximwations for P(i)/P(io)

It is interesting to observe that the fundamental difference
between the various approximations for P(i)/P(ig) is the underlying
assumption regarding the behavior of D(i) near ig. For the
exponential approximations in (1.8), (1.16) and (1.24), this

assumption is explicitly based on the identity in (1.6). Namely,

__Exponential Approximation _ _Model for D(i)_
(1. 8) ist Order D
(1.16), (1.24) 2nd Order D + b2 - C1 Ai

where D = D(ig) and C = C(igQ).

That is, the first order approximation reflects the assumption that
D(i) is constant, while for the second order version, it is assumed
that D(i) varies linearly according to its tangent lire
approximation in (1.19). Hence, if D(i) is constant or linear,

the correspoendirng approximation will be exact.

Turning to the polynomial approximations in (1.5), (1.18) and
(1.25)3y while they may appear more natural than their exponential
counterparts, they imply less natural, and sometimes counter-
intuitive assumptiona about D(i). These assumptions can be
determined by equating the exact value of P(i)/P(ip) as piven in

(1.6) to the respective approximations, and solving for D(i).
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Although integral equations are erncountered, these are easily solved
by first taking logarithms, then differentiating with respect to i.

The following relationships then results

Polynomial_ Approximation Model_ for_D(i)
(1.5) 1st Order D/ (1 -DAi)
(1.12), (1.25) 2&nd Order (D - CAi)Y 7 (1 — DAL + C(Ai1E)

Tﬁe underlying model for D(i) in (1.5) can be counter—intuitive.
For example, a calculation shows that this function is an increasing
funétion of Ai, while as noted above, D(i) is an increasing
function locally only when Da(io)‘exceeds'C(io). While somewhat
more complicated, the model for D(i) underlying (1.12) and (1.235)

does not have this potential problem, in that it too will be an

increasing function locally only when Da(io) exceeds C(ip).

@. Other_Relationships

As shown in section 1.d. above, the variocous approximations for
P(i)/P(ig) can be interpreted in terms of the underlying assumptions
regarding the behavior of the duration function, D(i), near ig. In
addition, each of the exponential approximations can be shown to be
the limiting case of applying the linear approximation in (1.5) to

ever finer subdivisions of the interval from ig to i.
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(1.28)

(1.29)

(1.30)

To see this, let ip and i ) igo be given, and define a

subdivision of the corresponding interval by:
iy = i0 + 3/n i - i0), J = Oy.aegna
Clearly, we have that:

n
Pi)_ = Plig)__.
P(ig) P(ij-1)
J=1

Applying the linear approximation in (1.5) to each term in this

product, we get:

P(i) g1ﬂr (1 = Dlij-1) Ai/m).
J=1

In (1.30), if it is assumed that D(i,;) = D(ip) for all 3, the
resulting product converges to the first order exponential
approximation in (1.8) as n—w. If it is assumed that D(i;) is
given by the linear approximation in (1.19), the resulting product
converges to the second order exponential approximation in (1.16).
If exact D(ij) is used, the exponential identity in (1.6) results.
Interestingly, if the gquadratic approximation in (1.12) is used in
(1.29), and the convexity function is assumed constant, i.e.
C(iy) = Clig), the products again converge to the two exponential
approximations depending only on whether we assume D(iJ) to be
constant or linear. Similarly, for exact Cliy-1) and D(i;z-1) the
product again converges to the identity in (1.6). See the Appendix

for a proof of these relationships.
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(2. 1)

2. LIMITATIONS OF THE ONE VARIAPLE MODELS

The example developed throughout section 1 illustrates the
effectiveness of one variable models to approximate the relative
change in price due to a change in the interest rate.

Unfortunately, it is difficult to reduce the real world financial
markets to such a unique interest rate. In practice, therefore, the
use of one variable models is not without its limitations, as the

following two examples demonstrate.

a. An_Example — Yield to Maturity Approach

Assume that we have a simple portfolio of three cash floaws equal
to 20, -20 and 11 at times O, 1 year and 2 years, respectively.
Also, assume that the one year spot rate is .105, and the two year
spot rate is .10. For simplicity, such a spot rate curve will be
derxted (.105, .10). At these rates, the current price is easily

calculated to be 10.99136.

One traditional approach to applying the one variable model is

the yield to_maturity (YTM) approach whereby the price furnction P(i)

is modelled as follows:

P(i) = 20 - 20v + 11vEd, v = (1 + i)-1,
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(2. 2)

The equation P(i) = 10.99136 has two solutions: .00445 and .21565,
and one logical approach to choosing between these values is to
check the behavior of P(i) rearby. R simple calculation shows that
P{i) is a decreasing function near .00445, and an increasing
function near .21565. However, if spot rates increased 100 basis
points to (.115, .11), the portfolio value would decrease to
10.992063. Consequently, it is more intuitively appealing to use a
decreasing function, so we choose the smaller YTM of .O00445. The
duration of P(i) at this point is calculated to be .172, and the

convexity equals 2.308.

Using the linear approximation for Pli), we get:

P(i)/P(.00445) = 1 - ,172(i - .00445).

Now, if the yield curve increased uniformly by .01 to (.115, .11,
the use of .01445 (i.e. .00445 + .01) for i in (2.2) would yield a
very poor approximation. The actual portfolioc decrease in this case
is .0067%, while this linear approximation and i value would predict
a decrease of .17%. Making the adjustment for the convexity value
of 2.308 improves the approximation slightly to a predicted decrease

of .16%, still orders of magnitude from the correct answer.

Of course, the problem here is one of units; yield curve units
versus YTM units. The proper value to use for i in (2.2) is not
- 01445, but the YTM corresponding to the yield curve (.115,.11). A

calculation shows this value to be .00485. That is, the .01 change
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in yields corresponds to only a .0004 change in YTM, so it is
obvious why the above initial approximation was so poor. Using the
new YTM in (2.2) produces a predicted decrease of ,0069%, and this
compares quite favorably to the actual value of .0067%. Here, the
convexity adjustment is O to four decimal places (in percentage
units). Using the exponential approximations provide similar
results because the duration and convexity values are relatively

small.

It should be noted that if we had chosen the larger YTM value of
- 21563, its counterintuitive regative duration of —,117 can also be
interpreted as a problem of units. That is, an increase in spot
yields corresponds to a decrease in YTMs, thereby corvecting for
both the wrong sign and the wrong order of magnitude. Specifically,

the yield increase of .01 corresponds to a YTM change of —.0006.

Consequently, one can often correct for the scaling problem
inherent with the YTM approach by developing an appropriate
conversion formula (see section 2.c). However, the YTM approach
also has the uncorrectable problem of nonexistence of solutions.
For example, the yield curve (.109,.110) produces a price for the
above cash flows of 10.8336, which is below the minimum value in

(2. 1) of 10.9039. Hence, no YTM exists, nor does an estimable Ai.
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(2. 3)

(2. 4)

b. An_Example - _Parallel Shift Approach

The commonly used alternative to the YTM approach is the
parallel shift approach, whereby the interest rate parameter is
defined directly in terms of the change in the yield curve. The
restriction here is that the original yield curve of (.105,.10)
moves only "in parallel.” That is, each yield rate charpes by the

same amount. Specifically, the price function for the above cash

flows is modelled as follows:

P(i) = 20 — 20v + 11w&; v = (1.105 + 1)1, w = (1.10 + i)-1,

The equation P(i) = 10.99136 rnow has the cbvicus sclution of i = O,
R calculation produces D(0) = .0136, C(0) = 1.404, and P(i) is

lirnearly approximated by:

P(i)/P(O) % 1 - 01361,

or, by the corresponding second order estimate which adds %“C(D)i&,
For a parallel yield curve increase of .01 to (.115,.11), the
approximation in (2.4) predicts a portfolic decrease of .0136%,
which overstates the actual decrease of .Q067%. The convexity
adjustment improves the approximation from .0136% to .0066%, which
is quite gocd. Using the exponerntial approximations provides

virtually identical results in this case, because D(0) and C(0) are

small.

The primary limitation of the parallel shift appreoach is that
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yield curve shifts are often not parallel, and the above model can
provide poor approximations. Consider, for example, an increase in
yields from (.105,.10) to (.1075,.1075). That is, an increase of 25
basis points in the one year spot yield, and 75 basis points in the
twoe year value. Since the duration of the portfolio is positive at
. 0126, one might expect that an increase in yields should decrease
the portfeolio value. In this case, this does indeed occur and this

nonparallel increase in yields causes a decrease in the portfolie

value of .745%.

However, this actual decrease would not have been predicted
from the first or second order approximations for P(i)/P(O),
choosing i to be in the range from 25 to 75 basis points. The best
of the four approximations would prediet a portfolio decrease of
only .010%; a poor estimate for the actual decrease of ,745%. It
appears that for this nonparallel yield curve charnge, the portfolio
is far more sensitive than D(O) = 0136 and C(O) = 1.404 inmply.
This problem has little to do with the order of magnitude of the
yield curve shift. That is, the problem is not that shifts of 25
basis points or 75 basis points are too large for the approximation

to work well.

For example, assume that the yield curve had increased only
slightly from (.105,.10) to (.1052,.1001). This shift is positive
and rearly parallel, so given that D(0) = ,0136, a portfolic
decrease is expected. However, the portfolio value actually

ircreases in this case by .015%, Both linear and qguadratic
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approximations predict decreases at both 1 and & basis points. The
best of these approximations calls for a decrease of .0001%. As
before, the sensitivity of the portfolioc to this non-parallel shift

appears much greater than D(0) and C(O) imply. Unlike before, not

even the sign of the sensitivity is accurately predicted.

c. fAn_Analysis — Yield to Maturity Approach

As the example in section 2.a. shows, the YTM approach can often
be used effectively to gauge portfolio sensitivity to parallel yield
curve shifts. What is necessary,>houever, is an appropriate
conversion formula to estimate the change in the YTM caused by the

given parallel shift in the yield curve.

To.this end, let igp denote the initial yield curve in common
vector notation, and 1o the corresponding YTM, sc that
P(ip) = P(Ig). For the above example, ip = (.105,.10) and
1o = .00445. Also, let Ai denote the parallel shift in the yield
curve, and AI the corresponding shift in the YTM, so that
P(ig + Ai) = P(Ig + Al). Expanding each of these functions as

first order Taylor series, we get:
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(2.5}

(2.6)

2.7)

(2.8)

Plig + Ai) = Plig) + P’ lig) Af,
P(Ig + AD) = P(Ig) + P' (Ig) Al

Equating these expressions, and recalling that P(ig) = P(ig), we

derive the first order estimate when D(Ip) # O:

Note that the proportionality comnstant in (2.7) is the ratioc of
D(ip), the duraticn of the price function evaluated on the initial
yield curve, to D(Ig), the duration evalﬁated at the initial YTM.
For the example in section &.a. above, this constant is .073.
Consequently, a 100 basis point parallel shift corresponds to about
an 8 basis point change in YTM; As was noted above, the actual

YTM change is about 4 basis points for a .01 parallel ircrease.
To develop a second order estimate for Al, the Taylor series in
(2.5) and (2.6) are expanded to include second derivatives. The

corresponding quadratic equation in Al is then solved with the

quadratic formula, producing:

1 = §D(1g) - JID2(Ip) — 2C(Ig)D(ip) Ai + C(Ig)Clig) (AT E/CIg).
0 ]
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The negative square root is taken in (2.8) to satisfy the initial

condition that Al = O when Ai = O.

Applying (2.8) to the example in section 2.a. above, with
ip = (.105,.10) and Io = .00445, one calculates that AI ® .0004 for
Ai = .01, a good estimate. Unlike the linear estimate in (2.7),
the approximation given by (2.8) is not symmetric in Ai. This
asymmetry is often needed. In the above example, a .01 parallel

decrease in ig corresponds to a .0012 decrease in the YTM. Using

(2.8), we estimate that for Ai = -.01, Al = -,0012.

As noted above, although the YTM apprcach can often be used
effectively for parallel shifts when the units are properly

converted, at least two serious problems persist:

a). Non—existerce of YTMs 1 if there is no exact YTM
corresponding to the parallel shifted yield curve igp + Ai, the
above conversion formulas for Ai may not provide good results.
That is, P{Iop + AI) will not nléessarily give a good

approximation to P(ig + Ai).

b). Non-parallel shifts: for yield curve shifts which are nat
parallel, the above conversion formulas for AI will generally

provide urreliable results.
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(2. 9)

Clearly, the norexistence problem is unavoidable. However, the
problem of non—-parallel shifts can be accommodated with more general

conversion formulas. These will be developed in section 3.d.

d. An_Analysis_—_Parallel_ Shift Approach

We next turn our attention to the example in section 2.b. of the
parallel shift approach. As was demonstrated, the sensitivity of
the portfolio value to non—parallel shifts, even slightly non-
parallel, could be much different from what would have been inferred

from the given duration and convexity values.

Rs was the case for the YTM approach, the problem here is again
a problem of units. The varicus approximation formulas for P(1)
reflect the sensitivity of price to parallel shifts of the yield
curve of Ai. This parallel shift of Ai is really a vector shift
of Ai. That is, Ai = ( Ai, Ai) represents a yield change vecter
which maves the yield curve frem { to 1 + Al =
(i + Ai, ig + Ai). Looked at this way, the shift vector Ai can

be decomposed into a "magnitude," Ai, and a direction, N = (1,1):

At = Aid, 1.

In addition, the various approximation formulas for Plig + Ai) can

be interpreted as reflecting the change in price due te a change in
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(2. 10a)
(2. 10b)

(2.10c)

yields of Aﬁi, where this change is in the direction of the vector

1, 1),

Decomposing the various shifts in section E.b.,.we get:

-(.01,.01) = .01 (1,1}
(. 0025, .0075) = .00285 (1,3)

(. 0002, .0001) = .0001 (2,1).

0f course, other decompositions are alsoc possible. The
approximation formulas worked well for shift (2.10a) because the
direction of charnge was (1,1), the direction implicitly assumwed in
the derivatior of these formulas. Non—-parallel shifts (2. 10b-¢)
caused poor estimates because their directions did rot equal (i,1),
and for the cash flows underlying P{i), this difference in

directions was very important.

For notational convenience here, let D(1,1) denote the duration
as defirned in (1.3), with the underlying direction vector of (1,1)
explicitly displayed. For the example in section 2.b., we had
D¢1,1) = .0136 evaluated on the initial yield curve,
ip = (.105,.10). In the next section, duration and convexity will
be formally defined with respect to directions other than (1,1).

With those definitions, one can calculate:
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(2.11a) D¢1,1) = . 0136 Cai,1) = 1.404

2. 11 D(i,3) = 3.0212 C(1,3) = 34.214

(2.11c) D¢2,1) = -1.4767 C¢z2,1) = —-6.688

For this example, these duration and convexity values reflect the
price sensitivity to yield curve shifts in various directions, ard

are seen to differ greatly.

defined and calculated, one can develop the corresponding

approximation formulas, such as the counterpart to (1.18):

(2.12) P(lo + AiINI/P{ig) = 1 =~ Dn(ig) Ai + HCn(ig) ( AidE,

as well as the analogous first order counterpart to (1.5).
Utilizing (2.12) and the directional values in (&.11), the following

improved estimates can be cbtained:

ghift First Order Second_Order Exact Value
(.01,.01) —. 0136% -. 00BE% -, Q06T%
(2.13) (. 0025, . 0073) - 7533% —. TH4E% - TH4T%
(. 0002, . 0001) +.0148% +.0148% +.0148%

In section 3, this multivariate approach to duration and

convexity will be explored in detail.
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(3. 1a)

(3.1b)

3. MULTIVARIATE MODELS

a. Directional Duratjions_and Conpvexities

Let ip = (ig1,iQ2sec-yiom) represent an m—-point yield curve on
which the portfolio is valued. Typically, the components of this
yield vector would correspond to the yield curve pivotal points.

For example, yields for terms: .25, .5, 1, 3, 5, 7, 10, 20, and 30
years. Such pivotal points are truly the external variables on a
yield curve since they are observed-from market activity. The other
yield values are typically interpolated and therefore, internally
generated and dependent. ARAlso, let N = (hi,...,ny) be a direction

vector, N # O, and IN! = (EnijZ)™ dencte its length.

Consider f(t) = Plip + tN), where P(i) is a multivariate price
function, assumed to be twice continuously differentiable. Clearly,
this function defines the price of the portfolio as the initial
yield curve ig is shifted various units in the direction of N. That
is, where ip1 is shifted tng units, igg is shifted trp units, etec..
Using a Taylor series expansion, we can approximate f(t) to first

and second order in t as follows:

fit) = F(O) + ' (O)¢,

Flt) = FO) + f1 (Ot + WmF"(O)t2.
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(3.2a)

(3.2b)

(3. 3a)

(3. 3b)

(3. 4)

In order to calculate the derivatives of f(t) needed in (3.1), it is
necessary to recognize that the price function is actually a
function of m variables, the shifted yield curve points, and each of
these variables is a function of t. Let P;(1) denote the jth
partial derivative of the price function. Similarly, let Pyk (1)
dencte the corresponding mixed second order partial derivative.

Then,

£1(6) = EnyPjtip + tN),

FU(E) = EngngPjrio + tN).

Evaluated at t=0, the expressions in (3.8) are seen ta be the

first and second order directional derivatives of the price function

P(i). That isj

() = 2Pl = EnyP (ig),
o Niio

£9¢0) = P2P1 = EnyniPktio).
B3Nz iio

Considering (3.1) and (3.3), the following definitions are

motivated:

the direction of N, Dn(1), is defined for P(i) # 0 as follows:

DN(i) = ~ QP /P(g). 11
S/



directional convexity function in the direction of N, Cn(1), is

defined for P(i) # 0 as follows:

(3.5) Cnti) = Q2P /p(i). 11
oNT/

Substituting (3.3) into (3.1), the following counterparts to (1.5)

and (1.12) are produced, as noted in (2.12):
(3.6) Ptig + AiN)/Plig) = 1 - Dn(ip) Ai,
(3.7) Plig + AiN)/P(ip) = 1 — Dn(ig) Ai + ACn(ig) ( Ai)E.

As an example, consider the price function in (2.3) explicitly

expressed as a function of two variables:
(3. 8) P(ig,iz) = 20 - 20v + 11w2;

where v = (1 + i1)=1, w = (1 + iz)~1, The various partial

derivatives of P(iy,iz) are easily calculated to be:
(3. 8a) Pilig,ip) = 20v&; Palig,ip) = -22w3
(3. 8b) Pygtig,ip) = —-40v3; Ppplig,iz) = 66why Pig = P21 = O.

Evaluating these derivatives at ig = (.105,.10), and performing the

necessary weighted summations in (3.3), the directional durations

and convexities displayed in (2.11) can be readily verified.

Before continuing, it is worth noting that:
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1) If N= (1,...,1), the parallel shift direction vector, Dn(ip}
equals the traditional value of D(0), and Cn(ip) = C(0). Here,
these traditional values are calculated utilizing the parallel

shift approach (see Proposition 6, below).

2) Formulas (3.6) and (3.7) are consistent even though there are
infinitely many ways to specify the direction vector N. Far
example, given N, let N' = BN. The corresponding shift
magnitudes satisfy: Ai’' = 2 Ai. The estimates in (3.6) and
(3.7) will then be the same for N and N', because DN’ = 1/8 Dy,

and CN' = 1/4 Cyn by (3.3).

To make this more well-defirned, it is possible to normalize
the model by requiring the direction vector N to satisfy
IN! = 1. The magnitude variable, Ai, is then uniquely defined
as the length of the shift vector AiN. However, whether N is

rormalized or not, consistent estimates are produced.

direction vector with P(ig + AiN) # 0 for 1 Ail £ K. Then,

Ai

(3.9 Plip + AiN)/Ptig) = expt—I Dn(ig + tN)dt],
0

for | Ail £ K.
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(3.10)

(3.11)

(3.12)

Proof Define f(t) = InlP(ig + tN)I. Then —f'(t) = Dn(ip + tN),

which can be integrated and exponentiated to produce (3.9). 11

From (3.9), the following first order exponential approximation

is transparent:

P(ip + AIN)/P(ip) # exp(~Dntig) Ai).

As was-true in section 1, for small values of DN(ig) this
exponential approximation will yield results which are c;ose to
those produced by the more traditional-locking approximatiorn (3.6).
In order to develop the second order exponential formula, we must
expand the exponent functio‘n in (3.9) as a Taylor series in Ai. To
do this, the directional derivative of Dy at ig is needed.

Analogous to (1.18), we have:

QDL« = DNE(1) - Cniid.

_;_.N
This formula is readily verified by taking directional derivatives

of the identity, D_P = —DnP.
N

Proceeding as in the derivation of (1.16), we obtain:

Ptig + AiN)/P(ig) = exp[-Dn(ig) Ai + n(Cntip) - DN2(i0)) ( Air21.
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(3.13)

b. Bounds for Directional Durations

Given a price function, P(i), and a yield curve vector ig, it
is natural to inquire as to the existence of direction vectors which
either minimize or maximize DN(iQ). In light of (3.6), such
direction vectors will represent critical yield curve shift
directions for P(i). As rnoted in section 3.a. above, this guestion
will not be well posed unless some restriction is put on the length
of N. This is because if N' = aN, Dy’ (ig) = aDnylip). Consequently,
we tan always increase a positive Dn(ig) by increasing the lerngth of
N. Restricting our attention to normalized direction vectors N

satisfying IN! = 1, we have the fellowing (see also Proposition 10):

Proposition 4 Let P(i) be a price function, ip a yield vector with

P(ig) » O, ard Np = =(P1(ig)y.as s Priip)) /7P’ (ig) i, where 1P (i) 1E=
EP;2(ip) is assumed to be norn—zero. Then for all direction vectors

N satisfying IN! = 1, we have:

all < Dntip) < 1IP'(ip)!.
) P(ig)

Further, the limits in (3.13) are attained for N = tNg, with the

upper limit corresponding to WNg, and conversely.

If P(ip) ( O, the inequalities in (3.13) are reversed, and the

upper limit is attained at —Ngo.
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(3. 14)

(3.15)

(3.13)°

Proof This proposition is nothing more than a restatement of the
classic result regarding a directional derivativey that it is
maximized in the direction of its gradient, and minimized in the
opposite direction. Here of course, Ng is -1 times the normalized

gradient of P(1) at ip. I}

Proposition 3 Let P(1) and ip be given and assume that

1P (ip)! = O. Then for all N,
Dntig) = O.
Progof This result is clear from the definition of Dy(do) and

(3.3a), since IP'(ig)1 = 0 if and only if Pj(ip) = O for all j. I}

Returning to the example of (3.8), one readily calculates from
(3.8a) that !P'(ip)! = 23.27 and Ng = (~.704,.710). Evaluating the

critical values of Dn(ig) by (3.13), we get:

-2.12 £ DN(ig) £ 2.12, INI = 1.
Finally, a calculation shows that Dy(lg) = %2.12 at *No,

respectively.

As a final comment regarding Proposition 4, it should be noted
that for IN! # 1, the bounds in (3.13) are readily gereralized.

For example, for Plig) ) O,

ip)l INI < Dntio) ¢ 1P (ipli IN!.
o) 2(ig) -
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c. Partial Durations and Convexities

As shown in section 3.b., the classical duration and convexity
analysis of section 1 can be readily generalized to include yield
curve shifts which are not parallel. An alternative model would be
one which more explicitly recognizes the multivariate nature of
yield curve changes. That iﬁ, a model which estimates P(ip +[§l)
directly, where i¢ is the initial yield cyrve vector, and [&1 =

(Qigs-++y Aim) is a yield change vector.

To this end, consider the following m-dimensional versions of

the first and second order Taylor series:

(3.16a) Piig + A1) = P(lg) + EP;(i@) Aiy,
(3. 16b) P(ip + A1) = P(ig) + EP,(ip) Aiy + MEEP i (10) Aij Aik.

These approximations naturally motivate the following definitions:

Pafinition 3.3 Given a multivariate price function P(i), the jth

partial _duration fungtion, denoted D;(i), is defined for P(i) # O

as follows:

(3.17) DyC8) = Py (4)/P(4)y g = Lyenngm b1

- 41 -



Definjtion_3.4 Given the price function P(i), the jkth_partial
convexity function, denoted C,i (i), is defined for P(i) # O as

followss
(3.18) Ciktd) = Py tid/R(1), Jek = ;.00 ym. I}

Definition 3.5 Given the above definitions, the total duration

vector, denoted D(1), and the total convexjty matrix, denoted

C(i), are defined as follows:
(3.19) D) = (Di(i)y.ue,Dputid),

1ICg1(d) . o - o Cyp(id!
1. - I

(3.20) C(iy = | . . 1
{ . I

1ICm1¢d) « « « « Cumti)1. 11

Note that D(i1) is to be interpreted as a row vector. Utilizing

these definitions in (3.16), the following generalizations of (1.5)

and (1.12) are produced:

(3.21) Plip + 1)/P(ip) = 1 - Diig)- Ai

(3.22) Plig + 1)/P(ig) = 1 - DUig)- Al + »m AtTCUE At

To simplify notation, (3.21) utilizes the well known dot
product or inner_product notation, whereby if x and y are m-vectors,

X'y is defined:
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(3.23)

(3.24)

(3.25)

(3.26)

Ky = Exyy;i.

Similarly, the last term in (3.22) is expressed in matrix

product_notation, or more specifically, as a guadratic_form in Aﬁi.

By convention.l}l is interpreted as a column vector, and‘liT is the
corresponding row vector, or transpose of‘li. Standard matrix

calculations then produce:

XTCx = EEcjjxynk-
It should be noted that for smooth price functions,
Cok(d) = Cy,y 1),

because of the corresponding property for mixed partial derivatives.

Consequently, C(i) is a symmetric matrix in this. case. That is,

Cl) = cciyT,

It should also be notad that the dot product in (3.23) can also be

expressed in matrix notation as xTy (%,y column matrices), or

xyT (x,y row matrices).

Again returning to the example in (2.3), where P(il,ié) =

20 - 20v + 11we, and ip = (.105,.10), the partial derivatives
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{(3.27a)

(3.287t)

(3.28)

(3.29)

in (3.8) imply:s

Dy(ig) = -1.4902, Dalip) = 1.5038,

C11(ig) = -2.697, Coplig) = 4.101, Cigz = Cpy = O.
Hence, the first order approximation in (3.21) becomes:

Piip +Af) = 10.99136(1 + 1.4902 Aiy - 1.5038 Aig).

Looking at the functional form of (3.28), it is little wonder
that for nonparallel yield curve shifts, Aij # Aig, thei price
function changed in ways not anticipated by the traditional
approximation (2.4). Namely, this price furction is relatively
sensitive to movements in Aij and Aiz separately. However, because
these sensitivities are of oppésite sign and similar magnitude, the
traditional approximation, which assumes A11 = Aia, produces an

apparent sensitivity of only .0136.

Similarly, the traditional convexity value of 1.404 disguises
the greater sensitivities implied by the partial convexities in

(3.27b). That is, expanding (3.28) to second order terms as in

(3.22), we get:

pPlio +Au % 10.99136 L1 + 1.4902 Aiy - %(2.697) (Aig)2

~ 1.5038 Aiz + m(4.101) (A ip)23,
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Again, depernding on the relationship between 13i1 and zﬁig, this
price function will behave in ways not anticipated by the

traditional approximation which assumes Aig = 1312.

Implicit in the above discussion is the assumption that when a
multivariate approximation is restricted to parallel shifts, i.e.
Aly = jﬁi for all 3, the corresponding one variable approximation
from section 1 is produced. For example, (3.21) reduces to (1.5).
For this to be so, it is necessary and sufficient that duration
equals the sum of the partial durations, and convexity equals the

sum of the partial convexities.

The following proposition formalizes this result:

denote the duration and convexity values calculated according to the
"parallel shift" approach. Then:
(3. 30) D(ig) = ED,(i9),

(3. 31) Clig) = EIC i tig).

define the price function P(i) = P(ig + iM). The chain rule then

gives:
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(3. 32b)

(3.33)

| (3.32a) P (i) = EP,;(io + iM)

P (i) = LIP;Klio + iM).
Evaluating (3.32) at i = 0, and dividing by P(0) = P(ig), completes

the proof. I

Turning next to the exponential models, we have the following:

Proposjition 7 Let I'(t) be a smooth parametrization of yield curve
vectors defined on [0,1] so that F(0) = ipg, (1) = ip + 131. Alsao,

assume that P(F(t)) # O for O £ ¢t £ 1. Then:

1

Plo + A1) /P(ig) = éxp[—ID( F(E)) =T (£) dt3,
0

where I (%) dernotes the ordinary derivative of this vector valued

function.
Proof Define f(t) = InIP(IF(t))Il. A calculation shows that f'(t) =
-D(r(t))-~rr'(¢), which can be integrated and exponentiated to

complete the proof. 11}

From Proposition 7, the following approximation results:
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(3. 34)

(3.35)

(3.36)

P(ip +111)/P(t°) % expl-D(ig) - (0)1.

In the special case where M(t) is linear, I'(t) = ig + tZSi, the more
general formulas in (3.33) and (3.34) are easily seen to reduce to
the directional derivative counterparts in (3.9) and (3.10), with

Ai here corresponding to AiN above.

In order to develop the second order exponential approximation,
partial derivatives of the various partial durations are required.

Analogous to (1.18) and (3.11), we have:

ik

2D, = DkDy - Cyke

which is derived by differentiating tﬁe identity Py = —-PD,;, with
respect to ix. Proceeding as before, one can expand the exponent
function in (3.33) as a one variable Taylor seriés by replacing the
upper limit of integration with s, say, then substituting s = 1 into

the second order Taylor expansion to obtain:

Plig + 1)/Plig) ® exp {—nuo) “r (o)

+ mir )T (Ctig) - DU T D(ig)) I’ (0) - Deip) -r--(ou}.

In the special case where "(t) is linear, M(©Q) = 0, and (3.36)

reduces to the directional derivative counterpart in (3.12).
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(3.37a)

(3.37b)

(3. 38)

d. YIM_Ppproach Revisited

In section 2., approximation formulas were developed in (2.7)
and (2.8) which illustrated the sensitivity of the yield to maturity
to parallel shifts in the yield curve. In this section, these

results will be generalized to include non-parallel shifts.

As before, let igp be a yield curve vector, and 1o the
equivalent YTM sc that P(ipg) = P(Ig). Expanding intc the respective

first order Taylor series,
P(ig + A1) = Plig) L1 - Dio) - Ald,

P(Ig + AI) = P(Ig)E1 ~ D{Ig) AIl.

Equating these values, we can solve for 131 when D(lg) # O,
obtaining:

Al = Diia):Ai
D(Ig)

This equation reduces to (2.7) when [\1 is a parallel shift, sirnce

D(ig) = ED,(ig).

As an example, recall the price function of section 2.a., where
the initial yield curve, 1ip = (.105,.10), was seen to be equivalent
to the yield to maturity, Io = .00445. That is, both ylelded an

initial price of 10.99136. Consider the small nonparallel yield
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(3.39)

curve shift, Ai = (.0005,.001). Based on (3.38), one approximates
the associated change in the yield to maturity, AI = .00442, using
the duration values from (2.2) and (3.27). Estimating Al directly

proves this result to be a little understated, in that AI = .00455.

Consider next the larger nonparallel shift of Ai = (.005,.01).
Because this shift flattens the original yield curve to (.11,.11),
it is obvious that the new corresponding YTM equals .11, and that we
should find that Al = ,10855. The approximation based on (3.38)
equals .0442, an apparently significant error. However, it must be
kept in mind that the approximation produced by (3.38) for AI, used
in congunction with D(lg) in (32.37b), will produce the same estimate
for P(.11,.11) as wil; (3.37a) using the actual Ai and the partial

durations.

By expanding the Taylor series in (3.37) to include second
order terms, Al can be estimated using the quadratic formula,
producing the following generalization of (2.8):

T
At = {bo - Doz - 2CoD+ A1 + Co ALC A11}/Co,
where Dgp = D(Ig), Co = C(lg)y D = D(ig), and C = Clig).

This formula gereralizes (2.8) to allow nornparallel yield curve
shifts, and as was the case there, the nepative square root is used

to satisfy the initial condition that AI = O when Ai = O.
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Recalling the partial duration and convexity values in (3.&7),
this quadratic formula can be used to estimate the AI associated
with Ai = (.0005,.001) in the example above. In this case, the
estimate for ,AI is improved compared with the linear estimate,
reproducing the exact value of Al = .00455 to five decimal places.
For the larger sﬁift of ‘&1 = (,005,.01), a negative value is
produced urder the square root.. That is, there is no real number,
Al, for which the one variable second order Taylor series equals the
multivariable series which reflects Ai, Dt(i), and C(i). A
calculation shows that this latter value is .93258, while the
minimum value of the one variable quadratic is .93362, which is

achieved at Al = .07435.

In this case, although an improved estimate for Al can be
obtained by this critical vélua analysis, its use in the asscciated
second order Taylof series does not produce a good estimate for the
change in price. Specifically, this second order analysis would
produce a relative change of .99362, while the first order analysis
with [ﬁl = .04422 produces a relative price change of .939241, whiéh

is significantly closer to the actual value of .99z58.

e. Parallel Shift Approach Revisited

Considering next the parallel shift analysis of section 2.d,
recall that it was shown that non-parallel shifts could be handled

by redefining duration and convexity to reflect these rion—-parallel
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(3. 40)

directions. Alternatively, non—-parallel shifts can be accommcdated
using the standard section 1 formulas, if the parallel shift
parameter, Ai, is properly constructed as a function of the actual

shift, Al.

To this end, the first order expansion of P(igp + Ai) in
(3.37a) must be used twice, once for the general Ai, and once for
the parallel shift vector, Al = AiM, where M = (1,...,1).
Equating these approximations, we can sclve for Ai when

D(ig) # O, obtaining:

Ai = DCio2-O4 .
D(ig} -

Unlike the YTM counterpart formula in (3.38), here Ai is seen to be

a weighted average of the various component AlJ values since

ID,(10) = D(ig).

Using the partial durations in (3.27a), we can apply (3.40) to the

non—parallel shifts in (2.10), to obtain:

_____ AL ____ "Equivalent” Aji
(. 0025, . 0073) . « 5554
(. 0002, . 0001) - =-.0109

A calculation shows that using these parallel shift equivalents in

the standard first order formula (2.4) produces identical first
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(3.41)

(3. 42)

order results to those displayed in (2.13) produced with directional

derivatives.

Interpreted this way, we see that the traditional formulas can
provide poor estimates for non-parallel shifts because the units of
the associated parallel shift Ai, can be orders of magnitude
larger, and/or of a different sign, than may be inferred from the
various non-parallal shift values of ‘AIJ. This cannot happen if
all D;(4p) values have the same sign, for example, as is. true for a
roncallable bond (see (4.2)). In such cases, the equivalent Ai

will be within the range of .AlJ values, as is easily seen.

The second order counterpart to (3.40) is identical to (3.39),

only with Dg = D(ig) and Cop = C(ig).

f. Duration and_Convexity Relationships

Relationships between the various duration and convexity values

defined in the previcus sections are developed in the following

propositions:
Proposition 8 Let N # O be a direction vector. Then:

Dn(ig) = N-D(ip) = EnyD;(io),

CN(io) = NTC(10)N =ZEn;nyC,x (io).
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Proof Both formulas are restatements of the definitions of Dn(ig)
and Cn(ig), reflecting the directional derivative identities in

(3.3). 11

Before continuing, it should be noted that for M = (i,...,1),

we have by Propositions 6 and 8, the expected results:

(3.43) Dm(ig) = D(ig),
(3. 44) Cmlig) = C(ip).
The following proposition summarizes a number of results

regarding derivatives of the various duration functions.

Proposition 9 Let N # O be a direction vector. Then:

(3. 45) d_D(ig) = D2(ig) - Clig),
di
(3.46) ? Dn(iQ) = D2n(ig) — Cn(ig),
IN
(3.47) _3{ Di(ig) = D;(i9)Dk(ip) ~ Chklie),
4,
(3. 48) 52 D(ip) = D(ip)D,(ip) — EC i tip).
i k
K]

Progof Let P(i) = P(ip + iM). Relationship (3.45) is derived by

differentiating the identity, P* (i) = —-P(i)D(i), solving for D’ (i),
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(3.49)

(3.50)

and substituting i = 0. Similarly, (3.46) is derived from the
identity, Pn(1) = -P(i)Dn(i), where PyN(i) denctes the directional
derivative of P(i). Here, however, it is the directional

derivatives which are taken.

Similarly, differentiating the identity, Pi(i) = -P(1)Dy (i) with
respect to i; leads to (3.47), while summing this result with

respect to k and using (3.30) produces (3.48). 1!

Returning now to bounds for directional derivatives, we have:

duration vector evaluated at ip. Then for all duration vectors, N,

—iD(ig) 1 IN! £ DN(ig) £ ID(ig)!INI,

where | | denotes the length of the given vectors. Further, the

upper bound in (3.49) is achieved for all positive multiples of the

unit vector:
No = D(iQ)/ID(ig)!.
Similarly, the lower bound is achieved for all positive wmultiples of

-No.

Proof By multiplying the numerator and denominator of No in (3.50)
by P(ig), it becomes clear that this unit vector equals Ng of

Proposition 4. By evaluating DN(ip) for N = *Ng by (3.41), the
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(2.51)

bounds in (3.49) are seen to be a simplified restatement of (32.13)

and (3.13)', since the sign of P(ig) becomes transparent. 1

It should be noted that by Proposition 10, if D;(io) = D(ig)/m
for all 3, the corresponding price function is most sensitive to
parallel yield curve shifts since then Ng = (1,1,...,1). Next,
Proposition 11 shows that given D(ig), the range of price

sensitivity displayed in (3.49) is minimized for this case.

Proposition_1i Let D(ip) be a total duration vector with asscciated

duration D(ig). Then:

ID(ig) ! 2 IDUip) $/Jm,

where m is the dimension of D(ip). Further, the lower bound in

(3.51) is achieved if and only if D;tig) = D(ig)7/m, for all ;.

Proof Although this is a familiar calculus result, a simple non-
calculus proof is possible. Changing notation, let A be the vector
with aj = D(ip)/m, for all ), and let E also have the property that
Ib; = D(igp). Then € = B - A satisfies Ecj = 0, so iBl12 =

1AI2 + ICI2. Hence, since ICI2 2 0, {B!Z is minimized when C = 0. 11

corresponding total duration vectors Djy(i), Dp(i), and total
convexity matrices Cj(i) and Ca(i). Let P(i) = Py(i) + Pa(i). Then

for P(i) # O,

- 188 -



(3.52)

(3.53)

D(1) = [Py (1)D1(d) + Pa(i)Da(1)3/P(4),
C(i) = [Py (1)C1(4) + Pa(4)Ca(1)1/P(1).

Proof As is the case for the traditional values, this result

follows directly from the additive property of derivatives. 11}

Clearly, Propostion 12 implies that both partial values and

directional values satisfy similar identities.

As a final comment, it should be noted that the conclusicons:
noted in section t.e. for the one variable models hold in the
multivariate context as well. For example, the directional duration
exponential approximations can be interpreted as the limiting case
of applying the directional linear approximations to ever finer
subdivisions of the segment [ig,io + AiNi. The assumpticon of a
constant directiornal duration then leads to the first order
exponential formulas, while the assumption that this function is
linear over the segment leads tc the second order formulas. As
before, use of the second order directional approximations with a
constant directional convexity does not change this result. In
addition, the exponential identity can be viewed as the limiting
case of the corresponding first order approximations with exact

directional duration values.

For the partial duration models restricted to M(t) = ip + t Ai,

similar results hold. For gerneral M(t), the linear approximaticon
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converges to the exponantial identity as can be shown by defining

the partition {3/nlj = Oy...,y,n¥ on [0,1]1, the domain of r(t), and

proceeding as before.

a2- Compound_Duration Functions 5

In section 1.c., the concept of the duration of duration was
defined and used to restate the second order approximations in an
intuitively natural way. Here, this compound duration approach will

be geveralized to the multivariate models.

Pefinjtion 3.6 Given a directional duration function Dn(i), the
sompound_directional duration, DNDN(1), is defined for Dn(i) # ©

as follows:

(2. 54) DNDN(E) = ~ :)___QN /7 Dnti). 81
9N/

Definition 3.7 Given a partial duration function, Di(i), the

compound_jkth_partial duration, D;Dy(i), is defined for Dk(i) # O

as follows:

(3.55) DDk (4) = ~ DDy /7 Di). 11
e,
3
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From Proposition 93
(3. 56) DNDN (1) = Cn(1)/DN(i) — DN(1),
(3.57) DyDy (i) = Cyp (1) /Dy (i) ~ Dy i),

As in secti?n 1, the first order Taylor series approximaticn:
(3.58) Dn(io + tN) = Dn(ig)Li - DnDn(igQ)t]d,

can be substituted into the exponential identity (3.9) and

integrated with respect to t to produce:
(3.59) Plip + AiN)/P(ig) = exp [~ AiDNlig) {1 — DnDn(ig) Ai/E)].

A calculation shows that (3.59) is equivalent to the second order
exponential approximation in (3.12). In a similar way, the second

order approximation in (3.7) can be restated as:

(3.60) Plip + AiN)/Ptip) ® 1 ~ AiDN(ig)E1 - (DnDntio) + Dntie)) Aisal.

As was the case in section l.c., we see that these second order
approximations can be interpreted as the corresponding first order
approximations with adjusted directional duration values. The

adjustments again coﬁrespond to a yield change of Aiv/e.

In a similar fashion, the approximation:
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(3.61)

(3.62)

(3.63)

Di(ip + © A1) = Dr(ig)[1 - tID;Dy (i) Ai,l,
J

can be substituted into the exponential identity (3.33), with

r) = ip + t Ai, and integrated to obtain:

P(ip + A1)/P(ip) & exp [-E AixDk(i0)[1 .- ID Dk tie) Ai,/23).
J

This exponential approximation is equivalent to (3.36) with M(t) =
ip + t Ai. Finally, the second order approximation of (3.22) can be

restated:
P(ig + Al)/Plip) =

1 - £ AipDr(10)[1 - E(D,Di (o) + D;lia)) Aijsel.
J
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4. APPLICATIONS

a. Partial Duration and Convexity Estimates

In general, one can only apply the varicus derivative based
definitions directly when cash flows are fixed and independent of
interest rates. For example, when financial cptions do not exist

which make cash flows "interest sensitive."

For example, given a fixed vector of annual cash flows, K =
(Ciy-esytp)y, and a corresponding spot rate vector, 1 = (ig,...,im),

the price function is given by:

(4, 1) P(i) = Eejv,d,
where v; = (1 '+ 1J)‘1. A simple calculation produces:
J+1
(4. 2) Dytiy = agyvy
P(i)

J+a

(4. 3) Cyatd) = 3Q3*ldeyv,y Cik(d) = 0, J # ko
P(1) '

In this context, it is obvious that these partial durations sum
to duration, and similarly for the partial convexities. In
addition, because C(i) is a diagonal matrix, the second ordenr

formulas simplify. For example,
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(4. 4)

P + ALD/P(L) = 1 — EDj(4) Aiy + BEC, (i) ( Aiy2,

In the real world, however, many financial instruments contain
options. Assets can be pre-paid (i.e. "called") at the coption of
the borrower for a fixed price. Liability streams associated with
guaranteed interest contracts (GICs), single premfum deferred
annuities (SPDAs), ‘'savings accounts,; etec., usualiy contain
withdrawal (i.e. "put") options which benefit the contractholder.
Also, contractholder call options are common, whereby the

contractholder carn invest more in the original contract.

For such cash flow streams, the formal derivatives of the price
function involve both derivatives of the interest factors, as in
this paper’s examples, and derivatives of the cash flow stream
itself. Typically, cash flow sensitivity cannct be modelled
directly in closed mathematical form which lends itself to
differentiation. Rather, this sensitivity is modelled discretely

via interest rate projections and "if-then" algorithms.

So-called "option pricing” models are common today ([(S3,t7],
£81,C113). With them, P(i) and P(i) are not defined directly in
terns of discounted cash flows, but rather, are defined indirectly
in a manner which reflects the effect of options on the cash flow
stream. These models are stochastic, in that a variety of future
projections are encompassed and summarized, rather than

deterministic, whereby the future is treated as known. Naturally,

- 161 -



(4.5)

(4.6)

such option pricing models produce a price which is very much a
function of the yield curve aasumed, so in particular, the price

function can be dincfe%ely.estimated.

As common as such models are today, so it is common to use
discrete definitions of duration and convexity. For example, core
can estimate D(i) and C(i) by the following central difference

formulas:

DE(I) = ~[P(L + €) ~ P(i — €)] / 2€p(i),
CE€(i) = [Pti + €) - 2RW1) + PUI ~ €] / €8p(i).

Forward difference formulas are also common, sven though they can
oftern be "biased." That is, they better reflect sensitivity to an
increase in interest rates, rather than sensitivity to change in
general. Of course, formulas (4.%5) and (4.6) readily pgereralize to
directional duration and convexity estimates. For this purpose,
P(i) is interpreted as Plig), and P(l + €) interpreted as

P(ig + €N), where N is the direction vector. In the special case
where N = (1,...,1), the parallel shift vector, the formulas above
provide estimates for the parallel shift approach discussed in

section 2. b,

As for the proper value of €, one common}y uses Judgement and

some trial and error. Theoretically, one can estimate the error in
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(4.7)

(4. 8)

(4.9)

the duration and convexity estimates in (4.5) and (4.6) by expanding
P(i + €) and P(i - €) as Taylor series in € and substituting inta

the respective formulas. This produces:

DE(L) - D) = -P(3) (§)€8/BP(i) + O(e‘n,
CE€Wi) ~ Cti) = P (ired/12p(i) + (9’(64).

As can be seen from these formulas, the duration and convexity
estimates improve quickly as € decreases. However, the third and
fourth derivatives of P(i{) are generally not known, so the direct
applicaticon of (4.7) and (4.8) to select am € with a given error
tolerance first requires their estimation. Legically, this formal
appreoach is iterative in that an € 1s chosen, higher order
derivatives estimated, and the approximate error evaluated via (4.7)
and (4.8). If rnecassary, the process is repeated. Error estimates
s0 derived are only approximate sirce the estimated higher order
derivatives will also contain errors depending on yet higher order
derivatives. In practice, however, good results can often be

obtained with € equal to 1 to S basis points.
To calculate the various directional derivatives and
convexities using Proposltién 8, it is sufficient to estimate only

the partial duration and convexity values. The above formulas

generalize in the natural way to:

D;€t4) = -fp(t + € - P - €] / 2€,Pt4),
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(4.10)

(4.11)

(4.12)

Cik€tl) = [PCd + € + €) - PU —~ €; + €) - P(L + €; - €)
+ P(L - € - €11 / 4€;6P ).

Here, €, = GJ(O,....I,...O), where €; is the jth coordinate, and

€ = (€1,...,€y). As was true for the one variable model, judpement
and trial and error are needed to determine an appropriate set of
values for Es, which could be chosen to be equal for simplicity.
Error estimation formulas gereralizing (4.7) and (4.8) can again be

developed using multivariate Taylor series expansions, to produce:

D,€{1) - Dycty = -p, (3 cnre,2/epcn + (She,s

Cyk€i) = Cyr(d) = [€;2P 5 3 1) (1) + €8P, ¢t 3) (1) /6P (i)

+ 0(EJ,ek)4.

In (4.11), P;{3) denotes the third partial derivative with respect
to iy, while in (4.18), the (3,1) and (1,3) notation denctes the
corresponding mixed fourth order partial derivatives with respect to
J and k. The second term on the right in (4.12) denctes a
homogeneous fourth order polynomial in €; and €y, which for €; = €y

becomes 69764). In practice, 1 to 5 basis points will often

suffice.

As a final comment, it should be noted that partial duration
and convexity estimates should be "normalized" to satisfy
Proposition 9. That is, these values should be scaled so that they

sum to the estimated duration or convexity values, respectively.
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b. Price Sensitivity - Direct Yield Curve Approach

Once the partial durations have been calculated, the first
important exercise is one of observation. Since duration equals the
sum of the partial durations, one can observe to what extent
parallel price sensitivity as measured by D(ig) décomposes along the
yield curve. In general, price sensitivity to nonparallel shifts
will be greater if the partial durations are large, with some

positive and others negative, rather than relatively uniform of size

D(ig) /m.

For example, the duration of‘the price furiction defined in
(2.3) equalled .0136, implying relatively little interest
sensitivity. However, thié value was seen to decompose into partial
durations of Di(ip) = —1.4302 and Dpl(ig) = 1.5038, which had the
effect of "leveraging"” some nonparallel shifts into a great deal of
price sensitivity. By "leveraging" is meant that the chanpge in
price observed could be very large or of the cpposite orientation
relative to what would have been estimated based on D(i) arnd the

actual values of Aij.

In those examples, had both partial durations been equal to
. 0068, this leveraging would not have occurred. That is, the actual
change in price would have been estimable by the duration, D(i), and

a yield charnge value within the range of the AiJ values.
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Specifically, for Ai equal tc the simple average of the .AiJ. On
the other hard, had the total duration vector beern given by D =
(~10. 4902, 10.5038), more leveragirg would have beer cbserved for

nonparallel yield curve shifts.

Rs an examp'le, assume that Ai = (.0025,.0075). Using (3.40),
we see that for the original total duration vectow, D =
(~1.4902,1.5038), the equivalent parallel shift would have been
Ai = .5554. For the uniform vector, D = (.0068,.0068), ithe
equivalent parallel shift is Ai = .005 as expected. Finally, for
fhe vector D = (-10. 4302, 10.5038), the equivalent parallel shift is

calculated to be Ai = 3.8642.

Beyond this informal exercise of observation, one car formally
calculate price sensitivity a number of ways. By definition, the
duration value, D(ig), reflects sensitivity to parallel yield curve
shifts, while the various partial durations, D;(ip), reflect
sensitivity to changes in the yield curve point by point.
Similarly, for a given direction vector, N, one carn calculate the
directional duration DN(ig) from (3.41). This value then reflects

price sensitivity to yield curve shifts which are proporticnal to N.

Orne direction vector of note is No as defined in (3.50). As
demonstrated in Proposition 10, this vector represents the yield
curve shift which produces the maximum value of Dn(ig), and

consequently, the greatest relative change in the price furction,
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piven INt = i, Similarly, yield curve shifts proportional toc Ng
also provide extreme values of DN(ig), and hence, represent yield
curve directions of maximal. relative price sensitivity. By

Proposition 10, the length of the total duration vector, ID(ip)f,

quantifies the amount of this maximal relative price sensitivity.

Clearly, the valums of |D(ig)! provides a more rigorous basis
for the "leveraging" effect di-cusé.d above. For the three total
duration vectors considered above with D(ig) = .0136, the

corresponding values of 1D{(ig)! are:

(4. 13a) 1(-1.4902,1.5038)1 = 2.1171,
(4.13b) 1(.0068,.0068)1 = L0096,
(4. 13c) 1 (~10. 4908, 10. 5038) | = 14.8450,

From Proposition 11, it is clear that of all two-dimensional total
duration vectors with D(ig) = .0136, the vector in (4.13b) is of
minimal length. Naturally, there is no corresponding duration
vector of maximal length given D(ig), so any amount of leveraging is

possible at least in theory.

To formalize the notion of leveraging exemplified above, we
seek a relationship between a yield curve shift, lll, and the
equivalent parallel shift value, Ai, so that the change in price
due to Ai is estimable with D(ig) and Ai. By (3.40), far

D(ig) # O the parallel shift equivalent, Ai, of the vector Ai,
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(4. 14)

(4.15)

(4. 16)

(4.17)

is given by:

Ai = Diig) - Al = n_u(m. .
(i) D(

-]
D(io
Consequently, by Proposition 10, we have

ALY £ _9 ig)l - 1 Ail,

and the upper bound in (4.15) is achieved for A1l proportional to

D{ip).
This analysis motivates the following definition:

Let P{(1i) be a price function. The ggrggggpg;

follows:

Ltig) = ID(ip) 1/1D¢ig)t. 13

From (4.15) we’see that given [li, the corresponding parallel shift
value can be as large as L(ig) times 1 Ail. In addition, this
maximum value is attained for shifts propeortional to D(ip). The
durational leverape values corresponding to the examples in (4.13)
are easily calculated to be 1535.67, .71, and 1091,54, respectively.

By Proposition 11, it is clear that:

Ltig) 2 1/m,
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(4.18)

(4.19)

with equality if and only if Dylig) = D(ip)/m for all j. As was the

case for ID{ig)!, L(ip) has no upper bound in theory.

€. Price Sensitivity - Yiwld Curve Slope Approach

One relatively common generalization today of the "parallel
shift" model is the “linear shift" model. That is, where the

direction vector, L = (lfjyeec.ylp) is defined by:

1y = amy + b,

where mj derotes the time value of the pivotal yield curve point,

i;. For example, one might have mg = .25, mg = .5, m3 = 1, etc.

For such yield curve shifts, the associated directional
duration and convexity functions are readily calculated by

Proposition 8. For example, the directional duraticon is given by:

D (ip) = akm;D;(ip0) + bD(ip).

That is, the directional duration naturally splits into two first
order components. The first component, EIm;D,;(ip), reflects price
sensitivity to yield slope changes, while the second component,
D(ig), reflects price sensitivity to parallel yield changes as

expected.

Similarly, the directional convexity is calculated to be:
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(4. 20)

(4.21)

CL(Ig) = aZLEm,muCyk(io) + 2abEEmyCyk(ie) + beC(ig).

Here we have used the symmetry of C(ig); that is, Cik = Cuy-

Unlike duration, the directional convexity splits into three
components, reflecting quadratic sénsitivities to slope and level
changes, as well as a mixed slope/level sensitivity term. Analogous
to (4.19), the.pure parallel shift component is simply convexity,

whilé the slépe'terms reflect weighted sums of partial convexities.

An alternative "slope" model involves a reparametrizatior of
the yield curve. That is, rather than interpret the yield curve as
a vector, 1 = (ij,...ip)y & yield slope vector, s = (8f{,...,84) is

defined as follows:

s1 = i13 B3 =™ 43 = dj3~1y I = 2y0neym

Clearly, s, reflects the increase (or decrease) in the yield curve
betweernn the (3—-1)st and the jth rate. This change is often referred

to as the "slope" between the respective yield points.

From (4.21) we have that 8 = Ai, where A is a linear
transformation. Here we again follow the notational convention that
s and 1 are interpreted as column vectors. This transformation is

given by:
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{1 0 0 0. . .0 O
i-1 1 0 0. . .0 O
to-1 1 0. ..0 01
(4.22) A=, |
I . « o !
I . |
1o 0 0 0. . .~-1 1 1.

That is, A = (a,k), where
’ 1 J = ky
(4.22) Cajk =4 -1 J = k + 1,
(o] otherwise.

Bacause A is linear, shifts in the yield rate vector readily

translate into shifts in the yield slope vector. That is,

(4.23) 4s = A Al

It is easy to see that A is invertible, with:

11 0 0 0. ..0 O1
{1 1 0 0...0 Ot
11 1 1 0. ..0 O}
(4.24) A‘l-':... :
o & 1
11 1 1 1.:. .1 1t.

That is, A~! = B where:

(4.25) ka =q1 J 2 k
o othnruill.‘

it is possible to convert the various

Based on this transformation,

approximation formulas in section 3 from functions of [ll to

functions of As.
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(4.26)

(4.27)

(4.28)

(4.29)

(4. 30)

For exanple, Qe have from (3.22):

Plipo + A1)/P(ipg) ® 1 - D(ig) Al + % AiTC(ig) Al.

Here, the duration term is rewritten in matrix form rather than as a

dot product, with D(ig) treated as a row matrix. Substituting AiT
= tA~1 As17, and using the property of transpose that (xy)T = yTxT,

we get:s

Ptio + Ai)/P(ig) % 1 — Dglio) Am + % AsTCg(ig) A s,
where A® is given by (4.23) and:

Dg(i0) = D(ig)R1,

Cglig) = (A~1)TCtigIA-1,

Here, Dg(ig) and Cg(ig) are the total duration véctor and total

convexity matrix, respectively, defined in the context of the yield

slope vectors.

A calculation shows that the total duration vector is given by:

m m
Ds(i0) = (ED;(i0),ED;(10) 4.0 Dilio)).
1 2

That is, the relative sensitivity of the price functicn to the jth
slope, AsJ, is the sum of the partial durations from the jth to the
mth value. Not surprisingly, the sensitivity of the price function

to Asji equals the duration D(ig), since Asy = Aij, and for this
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(4.31)

(4.32)

yield curve parametrization, Aij determines the change in the

"level" of the yield curve.

Analogously, the total convexity matrix reflects sums of

partial convexities as follows:

m m
(Ca(ig))y = £ E Canbtio),
am) b=k

where the jJkth term quantifies the sensitivity of the price function
to the product of the j)th and kth slopes, i.e. A!J Ask. Again not

surprisingly, the sensitivity to (,Asg)e is the convexity Clig).

Although perhaps not readily apparent, the total duration
vector and convexiéy matrix defined in (4.30) and (4.31) could have
been calculated directly from Definition 3.5 by defining the price
function directl& in terms of w=. In particular, given P(i), let the

price function R(s) be defined by:

R(s) = P(A~1w).

Then Dg(ig) as defined in (4.30) is just the total duration vector
of R(s) evaluated at wmp = Rip. Similarly, Cg(ip) is the total

convexity matrix of R(s).
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(A. 1)

(A.2)

(R. 3)

(A. 4)

APPENDIX

Proposition Let P(i) be a smooth price function and let {i,} define

a partition of the interval [ig, i1,

iy = 1o +(J/n)Ai, J = Oylyuueyn

where Ai = i - ig. Further, let K, be defined as the approximation

to P(i)/P(ig) obtained by applying (1.1i2) to the terms in (1.29):
n
Kn -=TT(1 = D(iy-1) Ai/n + &C(iJ-l)(Ai/n)E).
J=1
Then, if D(iy~1) = D(ig) and Clij-3) = Clig):

lim Ky = exp [-Dtip) Ail.
n-s

Further, if D(ij—3) = D(ig) + [D2(ig) ~ C(ig)l(y - 1) Ai/n and

Clij—1) = CliQl):

lim Ky = exp [-D(ig) Ai + BICCig) - D2(ig)d ¢ ADE].
ied o

Finally, for exact values of D(ij-y) and C(ij-y):
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i

(R. 5) lim Kp = exp [-ID(y)dy].
n— e io

For all three limits above, the conclusions are the same if Kp is
defined with respect to the linear approximation in (1.5) rather

than the quadratic estimate (1.12).

Proof Because P"(i) is continuous, C(i) and D(i) are bounded on
(igyi). Hence, an initial value of ngp can be chosen so that for
n 2 noy Kn equals the product of positive factors. For such an n,

In(Kp) is therefora well defined. Because Ini is a continuous

function, as is its inverse eX, K, will convérge if and only if

In(Kp) converges.

Assume that D(ij-3) = Do and Clij-y) = Co. Then:
n
(A. 6) In(Kp) = £ Inft — Do Ai/n + %Co( Ai)2/n2].
" J=1
Using the Taylor series expansion,

(A. 7) Int1 + 0 = x + Gud,

which is allowable because the arguments in (A.6) are uniformly

bounded for n 2 no, we get:
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n
(A. 8) IntKy) = :1c-no Ai/n + wCot A1) 2/ + Gt1/n2)]
J-

= -Dp AL + BC( A1I2/n + BU1/v).
From (A.8), limits are readily taken to prove (A.3).
Using a similar argument, assume that D(i;-y) =

Do + Ep(y-1) Ai/n, where Eg = Do2 - Co, and C(iy—1) = Co. Then for

n sufficiently large:
R .
(A. 9) IntKp = I 1n{l - Do Ai/n ~ Ep(y-1YL Ai)2/n8 + &co(Ai)E/nz).
=1
n
Again using (AR.7)y, and I (3 - 1) = n(n - 1)/2, we get:
J=1
(R. 10) IntKp) = Do Ai — REp( A2 (n-1)/n + RCo( A1)E/n + GFi1rm.

Taking limits in (AR.10) demonstrates (A.4).

Using exact values for D(ij-1) and C(ij-y) and (R.7):

n
A.11) In(Ky) = E In(1 - D(i;-1) Ai/n + l&:u_,-;)(An&‘/ne)
J=1

n n
= - ED(iy;-1) Ai/n + (Ai/2m) E Cliy-p Aisn + Bl
J=1 =1

Taking limits in (A.11), we see that the first summation converges

to the Riemann integral of D(y). The second term converges to zero
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because the summation

ceeffecient converges

Finally, had the

dafinition of Kp, the

converpes to the integral of Cly), while its

to 0. Hence, (A.5) is demonstrated.

first order approximation been used in the

same limits would have resulted. This is due

to the fact that in each case above, the convexity adJusemént was

seen to be Gﬁ]/n), and consequently added nothing in the limit. 11
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