A MLLTIVARIATE APPRDACH TD DURATION ANALYSIS

Robert R. Reitaric, Ph.D., F.S.A.

Traditionally, the study of the interest rate sensitivity of the price of a portfolio of assets or liabilities has been performed using single variable price functions and a corresponding one variable duration analysis. This unique variable was originally defined as the yield to maturity of the portfolic, ard later generalized te reflect "parallel" charges in the underlying yield curve. That is, a change in which each yield point moves by the mame amourit. Still later, this parallel shift model was gereralized to linear shifts, reflecting changes in both the level and slope of the yield curve, as well as to other mathematical models of the manner in which a yield curve is assumed to move.

In gerieral, the ability of such a model to predict price sensitivity is dependent on the validity of this underlying yield curve assumption. For general yield curve shifts, large errors are possible. In practice, this will happen to a greater exterit when the portfolio coritains both "long" and "short" positions, as is the case for surplus or ret worth. A classical duration analysis can greatly understate price sensitivity to nonparallel yield curve shifts in this case. Consequently, surplus changes can appear uripredictable, and duration matehing strategies urisuccessful.

In this paper, a general multivariate duration analysis is introduced that does not depend on a mathematical formulaticar of the way in which a yield curve moves. Consequently, complete price sensitivity information is derived which is equally applicable ir all yield curve environments. In addition, this model is practical and relatively easy to apply.

To motivate the multivariate approach, the one variable model is analyzed in theory and through examples, with emphasis on its effectiveriess and limitations. Sone riew results are introduced in this classical setting. The limitations of this model are seen to be overcome by a more gerieral multivariate analysis, and these models are then developed in detail. Examples are utilized throughout to make the theory more accessibie. The last section focuses on applications of these models, as well as a variety of practical corsiderations.

O. INTRODUCTION

1. ONE VARIABLE MODELS
a. Duratigr
b. Convexity
C. The Duration of Duration
d. A Characterization of the Approximations for $P(i) / P(i o)$
E. Other Relationships
E. LIMITATIONS OF THE DNE VARIABLE MODELS
a. Ari Example - Yield to Maturity Approach
b. Ar Example - Parallel Shift Approach
C. An Arialysis - Yield to Maturity Approach
d. An Arialysis - Parallel Shift Approach
a. Directional Durations and Convexities
b. Bounds for Directional Durations
c. Partial Durations arid Convexities
d. YTM Approach Revisited
e. Parallel Shift Rpproach Revisited
f. Duration and Convexity Relationships
g. Compound Duration Functions

4. APPLICATIONS

a. Partial Duration ard Corivexity Estimates
b. Price Sensitivity - Direct Yield Curve Approach
c. Price Sensitivity - Yield Curve Slape Approach

RPPENDIX

REFERENCES

```
The concept of duration has received a great deal of attention during its relatively short history. Bierwag, Kaufman ard Kharig [З] and Ingersoll, Skelton and Weil [le] present interesting historic summaries of this activity through 1977, while the newer Bierwag [1] provides additional information su more recerit developments. In addition, these sources contain extensive references to the literature, which will be only highlighted here.
```

The notion of duration was independently discovered by at least four authors. The earliest source is Macaulay [15], who coined the term "duration" in 1938 as a refinement of maturity for quantifying the length of a payment stream, such as a bord. His focus was on better defining the mean time to prepayment. At about the same time, Hicks [10] developed the same duration formula, naming it the "average period," by analyzirig the price sensitivity of an income strean to changes in the underlyirig interest rate. Specifically, the Macaulay duration equals the elasticity of the price of a bond with respect to $v=(1+i)^{-1}$.

A rumber of years later, Redington [16] arid Samuelson [17] again discovered this formula by analyzing questions in what has come to be krown as immunization theary. Redington sought to
"immurize" a liability stream with an asset stream, which meant that each was to be equally responsive to changes in the underlying interest, rate. This was accomplished by equalizing first derivatives of the associated presert value furictions, thereby introducing this particular approach to the defirition of a duratign which has come to be known as "modified duratimn." Similarly, Samuelson's focus was on immunization, analyzing the sensitivity of a firm's ret worth to charges in the underlying interest rate.

Abstract

Far the above ane variable formulatiors, duration was defined in terns of "the interest rate," which typically equalled the yield to maturity. This approach was also followed in Vanderhoof [19]. [20] which adapted the Redington model and became what to mast actuaries represented "the" iritroduction to this field of thought: At about the same time, Fischer arid Weil [9] gerieralized the defirition of duration to reflect a complete yield curve, rather thar the yield to maturity. There, a change in yields was modelled in terms of a parallel shift, whereby each yield rate is changed by the same amount. This duration measure is often referred to as De, to distinguish it from the Macaulay duratiori, deriated D_{1}. Corresporiding to other models of yield curve dynamics, other duration measures have been defined (see [1], [ق], [3], [4], [13] and [14], for example).

More receritly, Stock and Simonsor [18] have analyzed aftertax adjustmerits to price sersitivity, while Chambers, Carleton and

McEnally [G] have explored the notion of a duration vectar in immunizing bond portfolios. There, the various components of the duration vector correspond intuitively to weighted averages of the adjusted times to maturity raised to various powers. The first companent is similar to D, while the second reflects a measure of the average time squared, then average time cubed, etc. The adjustment made to the time values is a reduction of ore period.

```
In this paper, a general multivariate approach to duratior analysis and price sensitivity is developed which is applicable to virtually ary model of yield curve movements. of course, multivariate models have been used elsewhere (see [1], for example). The purpose here is to explore the gereral mathematical theory and its application in some detail.
```

To mat ivate the approach taker arid introduce some new natiaris in a familiar environment, section 1 focuses or the one variable models in theory and through examples. Here, duratiori arid corivexity are defined ard used to estimate relative price serisitivity based on the well-krowri Taylor series approximaticrs. Ir addition, exponential approximation models are developed based or an identity betweer price changes and the integral of duratior, Which is reminiscent of similar identities involving the force of interest, or, the force of mortality.

[^0]
Abstract

the functional form of duration. In addition, the various exponential formulas are seen to be limiting cases of the more traditional formulations. The notion of a "compound duration," or the "duration of duration," is also introduced and the second Corder approximations are seen to be equivalent to intuitively appealing composites of first order approximations. The examples developed illustrate the effectiveness of these models to approximate relative price changes when price is truly a function of a single yield variable.

Section 2 focuses on the limitations of these models to estimate price changes in the real world, where yields defined from a yield curve and the associated yield changes are truly multivariate. Examples are developed corresponding to the yield ta maturity approach, and the parallel yield curve shift approach. In each case, apparently anomolous price behavior is exemplified. In the first example, the units used to define yield changes are seen to have a material effect on price sersitivity conclusions. For the secord example, it is shown that for yield curve shifts which are not parallel, the standard formulas can produce estimates which are orders of magnitude in error.

[^1]Here, each component of the shift vector is interpreted as the change in the correspondirig yield curve point.

Section 3 then develops a multivariate duration calculus in detai1. Starting with formal definitions of the directional measures noted above, properties are developed which parallel the single variable case of section 1. In particular, polymomial approximations analogous to the traditional formulas are established, as well as exponential approximations based on an exponential identity. Bounds are also determined for the size of directional durations, based on the familiar estimates involvirig the gradient of a multivariate function.

The concepts of "partial duration" and "partial corvexity" are next developed, as well as the corresponding "total duration vector" and "total convexity matrix." Again, polynomial approximations follow, as do exponential approximations based on ar exporeritial ideritity. These formulations are shown to reduce to the one variable formulas when yield curve shifts are parallel, and this corresporids to the results that duration equals the sum of the partial durations, and similarly, convexity equals the sum of the partial corivexities. The examples from section 2 are then revisited and more formally analyzed in the context of these models.

[^2]partial and directional derivatives, the directional duration and corivexity values can be readily calculated from the comresporiding partial duration ard convexity values. Directional duration bourds are revisited in the more natural coritext of the total duration vector, which is also analyzed in terms of its potential length. Derivatives of the various durations are also derived, as are the associated compound duration concepts. As was the case in section 1, secord order multivariate approximations are seen to reduce to natural composites of first order approximations via these compound duration values.

Section 4 then develops some applications in more detail. For noricallable borids, partial duration arid corvexity formulas are seen to naturally decompose the classical duration and corivexity formulas. For securities which coritain options, the standard derivative formulas are inappropriate. Consequently, finite differemce farmulas are reviewed which are suitable for use with option pricirg models. These formulas are formally arialyzed with respect to their estimation errors, although iri practice, the appropriate difference interval will often be choseri based on trial and error, and judgement.

The price sensitivity implications of the estimated duration values are next explored. The concept of "durational leverage" is iritroduced arid proves to be a useful quantitative measure for uriderstanding the potential price sensitivity compared with that implied by the traditional duration value.

Finally, two yield curve slope models are developed arid showr to be easily analyzed with the durational calculus developed ir section 3. The first model corresporids to the now relatively common generalization of traditional duration, whereby parallel yield curve shifts are generalized to include affine or linear shifts (Bierwag [2]). That is, where both the level and slope of the yield curve charge. The secorid model is more general, in that the yield curve is reparametrized in terms of its various interpoint slopes.

a. Duration

```
Let \(p(i)\) denote the price function which assigns to each interest rate \(i \geq 0\), the present value of a given collection of future cash flows. The actual rate \(i\) can be defined within any system of units: annual, semi-annual, continuous, etc., and will generally follow from the context of the problem. Alsa, the future cash flows can be positive or negative, fixed or deperdent on i. However, we will always assume that \(P(i)\) is at least twice differentiable, and has a continuous second derivative.
```

```
    As an example, if i=.OB is a semi-annual rate, and future cash
flow equals 5 at time 1 year, and 10 at time 5 years, we mave:
```

(1.1)

$$
\begin{aligned}
& P(i)=5 v^{2}+10 v^{10} \\
& P(.08)=11.38
\end{aligned}
$$

where $v=(1+i / 2)^{-1}$.

Definition_1. 1 Given a price function $p(i)$, the (modified) duration function, $D(i)$, is defined for $P(i) \neq 0$ as follows:

```
    P(i)/P(io) \approx 1 - D(io) \Deltai,
where \Deltai=1-io.
```

In the above example with io $=.08$ and $i=.085$, the actual relative price change is . 9840 , which reflects a decrease of 1.60%, while the approximation in (1.5) gives. 9838 , for a decrease of 1. 62\%.

Of course, the approximation given by (1.4) is just the traditional tangent line approximation to $P(i)$ at io. In this light, the duration $D(i$,$) is seen to be -1$ times the slope of the tangent line to $P(i) / P(i o)$ at io. Intuitively, $D(i o)$ approximates the percentage change in price due to a yield change of 100 basis points, or $\Delta i=.01$. For positive $D(i o)$, price decreases are
asssciated with yield increases, ard corversely. For negative D(io), price and yield changes move with the same orientation. For the above example, (1.3) therefore implies that the price functian in (1.1) will change about 3.25% for a 100 basis point charge in rates from $i o=$. 08. The actual relative change is calculated to be -3. 17% for a 100 basis point increase, ard $3.3 \mathrm{E} \%$ for a rate decrease.

When the cash flows are fixed and independent of interest rates, arother interpretation of duration is possible which relates to the timirg of the cash flows. In particular, the duration function in (1. ᄅ) is proportional to the weighted average of the times to receipt af the various cash flows. Here, each weight equals the proportion of the total price encompassed by the given cash flow, and the proportionality constant is 1 for contiruous i, and $(1+i / m)^{-1}$ for mominal i compourided m times per year. In the above example with io $=.08$, the weighting on the first cash flow is . 41 , that on the second is. 59 , and the weighted average $t i m e t a r e c e i p t$ is 3.37 years. Scaling by (1.04)-1 produces the duration calculated above.

As noted ir the Introduction, this "weighted average time" concept is the basis of the original definition of duration, today referred to as the Macaulay Duration, while the definition given in (1.e) is now known as the Modified Duratior. The appeal of the original definition is that in terms of average time, no proportionality constant is necessary. In particular, the duration of a sirgle cash flow equals the time to receipt of that cash flow.

The disadvaritage of the Macaulay Duration is that to estimate a relative change in price, its value would have to be scaled before applying (1.5).

In addition to the standard approximation given in (1.5), duration car also be used as part of an exponential approximation to $P(i)$. To this end, we have the following:

Propogition_1 Let $P(i)$ be a price function which is non-zero in an interval I. Then for io, $i \in I$:
(1.6)
(1.7)

Proof Because $P(i) \neq O$, we have that:
for $i \in I$. Integrating (1.7) between io and i, and exporientiating the result produces (1.6). If

Proposition 1 motivates the approximation:
(1.8)
$p(i) / P(i o) \approx \operatorname{Exp}[-D(i o) \Delta i]$,
where $\Delta i=i$ - io. For small values of Δi, this exponential approximation will produce values which are close to thase based on
the traditional formula (1.5). This is easily verified by considering the Taylor series expansion of the exporiential function in (1.8).

Applying (1. B) to the example in (1.1) yields better approximations than those produced by the traditional approximation (1.5). For example, given a 100 basis point yield change, we would estimate a price charge of -3.20% if positive, and 3.30% if negative, based on (1.8). These values compare more favorably to the actual respective values of -3.17% and 3.32% than the traditional estimate of $\pm 3.25 \%$
b. Convexity

The fact that reither approximation (1.5) ror (1.8) tends to produce exact answers suggests that price furictions tend to be more complicated than linear or simple exponeritial models car reflect. More formally, it is virtually always the case that the second derivative of the price function, $p^{\prime \prime}(i)$, is not identically o. Ore excepticn is given by a simple discount price function with one cash flow, $P(O)$, at time equal to duration, $D(O)$. That $i s$, $P(i)=P(O)(1-D(O) i)$.

To accomodate the effect of the second derivative of $p(i)$, the concept of convexity is defined analogously to duration, as a relative change functior.

Definition_ine Given $P(i)$, the conyexity_fumgtion, $C(i)$, is defined for $p(i) \neq 0$ as follows:
(1.9)
(1.10)
we get the following quadratic ganeralization of (1.5):
(1.12)

$$
P(i) / P\left(i_{0}\right) \approx 1-D\left(i_{0}\right) \Delta i+\ln \left(i_{0}\right)(\Delta i) \sum_{\text {. }}
$$

For example (1.1) with io $=. O B$ and $i=. O B 5$, a calculation produces an exact relative price change of $.9840(-1.60 \%)$, while the approximation in (1.12) gives. 9842 (-1.58%). In this example, the absolute error of the second order approximation is no better than that produced by the first order estimate; both are. 02%. For small values of Δi in gereral, the sign of the error associated with a given Taylor series approximation is equal to the sign of the next higher order term. That is, the sign of the product of: (a) the next derivative evaluated at $i o$, and (b) Δi raised to the correspondirg power. Consequently, because convexity is positive in the above example and $(\Delta i) \in$ is always positive, the duration
approximation in (1.5) of. 3838 underetated the actual relative price charige of .9840.

As for the second order approximation using (1.12), the sign of the error depends on both the sign of the third derivative of $p(i)$, and the sign of Δi, since its exponent will be odd. For the above example the third derivative is negative, so it is predictable that (1.12) will overstate price changes assaciated with small interest rate increases, and understate these changes for small decreases.
(1.13)

$$
f(i)=\int_{i 0}^{i} D(y) d y
$$

We then have:
(1.14)

$$
f^{\prime}(i)=D(i), \quad f^{\prime \prime}(i)=D^{2}(i)-C(i)
$$

The second derivative is easily obtained by differentiatirg the identity, $P^{\prime}=-D P$, and solving for D^{\prime}. Consequently,
(1.15)

$$
f(i) \approx D\left(i_{0}\right)\left(i-i_{0}\right)+y_{2}\left[D \mathcal{C}\left(i_{0}\right)-C(i o)\right]\left(i-i_{0}\right) E_{0}
$$

 \(p(i) / P\left(i_{0}\right) \approx \exp \left\{-D\left(i_{0}\right) \Delta i+n_{2}\left[C\left(i_{0}\right)-D^{2}\left(i_{0}\right)\right](\Delta i)=\right\}\).
 When the approximation in (1.16) is applied to the price furction in (1.1), the price change predicted due to an increase in iriterest rates from . O8 to . 085 is .9842 . This compares to the correct ariswer of . 9840, and equals the quadratic estimate using (1.12).

Propogition_? Let $P(i)$ be a price function which is nonzero at io. Then for Δi sufficiently small:
(1.17)

```
exp(-D(io)\Deltai) {p(i)/P(io) C ) DE
```

$$
\begin{array}{rlrl}
1-D(i o) \Delta i & P(i) / P(i o) & (\exp (-D(i o) \Delta i) & 0<c
\end{array} \quad<D^{2}
$$

where $\Delta i=i-i o, D=D(i o), C=C(i o)$.

Proof Clearly, the bounds in (1.17) corresporid to the liriear and first order expanential approximations in (1.5) and (1.8). The sigr of the error in these first order approximations equals the sign of the second order terms in the respective exparisions in (1.12) arid (1.16). For the linear approximation, this term has the sign of C(io), while for the exponential approximation, this term has the sign of $C(i o)-D^{2}(i g) . \quad$ The bounds in (1.17) follow from this and the observation that $1+x \leq e x$. II

c. The_Duration_of_Duretion

As implied by (1.14), the derivative of the duration furiction is related to the convexity function. More formally:
(1.18)

```
    D'(i) = D'(i) - C(i).
Using this expression in the first order Taylor series for D(i):
```

(1.19) $D(i) \approx D\left(i_{0}\right)+\left[D E\left(i_{0}\right)-C(i o)\right] \Delta i$.

For the example in (1.1), we have $D^{\prime}(.08)=-5.10$. Consequently, the approximation in (1.19) predicts that a yield increase of 100 basis points would decrease the duration by about. O5. Ar actual calculatior shows that $D(.09)=3.19$ for a decrease of .06.

```
From (1.19), cone can conclude that for a small iricrease in \(i\), D(i) will increase orly if \(D^{2(i o) ~ i s ~ l a r g e r ~ t h a n ~ C(i o) . ~}\) Consequently, if convexity is negative at io, D(i) will always be an increasing function locally about io. For positive convexity, D(i) will be an increasing function only if \(C(i g)\langle D\) (io), and will be a decreasing furiction, as in the above example, if C(io) \(\mathrm{D}_{\mathrm{C}}(\mathrm{io}\) ).
```

By iritroducing the notion of the duration of duration, the second ander approximations in (1.12) and (1.16) can be iriterpreted riaturally as the correspondipig first order approximations in (1. 5)
and (1. B), with an "adjusted duration" value. To this end, we formalize this notion of a compound duration in the natural way:

Definition 1. 3 Given a duration function $D(i)$, the duration of duration_function, $D D(i), i s$ defined for $D(i) \neq 0$ as follows:
(1.20)
(1.21)
(1.22)

From (1.18), we have thats

Also, the following version of Proposition 1 holds within any iriterval in which $D(i)$ does not change sign:
$D(i) / D\left(i_{0}\right)=\exp \left[-\int_{i 0}^{i} D D(y) d y\right]$.

Rewritirg the first order Taylor expansion in (1.19), we get:
(1.23) $D(i) \approx D(i o)[1-D D(i o) \Delta i]$,
which is functionally equivalent to (1.5). Usirg this expression in (1.6) and integrating, we get:
(1.24) $P(i) / P(i o) \approx \exp [-\Delta i D(i O)[1-D D(i O) \Delta i / 2]]$.

This approximation for price change is equivalent to the second order exponential obtained in (1.16), as a calculation shows. However, this format is intuitively more appealing to use, since it
can be interpreted as an application of the first onder exporeritial approximation in (1. B) with an adjusted duration value. The adjusted duration equals the approximation in (1.23) for $D(10+\Delta i / e)$.

For example, consider the prise function in (1.1). A calculation shows that $D D(. O B)=1.57$. Consequently, if yields increased 100 basis points, the adjusted duration, $D(i o)[i-D D(i o) \Delta i / 2]$, will equal the original duration of 3.25, decreased by $x_{2}(1.57) \%$ to 3.2e. Using this adjusted value ir (1.8) is equivalent to applying (1.24) directly, and a price decrease of 3.17\% is estimated.

The quadratic approximation in (1.12) can also be rewritten in terms of DD(i) as fallows:
$p(i) / P\left(i_{0}\right) \approx\left[1-\Delta i D(i \sigma)\left[1-\left(D D\left(i_{0}\right)+D(i o)\right) \Delta i / E J\right]\right.$.

Analogous to (1.24), the expression in (1.25) can be interpreted as an application of the standard linear approximation in (1.5) with an adjusted duration. Here, however, the duration adjustmert differs from that in (1.24), reflecting both $D D(i o)$ and $D(10)$. Applying (1.25) to the price furction in (1.1), $D D(. O B)+D(.08)=4.8 E, 50$ the adjusted duration corresponding to $\Delta i=100$ basis points equals the original duration of 3.25 , decreased by $y_{2}(4.82) \%$ to 3.17 . Using this adjusted value in (1.5) produces an estimated price decrease of 3. 17%.

```
It is interesting to observe that the fundamental difference between the various approximations for \(p(i) / P(i o)\) is the underlying assumption regarding the behavior of \(D(i)\) near io. For the exponential approximation in (1.8), (1.16) and (1.24), this essumption is explicitly based on the identity in (1.6). Namely,
```

_-Exponential_Pparoximation -
(1.26)
(1.8) 1st Order
(1.16), (1.24) 2nd Order
_Model_for_D(i)

D
$D+\left[D^{2}-c\right] \Delta i$
where $D=D(10)$ and $C=C(i o)$.

That $i s$, the first order approximation reflects the assumption that
$D(i)$ is constant, while for the second order version, it is assumed that $D(i)$ varies linearly according to its tangent line approximation in (1.19). Hence, if $D(i)$ is constant or lirear, the correspandirg approximation will be exact.

Turning to the polynomial approximations in (1.5), (1.12) and (1.25): while they may appear more natural than their exponential counterparts, they imply less natural, and sometimas counterintuitive assumptions about $D(i)$. These assumptions can be determined by equating the exact value of $P(i) / p(i o)$ as given in (1.6) to the respective approximations, and solving for $D(i)$.

Although integral equations are ercountered, these are easily solved by first taking logarithms, then differentiating with respect to i. The following relationghips then result:

Polynomial_Approximation_
(1.5) 15t Order
(1.12), (1.25) End Order

The uriderlying model for $D(i)$ in (1.5) can be counter:-intuitive. For example, a calculation shows that this function is an increasing function of Δi, while as noted above, $D(i) i s$ an iricreasing function lacally orily when $D^{2}(i o)$ exceeds C (io). While sonewhat more complicated, the model for $D(i)$ underlying (1.12) and (1.25) does not have this potential problem, in that it too will be an increasing function locally only when $D^{2}(i o)$ exceeds $C(i o)$.

-. Dther_Relationshipe

As shown in section 1.d. above, the various approximations for $P(i) / P(i o)$ can be interpreted in terms of the underlying assumptions regarding the behavior of the duration function, D(i), near io. In addition, each of the exponential approximations can be shown to be the 1 imiting case of applying the linear approximation in (1.5) to ever finer subdivisians of the interval from io to i.

To see this, let io and i, io be given, and define a subdivision of the corresponding interval bys
(1. 28)

$$
i_{j}=10+j / n(i-10), \quad j=0, \ldots, n .
$$

Clearly, we have that:
(1.29)
(1. 30)

$$
\left.\frac{p(i)}{p(i o)}=\prod_{j=1}^{n} \frac{p}{p\left(i \frac{i}{j} l^{\prime}\right.}-1\right)
$$

Applying the linear approximation in (1.5) to each term in this product, we get:

In (1. 30), if it is assumed that $D(i j)=D(i o)$ for all 3 , the resulting product converges to the first order exponential approximation in (1.8) as $n \rightarrow \infty$ If it is assumed that $D(i j)$ is given by the 1 inear approximation in (1.19), the resulting product converges to the second order exponential approximation in (1. 16).
 Iriterestingly, if the quadratic approximation in (1. 12) is used in (1.29), ard the convexity function is assumed constant, i.e. C(ij) $=C\left(i_{0}\right)$, the products again converge to the two exponential approximations depending only on whether we assume $D(i J)$ to be constant or inear. similarly, for exact $C\left(i_{j}-1\right)$ and $D\left(i_{j-1}\right)$ the product again canverges to the identity in (1.G). See the Apperidix for a proof of these relationships.

```
The example developed throughout section 1 illustrates the effectiveness of one variable models to approximate the relative change in price due to a change in the interest rate. Unfortunately, it is difficult to reduce the real world financial markets to such a unique interest rate. Ir practice, therefore, the use of one variable models is not without its limitations, as the following two examples demonstrate.
```


a. An_Example_=_Yield_to_Maturity_Approach

Assume that we have a simple portfolio of three cash flaws equal to 20, -20 and 11 at times 0,1 year and 2 years, respectively. Also, assume that the one year spot rate is . 105 , and the two year spot rate is . 10 . For simplicity, such a spat rate curve will be derioted (.105, . 10). At these rates, the current price is easily calculated to be 10.99136.

One traditional approach to applying the one variable model is the yield $\underset{\text { to }}{ }$ maturinty (YIM)_agproach whereby the price furiction $p(i)$ is modelled as follows:
(2. 1)

$$
\rho(i)=20-20 v+11 v^{2}, \quad v=(1+i)^{-1}
$$

Abstract

The equation $P(i)=10.99136$ has two solutions: . 00445 and .21565, and one logical approach to choosing between these values is to check the behavior of $p(i)$ nearby. A simple calculation shows that $p(i)$ is a decreasing function near . 00445, and an increasirg function near . 21565 . However, if spot rates increased 100 basis points to (.115, . 1i), the portfolio value would decrease to 10. 99063 . Consequently, it is more intuitively appealing to use a decreasing function, so we choose the smaller YTM of . 00445. The duration of $P(i)$ at this point is calculated to be. 172 , and the convexity equals 2.308.

Using the linear approximation for $P(i)$, we get:

Now, if the yield curve increased uniformly by . 01 to (.115, . 11), the use of . 01445 (i.e. . $00445+.01$) for i in (2.e) would yield a very poor approximation. The actual portfolio decrease in this case is . $0067 x$, while this linear approximation and i value weuld predict a decrease of $.17 \%$. Making the adjustment for the convexity value of 2.308 improves the approximation slightly to a predicted decrease of . 16%, still orders of magnitude from the correct answer.

Of course, the problem here is one of units; yield curve units versus YTM urits. The proper value to use for in (2.2) is not .01445, but the YTM corresponding to the yield curve (.115,.11). A calculation shows this value to be . 00485 . That $i s$, the . 01 change

```
in yields corresponds to only a .0004 charge in YTM, so it is
obvious why the above initial approximation was so poor. Using the
new YTM im (2.E) praduces a predicted decrease of . OOEG%, arid this
compares quite favorably to the actual value of . OOG7%. Here, the
convexity adjustment is O to four decimal places (in perceritage
units). Using the exporential approximatiors provide similar
results because the duration ard convexity values are relatively
small.
```

It should be noted that if we had chosen the larger VTM value af . 21565, its counterintuitive negative duration of -. 117 can alsis be interpreted as a prablem of units. That is, ari increase in spot yields corresponds to a decrease in YTMs, thereby correcting for both the wrong sign and the wrorg order of magritude. Specifically, the yield increase of . O1 corresponds to a YTM change of -. OOOG.

Consequently, one cam often correct for the scalimg problem inherent with the YTM approach by developing an appropriate conversion farmula (see section $2 . c$. However, the YTM approach also has the uncorrectable problem of nonexistence of solutions. For example, the yield curve (. 109,. 110) produces a price for the above cash flows of 10.8936 , which $i s$ below the minimum value in (2.1) of 10.909. Hence, no YTM exists, ror does ari estimable Δi.

Abstract

The commonly used alternative to the YTM approach is the garallel_shift_approach, whereby the interest rate parameter is defined directly in terms of the change in the yield curve. The restriction here is that the original yield curve of (.105,. 10) moves only "in parallel." That is, each yield rate changes by the same amount. Specifically, the price function for the above cash flows is modelled as follows:

(ㄹ. 3)
$p(i)=20-20 v+11 w 2 ; \quad v=(1.105+i)^{-1}, w=(1.10+i)^{-1}$. The equation $P(i)=10.99136$ row has the obvious solution of $i=0$. A calculation produces $D(0)=.0136, C(0)=1.404$, and $p(i)$ is lirearly approximated by:

$$
P(i) / P(0) \approx 1-.0136 i,
$$

or, by the corresponding second order estimate which adds $y_{2 C}(0) i E$. For a parallel yield curve increase of . Oi to (.115,.11), the approximation in (2.4) predicts a portfolic decrease of . 0136%, which overstates the actual decrease of . 0067%. The convexity adjustment improves the approximation from. 0136% to . 0066%, wich is quite goad. Using the exponeritial approximatiars provides virtually identical results in this case, because $D(O)$ ard $C(O)$ are small.

```
The primary limitation of the parallel shift approach is that
```

yield curve shifts are often rot parallel, and the above model can provide poor approximations. Consider, for example, an inorease in yields from (.105,.10) to (.1075,. 1075). That is, ari increase of 25 basis points in the ons year spot yield, and 75 basis points in the two year value. Since the duration of the portfolio is positive at . 0136, one might expect that an increase in yields should decrease the portfolio value. In this case, this does indeed occur and this nomparallel increase in yields causes a decrease in the portfolio value of . 745%.

Abstract

However, this actual decrease would rot have been predicted from the first or second order approximations for $p(i) / P(0)$, choosing i to be in the range from 25 to 75 basis points. The best of the four approximations would predict a portfolio decrease of only. 010%; poor estimate for the actual decrease of . 745%. It appears that for this nomparallel yield curve change, the portfolio is far more sensitive than $D(0)=.0136$ and $C(0)=1.404$ imply. This problen has little to do with the onder of magnitude of the yield curve shift. That $i s$, the problem is not that shifts of 25 basis points or 75 basis points are too large for the approximation to work well.

[^3]approximations predict decreases at both 1 and \tilde{e} basis poirits. The best of these approximations calls for a decrease of . 0001%. As before, the sersitivity of the portfalio to this ron-parallel shift appears much greater than $D(O)$ and $C(O)$ imply. Unlike before, rot even the sign of the sensitivity is accurately predicted.

C. An_Analy통_=_Yigid_to_Maturity_Approach

As the example in section 2. a. shows, the YTM approach can often be used effectively to gauge portfolio serisitivity to parallel yield curve shifts. What is necessary, however, is an appropriate conversion formula to estimate the change in the YTM caused by the given parallel shift in the yield curve.

To this end, let io denote the initial yield curve in commor vector notation, and Io the corresporiding YTM, so that $p\left(i_{0}\right)=p\left(I_{0}\right)$. For the above example, io $=(.105,10)$ and $I_{0}=.00445$. Also, let Δi denote the parallel shift in the yield curve, and ΔI the correspanding shift in the $Y T M$, so that $p\left(i_{0}+\Delta i\right)=P\left(I_{0}+\Delta I\right)$. Expanding each of these functions as first order Taylor series, we get:
$P\left(i_{0}+\Delta i\right) \approx P\left(i_{0}\right)+P\left(i_{0}\right) \Delta i$,
$P\left(I_{O}+\Delta I\right) \approx P\left(I_{O}\right)+P\left(I_{O}\right) \Delta I$.

Equating these expressions, and recalling that $p\left(i_{0}\right)=p\left(I_{0}\right)$, we derive the first arder estimate when $D(I 0) \neq 0:$
(2.7) $\left.\Delta I \approx \frac{D}{D\left(\underline{I}_{0}\right)} \Delta_{0}\right)$.

Note that the proportionality constant in (2.7) is the ratio of $D(i o)$, the duration of the price function evaluated on the initial yield curve, to $\mathrm{D}\left(\mathrm{I}_{\mathrm{O}}\right)$, the duration evaluated at the initial YTM. For the example ir section $2 . a$. above, this constant is . 079 . Consequently, a 100 basis point parallel shift corresponds to about an θ basis point charige in $\mathrm{VTM}_{\mathrm{s}}$. As was noted above, the actual YTM change is about 4 basis points for a . Ol parallel increase.

To develop a second order estimate for ΔI, the Taylor series in (2.5) and (2.6) are expanded to include second derivatives. The correspondirg quadratic equation in ΔI is then solved with the quadratic formula, producirg:
(2. B) $\Delta I \approx\left\{D\left(I_{0}\right)-\sqrt{[D} 2\left(I_{0}\right)-2 C\left(I_{0}\right) D\left(i_{0}\right) \Delta i+C\left(I_{0}\right) c\left(i_{0}\right)(\Delta i) Z_{j}\right\}^{\prime} C\left(I_{0}\right)$.

The riegative square root is taken in (2. B) to satisfy the initial condition that $\Delta I=0$ when $\Delta i=0$.

```
    Applying (2. B) to the example in section 2.a. above, with
io = (.105,.10) arid IO =.00445, one calculates that }\DeltaI=.0004 for
\Deltai=.01, a good estimate. Unlike the linear estimate in (2.7),
the approximation given by (2. B) is not symmetric in \Deltai. This
asymmetry is often needed. In the above example, a . O1 parallel
decrease in io corresponds to a.0012 decrease in the VrM. Using
(2.B), we estimate that for }\Deltai=-.01,\DeltaI\approx-.0012
```

```
    As noted above, although the YTM approach can often be used
effectively for parallel shifts when the units are properly
converted, at least two serious problems persist:
```

```
a). Non-existerice of YTMs: if there is no exact YTM
corresporiding to the parallel shifted yield curve io + |i, the
above conversion formulas for }\Delta
That is, P(IO + \DeltaI) will not necessarily give a good
approximation to p(io + \Deltai).
```

b) Non-parallel shifts: for yield curve shifts which are not parallel, the above conversion formulas for ΔI will generally provide unreliable results.

Clearly, the nonexistence problem is unavoidable. However, the problem of non-paraliel shifts can be accommodated with more gerieral conversion formulas. These will be developed in section 3.d.

t. An_Analygig_=_Pargllel_Shift_Approach

We next turn our attentiar, to the example in section e.b. of the parallel shift approach. As was demonstrated, the sensitivity of the portfolio value to mon-parallel shifts, even slightly ronparallel, could be much different from what would have been inferred from the given duration and canvexity values.

As was the case for the YTM approach, the problem here is again a problem of units. The various approximatian formulas for $p(i)$ reflect the sensitivity of price to parallel shifts of the yield curve of Δi. This parallel shift of Δi is really a vector shift of Δi. That $i s, \Delta i \equiv(\Delta i, \Delta i)$ represents a yield charige vector which moves the yield curve from i to $i+\Delta i \equiv$ $\langle i 1+\Delta i, i e+\Delta i\rangle$. Looked at this way, the shift vector Δi can be decomposed into a "magnitude," Δi, and a direction, $N=(1,1)$:

$$
\begin{equation*}
\Delta i=\Delta i(1,1) \tag{2.9}
\end{equation*}
$$

In addition, the various approximation formulas for $p(i o+\Delta i)$ can be interpreted as reflecting the change in price due to a change in
yields of Δi, where this change is in the direction of the vector (1, 1).

Decomposirig the various shifts in section e.b., we get:

$(2.10 a)$	$(.01, .01)=.01(1,1)$
$(2.10 b)$	$(.0025, .0075)=.0025(1,3)$
$(2.10 c)$	$(.0002, .0001)=.0001(2,1)$.

Of course, other decompositions are also possible. The approximation formulas worked well for shift (2.10) because the direction of change was (1,1), the direction implicitiy assumed in the derivation of these formulas. Non-parallel shifts (2. 10b-c) caused poor estimates because their directions did not equal (1, 1), and for the cash flows underlying $p(i)$, this difference in directions was very important.

```
For notational convenience here, let \(\mathrm{D}(1,1)\) denote the duration as defined in (1.3), with the underlying direction vector of (1, 1) explicitly displayed. For the example in section e.b., we had \(D(1,1)=.0136\) evaluated on the initial yield curve, \(1_{0}=(.105, .10)\). In the next section, duration ard convexity will be formally defined with respect to directions other thar (1, 1). With those definitions, one can calculate:
```

$(2.11 a)$	$D(1,1)=0.0136$	$C(1,1)=1.404$
$(2.11 b)$	$D(1,3)=3.0212$	$C(1,3)=34.214$
$(2.11 c)$	$D(2,1)=-1.4767$	$C(2,1)=-6.68 B$

For this example, these duration and convexity values reflect the price sensitivity to yield curve shifts in various directions, and are seen to differ greatly.

Once such directional_durations_arg_convexitieg have beer defined and calculated, one can develop the corresponding approximation formulas, such as the counterpart to (1.1e):
(2. 12)
$p(10+\Delta i N) / P\left(i_{0}\right) \approx 1-D_{N}\left(i_{0}\right) \Delta i+v_{2} C_{N}\left(i_{0}\right)(\Delta i) e$,
as well as the analogous first order counterpart to (1.5). Utilizing ($己 .1 巳$) and the directional values in (2.11), the following improved estimates can be obtained:

Shift	Eirst_Order	Second_Order	Exact_Value
$(.01, .01)$	$-.0136 \%$	$-.0066 \%$	$-.0067 \%$
$(.0025, .0075)$	$-.7533 \%$	$-.7446 \%$	$-.7447 \%$
$(.0002, .0001)$	$+.0148 \%$	$+.0148 \%$	$+.0148 \%$

In section 3 , this multivariate approach to duration and convexity will be explored in detail.

a. Directional_Durations_ond_Convexitice

Let io $=\left(i 01, i 02, \ldots, i \mathrm{imm}^{\prime}\right)$ represent an m-point yield curve on which the partfolio is valued. Typically, the components of this yield vector would correspond to the yield curve pivotal poirits. For example, yields for terms: . $25, .5,1,3,5,7,10,20$, and 30 years. Such pivotal points are truly the external variables on a yield curve sirice they are observed-from market activity. The other yield values are typically interpolated and therefore, internally generated and dependent. Also, let $N=\left(n_{1}, \ldots, n_{m}\right)$ be a direction vector, $N \neq O$, and $|N|=\left(\Sigma n_{i} \sum\right)^{1 / 2}$ denote its lerigth.

Consider $f(t)=P\left(i_{0}+t N\right)$, where $P(i)$ is a multivariate price functior, assumed to be twice continuously differentiable. Clearly, this function defines the price of the portfolio as the initial yield curve io is shifted various units in the direction of N. That is, where iol is shifted thi units, ioe is shifted trie units, etc.. Using a Taylor series expansion, we can approximate f(t) to first and second order in t as follows:
(3.1a)
$f(t) \approx f(0)+f^{\prime}(0) t$,
(3. 1b) $f(t) \approx f(0)+f^{\prime}(0) t+2 f^{\prime \prime}(0) t 2$.

In order to calculate the derivatives of $f(t)$ needed in (3.1), it is necessary to recognize that the price furction is actually a function of m variables, the shifted yield eurve points, and each of these variables is a function of t. Let $P_{j}(i)$ denote the j th partial derivative of the price functior. Similarly, let pJk(i) denote the corresponding mixed second order partial derivative. Then,
(3.2a)
(3.2b)
(3.3a)
(3. 3b)

$$
f^{\prime}(0)=\frac{\partial P_{i}}{\partial N_{0}}=\operatorname{En}_{j} p_{j}\left(1_{0}\right)
$$

$$
f^{\prime \prime}(0) \equiv \frac{\partial 2 P^{2}}{\partial N^{2}} i_{0}=n_{j} r_{k} p_{j k}\left(i_{0}\right)
$$

Considering (3.1) and (3.3), the following defiritions are motivated:

Definition_3.1 Let $P(i)$ be a multivariate price furction and $N \neq 0$ a direction vector. The directional_duration function in the direction of $N, D_{N}(i)$, $i s$ defined for $P(i) \neq 0$ as follows:
(3.4)

$$
D_{N}(i)=-\frac{\partial P}{\partial N / P(i) . ~ i t ~}
$$

Definition_3_? Given the assumptions of Definition 3.1, the directionel convexity function in the direction of $N, C_{N}(i)$, is defined for $p(i) \neq 0$ as follows:
(3.5)
(3.6)
(3.7)
(3. 8)
where $v=(1+i 1)^{-1}, w=(1+i z)^{-1}$. The various partial derivatives of $p\left(i_{1}, i z\right)$ are easily calculated to be:
(3. 8a)
(3.8b)

$$
C_{N}(i)=\frac{\partial 2 p}{\partial N^{2} /} / P(i) \cdot 11
$$

Substituting (3.3) into (3.1), the following counterparts to (1.5) and (1.12) are produced, as roted in (2.12):

$$
p\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right) \approx 1-D_{N}\left(i_{0}\right) \Delta i_{1}
$$

$P\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right) \approx 1-D_{N}\left(i_{0}\right) \Delta i+H_{N}\left(i_{0}\right)(\Delta i) 巳$. As an example, consider the price function in (2.3) explicitly expressed as a function of two variables:

$$
P\left(i_{1}, i_{2}\right)=20-20 v+11 w^{2} ;
$$

$P_{1}\left(i_{1}, i_{2}\right)=20 v^{2} ; \quad p_{2}\left(i_{1}, i_{2}\right)=-22 w^{3}$
$P_{11}\left(i_{1}, i_{2}\right)=-40 v^{3} ; \quad P_{22}\left(i_{1}, i_{2}\right)=66 w^{4} ; \quad P_{12}=P_{21} \equiv 0$.

Evaluating these derivatives at $i o=(.105, .10)$, and performirg the necessary weighted summations in (3.3), the directional durations and convexities displayed in (E.11) can be readily verified.

If $N=(1, \ldots, 1)$, the parallel shift direction vector, $D_{N}\left(i_{0}\right)$ equals the traditional value of $\mathrm{D}(0)$, and $\mathrm{C}_{\mathrm{N}}(\mathrm{i} 0)=\mathrm{C}(0)$. Here, these traditional values are calculated utilizing the parallel shift approach (see Proposition 6, below).
2) Formulas (3.6) and (3.7) are consistent even though there are infinitely many ways to specify the direction vector N. For example, given N, let $N^{\prime}=M_{2} N$. The corresponding shift magnitudes satisfy: $\Delta^{\prime},=2 \Delta i$. The estimates in (3.6) arid (3.7) will then be the same for N and N, because $D_{N}{ }^{\prime}=1 / 2 D_{N}$, and C_{N} ' $=1 / 4 C_{N}$ by (3.3).

Abstract

To make this more well-defired, it is possible to normalize the model by requiring the direction vector N to satisfy $|N|=1$. The magnitude variable, Δi, is then uniquely defined as the length of the shift vector $\Delta i N$. However, whether N is normalized or riet, consistent estimates are produced.

Propogeition_3 Let $P(i)$ be a multivariate price function and $N a$ direction vector with $p(i o+\Delta i N) \neq 0$ for $\mid \Delta i: \leq k$. Then,
(3.9)

$$
p\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right)=\exp \left[-\int_{0}^{\Delta i} D_{N}\left(i_{0}+t N\right) d t\right],
$$

Proof Define $f(t)=\ln \mid P\left(i_{0}+t N\right) I$. Then -f: $(t)=D_{N}\left(i_{0}+t N\right)$, which can be integrated and exponentiated to produce (3.9). If

From (3.9), the following first order exponential approximation is transparent:
(3.10)
$p\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right) z \exp \left(-D_{N}\left(i_{0}\right) \Delta i\right)$.

As was true in section 1 , for small values of $D_{N}(10)$ this exponential approximation will yield resulta which are close to those produced by the more traditional-looking approximation (3.6). In order to develop the second order exponential formula, we must expand the exponerit furiction in (3.9) as a Tayler series in Δ i. To do this, the directional derivative of D_{N} at io is needed. Aralogous to (1.18), we have:
(3. 11)
$\frac{\partial D_{N}}{\partial}=D_{N} E(i)-C_{N}(i)$.

This formula is readily verified by taking directional derivatives of the identity, $\frac{\partial p}{\partial N}=-D_{N} P$.

Proceeding as in the derivation of (1.16), we obtain:
(3.12)

$$
P\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right) \approx \exp \left[-D_{N}\left(1_{0}\right) \Delta i+M_{2}\left(C_{N}\left(i_{0}\right)-D_{N}{ }^{2}\left(i_{0}\right)\right)(\Delta i) \sum_{1} .\right.
$$

b. Eounds_for Directional_Durtions

Given a price function, $P(1)$, and a yield curve vector io, it is natural to inquire as to the existence of direction vectors which either minimize or maximize $D_{N}(10)$. In light of (3.6), such direction vectors will represent critical yield curve shift directions for $P(i)$. As roted in section 3. a. above, this questior will not be well posed unless some restriction is put on the length of N. This is because if $N^{\prime}=\alpha N, D_{N}\left(i_{0}\right)=\alpha D_{N}\left(i_{0}\right)$. Cansequentiy, We can always increase a positive $D_{N}(i)$ by increasing the lergth of N. Restricting our attention to normalized direction vectors N satisfying $\mid N:=1$, we have the following (see also Proposition 10):

Propggitigon_4 Let $p(i)$ be a price function, io a yield vector with
 IPJz(io) is assumed to be nor-zero. Theri for all direction vectors N satisfying $\mid N:=1$, we have:
(3.13)

$$
-\frac{p}{P(i o)}\left(\frac{10}{0}\right) \leq D_{N}\left(i_{0}\right) \leq \frac{1 P}{P}\left(\frac{1}{10} 0\right):
$$

Further, the limits in (3.13) are attained for $N= \pm N o$, with the upper limit corresponding to No, and conversely.

If $P(10)$ (0 , the inequalities in (3.13) are reversed, and the upper 1 imit is attained at $-N_{0}$.

Proof This proposition is nothing more than a restatement of the classic result regarding a directional derivativep that it is maximized in the direction of its gradient, and minimized in the opposite direction. Here of course, No is -1 times the normalized gradient of $p(i)$ at io. il

```
Propgeition_5 Let p(i) and io be given and assume that
|P:(10)| = 0. Then for all N,
```

(3. 14)

$$
D_{N}(i \rho)=0 .
$$

Proof This result is clear from the definition of $\mathrm{D}_{\mathrm{N}}\left(\mathrm{f}_{0}\right)$ and (3.3a), sirce $\mid P^{\prime}(i o):=0$ if and only if $\mathrm{PJ}_{\mathrm{J}}(\mathrm{i} 0$) $=0$ for all J . I

```
    Returning to the example of (3.8), one readily calculates from
(3.8a) that {p'(io)| = 23.27 and No = (-.704,.710). Evaluating the
critical values of (DN(io) by (3.13), we get:
```

(3.15)

```
-2.12\leq DN(IO) \leq 2.12, IN: = 1.
```

Finally, a calculation shows that $\mathrm{D}_{\mathrm{N}}(10)= \pm 2.12$ at $\pm \mathrm{N}_{0}$, respectively.

As a final comment regarding Proposition 4, it should be noted that for iN: $\# 1$, the bounds in (3.13) are readily gerieralized. For example, for $p\left(i_{0}\right)$, 0 ,

As shown in section 3.b., the classical duration and convexity analysis of section 1 can be readily generalized to include yield curve shifts which are not parallel. An alternative model would be one which more explicitly recognizes the multivariate nature of yield curve changes. That is, model which estimates p(io + Δ i) directly, where io is the initial yield curve vector, and $\Delta i=$ ($\Delta i, \ldots, . . \Delta i_{m}$) is a yield ehange vector.

To this end, consider the following m-dimensional versions of the first and second order Taylor series:
(3. 16a)

$$
p\left(i_{0}+\Delta i\right) \approx p\left(i_{0}\right)+\Sigma p_{j}\left(i_{0}\right) \Delta i_{j}
$$

(3. 16b)

$$
p\left(i_{0}+\Delta i\right) \cong p\left(i_{0}\right)+\Sigma P_{j}\left(i_{0}\right) \Delta i_{j}+\sum_{2} \sum_{j k}\left(i_{0}\right) \Delta i_{j} \Delta i_{k}
$$

These approximations naturally motivate the following definitions:

DTfinition_3e3 Given a multivariate price function $P(i)$, the dth partial_dyretion_fynctign, denoted $D_{j}(i)$, is defined for $P(i) \neq 0$ as follows:
(3.17)

$$
D_{j}(t)=-p_{j}(t) / P(t), \quad j=1, \ldots, m . \text { il }
$$

Definition_3g 4 Given the price function $P(i)$, the dkth_partigl convexity_function, denoted $C_{j k}(i)$, is defined for $P(i) \neq 0$ as follows:
(3.18)

$$
C_{J k}(i)=p_{J k}(i) / p(i), \quad J, k=1, \ldots, m .11
$$

Defindtion_3्ञ토 Given the above definitions, the total_duration vector, denoted $D(i)$, and the totel_ conyexity_matrix, denoted C(i), are defined as follows:
(3.19)
$D(i)=\left(D_{1}(i), \ldots, D_{m}(i)\right)$,
(3.20)

Note that $D(i)$ is to be interpreted as a row vector. Utilizing these definitions in (3.16), the following generalizations of (1.5) and (1.12) are produced:
(3.21)
$P\left(i_{0}+i\right) / P\left(i_{0}\right) \approx 1-D\left(i_{0}\right) \cdot \Delta i$
(3.22)
$P\left(i_{0}+i\right) / P\left(i_{0}\right) \approx 1-D\left(i_{0}\right) \cdot \Delta i+M_{2} \Delta^{T} C\left(i_{0}\right) \Delta i$.

To simplify notation, (3.21) utilizes the well known dot progunct or inner_product notation, whereby if x and y are m-vectors, $x \cdot y$ is defined:

Similariy, the last term in (3.22) is expressed in matrix product_ngtatign, or more specifically, as a guadratic_form in Δi. By convention, Δi is interpreted as a columr vector, and $\Delta i T$ is the corresponding row vector, or trignsgose of Δi. Standard matrix calculations then produce:
(3.24)

$$
x^{\top} C x=\Sigma \Sigma c_{\jmath k^{*}}{ }_{j} \times k
$$

It should be noted that for smooth price functions,
(3.25)
$C_{j k}(i)=C_{k j}(i)$.
because of the corresponding property for mixed partial derivatives. Consequently, $C(i)$ is a symmetric matrix in this case. That is,
(3.26)
$C(i)=C(i) T$.

It should also be noted that the dot product in (3.23) can also be expressed in matrix notation as $x^{\top} y(x, y$ column matrices), or $x^{\top}{ }^{\top}(x, y$ row matrices).

Again returning to the example in (2.3), where p(ii,i2)= $20-20 v+11 w^{2}$, and $10=(.105, .10)$, the partial derivatives

$$
D_{1}\left(1_{0}\right)=-1.4902, \quad D_{2}\left(1_{0}\right)=1.5038
$$

(3.27b)

$$
C_{11}(10)=-2.697, \quad C_{22}\left(i_{0}\right)=4.101, \quad C_{12}=C_{21}=0 .
$$

Hence, the first order approximation in (3.21) becomes:

$$
p\left(i_{0}+\Delta i\right) \approx 10.99136\left(1+1.4902 \Delta i_{1}-1.5038 \Delta i_{2}\right)
$$

Looking at the functional form of (3.28), it is little wonder that for nonparallel yield curve shifts, $\Delta i_{1} \neq \Delta i z$, the price function changed in ways not anticipated by the traditional approximation (2.4). Namely, this price furiction is relatively sensitive to movements in Δi_{i} and $\Delta i z$ separately. However, because these sensitivities arm of opposite sign and similar magnitude, the traditional approximation, which assumes $\Delta i_{1}=\Delta i z, ~ p r o d u c e s ~ a n ~$ apparent sensitivity of only . 0136 .

Similarly, the traditional convexity valua of 1.404 disguises the greater sensitivities implied by the partial convexities in (3.27b). That is, expanding (3.28) to second order terms as in (3.e2), we get:
(3.29)

$$
\begin{aligned}
p\left(i_{0}+\Delta i\right) \approx 10.99136[1 & +1.4902 \Delta i_{1}-n_{2}(2.697)\left(\Delta i_{1}\right) 2 \\
& -1.5038 \Delta i_{2}+n_{1}(4.101)\left(\Delta i_{2}\right) 2_{1} .
\end{aligned}
$$

Again, deperiding on the relationship between Δi, and $\Delta i{ }^{2}$, this price function will behave in ways not anticipated by the traditional approximation which assumes $\Delta i_{i}=\Delta i z$.

Abstract

Implicit in the above discussion is the assumption that when a multivariate approximation is restricted to parallel shifts, i.e. $\Delta^{1} J=\Delta i$ for all J, the corresponding one variable approximation from section 1 is produced. For example, (3.21) reduces to (1.5). For this to be so, it is necessary and sufficient that duration equals the sum of the partial durations, and convexity equals the sum of the partial convexities.

The followirig proposition formalizes this result:

Proposition_G Let io be a yield curve vector and $D(i o)$ and $C(i o)$ denote the duration and convexity values calculated according to the "parallel shift" appromeh. Theni
(3. 30)
(3. 31)

$$
D\left(i_{0}\right)=E D_{j}\left(i_{0}\right),
$$

$$
C\left(i_{0}\right)=\Sigma \Sigma C_{j k}\left(i_{0}\right) .
$$

Proof Let $M=(1, \ldots, 1)$, the parallel shift direction vector arid define the price function $P(i)=P(i o+i M)$. The chain rule ther gives:

$$
p{ }^{\prime \prime}(i)=\operatorname{E[P}_{j k}\left(i_{0}+i M\right)
$$

Evaluating (3.32) at $i=0$, and dividing by $p(0)=p(i o)$, completes the proof. 11

Turning next to the exponential models, we have the following:

Propgaition 7 Let $r(t)$ be smooth parametrization of yield curve vectors defined on $[0,1]$ so that $r(0)=i 0, r(1)=10+\Delta i$. Alse, assume that $p(\Gamma(t)) \neq 0$ for $0 \leq t \leq 1$. Then:
(3. 33)

$$
P\left(i_{0}+\Delta i\right) / P\left(i_{0}\right)=\exp \left[-\int_{0}^{1} D(\Gamma(t)) \cdot \Gamma(t) d t\right]
$$

where $r^{\prime}(t)$ deriotes the ordinary derivative of this vector valued function.

Proof Define $f(t)=\ln \mid p(r(t))$. A calculation shows that f ($(t)=$ $-D(\Gamma(t))-\Gamma(t)$, which can be integrated and exponentiated to complete the proof. if

```
From Proposition 7, the following approximation results:
```

In the special case where $r(t) i$ in 1 inear, $r(t)=$ io $+t \Delta i$, the more
general formulas in (3.33) and (3.34) are easily seen to reduce to
the directional derivative counterparts in (3.9) and (3.10), with
Δi here corresponding to $\Delta i N$ above.

Abstract

In order to develop the second order exponential approximation, partial derivatives of the various partial durations are required. Analogous to (1.18) and (3.11), we have:

(3. 35)

$$
\frac{\partial \underline{D}_{J}}{\partial i_{k}}=D_{k} D_{J}-c_{J k}-
$$

which is derived by differentiating the identity $P_{j}=-P D_{3}$, with respect to ik. Proceading as before, one can expand the exponent function in (3.33) as a one variable Taylor series by replacirg the upper limit of integration with g, say, then substitutirg $s=1$ into the second order Taylor expansion to obtain:
(3. 36)

$$
p\left(i_{0}+i\right) / p\left(i_{0}\right) \approx \exp \left\{-D\left(i_{0}\right) \cdot \Gamma^{\prime}(0)\right.
$$

$$
\left.+M\left[\Gamma^{\prime}(0) T\left(C\left(i_{0}\right)-D\left(i_{0}\right) T D\left(i_{0}\right)\right) \Gamma^{\prime}(0)-D\left(i_{0}\right) \cdot \Gamma "(0)\right]\right\} \text {. }
$$

Ir the special case where $r^{\prime}(t)$ is linear, $r^{\prime \prime \prime}(0) \equiv 0$, and (3.36) reduces to the directional derivative counterpart in (3.12).

In section 2.c, approximation formulas were developed ir, (2.7) and (2. B) which illustrated the mensitivity of the yield to maturity to parallel shifts in the yield curve. In this section, these results will be generalized to include non-parallal shifts.

As before, let io be a yield curve vector, and Io the equivalent $Y T M$ so that $P\left(i_{0}\right)=P\left(I_{O}\right)$. Expanding into the respective first order Taylor Eeries,
(3. 37 a)

$$
p\left(i_{0}+\Delta i\right) \approx p\left(i_{0}\right)\left[i-p\left(i_{0}\right) \cdot \Delta i\right]
$$

(3. 376)
$P\left(I_{O}+\Delta I\right) \approx P\left(I_{Q}\right)\left[1-D\left(I_{O}\right) \Delta I\right]$.

Equating these values, we can solve for ΔI when $D\left(I_{0}\right) \neq 0$, obtaining:
(3. 38)

$$
\Delta I \approx \frac{D(10)}{D(10)} .
$$

This equation reduces to (2.7) when Δi is a parallel shift, since $D\left(i_{0}\right)=\Sigma D_{j}\left(i_{0}\right)$.

As an example, recall the price furction of section 2. A., where the initial yield curve, io $=(.105, .10)$, was seen to be equivalerit to the yield to maturity, Io $=.00445$. That $i s$, both yielded an initial price of 10.99136 . Consider the small nonparallel yield
curve shift, $\Delta i=(.0005, .001)$. Based on (3.38), ore approximates the associated change in the yield to maturity, $\Delta I \approx .00442$, using the duration values from (2. 2) and (3.27): Estimating ΔI directly proves this result to be little understated, in that $\Delta I=.00455$.

Consider next the larger nonparallel shift of $\Delta i=(.005,01)$. Because this shift flattens the original yield curve to (.11,. 11), it is obvious that the new corresponding YTM equals. . 11 , and that we should firid that $\Delta I=.10555$. The approximation based on (3.38) equals . 0442 , an apparently significant error. However, it must be kept in mind that the approximation produced by (3. 38) for ΔI, used in conjunction with $D\left(I_{0}\right)$ in (3.37b), will produce the same estimate for Pl.11,.11) as will (3.37a) using the actual Δi and the partial durations.

By expanding the Taylar series in (3.37) to include second order terms, ΔI can be estimated using the quadratic formula, producing the following generalization of (2. B):
(3. 39)

$$
\left.\Delta I \approx\left\{D_{0}-\sqrt{C D_{0}}{ }^{2}-2 C_{0} D \cdot \Delta i+C_{0} \Delta i^{\top} \Delta i\right]\right\} / C_{O}
$$

where $D_{0}=D\left(I_{0}\right), C_{0}=C\left(I_{0}\right), D=D\left(i_{0}\right)$, and $C=C\left(i_{0}\right)$.

This formula generalizes (2.8) to allow noriparallel yield curve shifts, and as was the case there, the negative square root is used to satisfy the initial condition that $\Delta I=0$ when $\Delta i=0$.

Recalling the partial duration ard convexity values in (3. 27), this quadratic formula can be used to estimate the ΔI associated With $\Delta^{i}=(.0005,001)$ in the example above. In this case, the estimate for ΔI is improved compared with the linear estimate, reproducing the exact value of $\Delta I=.00455$ to five decimal places. For the larger shift of $\Delta i=(.005, .01)$, a negative value is produced under the square root. That is, there is no real number, ΔI, for which the one variable second order Taylor series equals the multivariable series which reflects $\Delta i, D(i)$, and $C(i) . A$ calculation shows that this latter value $i s .99258$, while the minimum value of the one variable quadratic is. 99362 , which is achieved at $\Delta I=.07435$.

In this case, although an improved estimate for ΔI can be obtained by this critical value analysis, its use in the assaciated second order Taylor series daes not produce a good estinate for the change in price. Specifically, this secord order analysis would produce a relative charge of . 99362 , while the first order analysis with $\Delta I=.04422$ produces a relative price change of . 99241 , which is significantly closer to the actual value of $.99 \approx 58$.

e. Earallel_Shift_Apgrogch_Revieited

Considering next the parallel shift analysis of section E. d, recall that it was shown that non-parallel shifts could be handled by redefining duration and convexity to reflect these non-parallel
diractions. Alternatively, non-parallel shifts can be accommodated using the standard section 1 formulas, if the parallel ghift parameter, Δi, is properly constructed as a furiction of the actual shift, Ax.

```
    To thig end, the first order expansion of p.(io + \Deltai) in
(3.37a) must be used twice, once for the general }\Delta1\mathrm{ , and once for
the parallel shift vector,. \i m |iM, wher= Mm (1,.,.,i).
Equating these approximations, we can solve for }\Delta
D(io) # O, obtaining:
```

(3.40)

$$
\Delta i \approx \frac{D(10): \Delta i}{D(10)}
$$

Unlike the YTM countorpart formula in (3.38), here Δi is seen to be a weighted average of the varioum component $\Delta_{i j}$ values since EDJ $(10)=D\left(i_{0}\right)$.

Using the partial durationm in (3.27a), we can apply (3.40) to the non-parallel shift: in (2. 10), to obtain:
(.0025, 0075)
(.0002,.0001)
"Eguivalent"_-

$$
\text { . } 5554
$$

$$
-.0109
$$

A calculation shows that using these parallel shift equivalents in the standard first order formula (2.4) produces identical first
order results to those displayed in (2.13) produced with directional derivatives.

Abstract

Interpreted this way, we see that the traditional formulas can provide poor estimates for non-parallel shifts because the urits of the associated parallel shift Δi, can be orders of magnitude larger, andfor of different sign, than may be inferred from the various non-paraliel shift values of $\Delta \mathrm{I}_{\mathrm{j}}$. This cannot happen if all $D_{j}\left(i_{0}\right)$ values have the samesign, for example, as is true for a roncallable bond (eqee (4. 2)). In such cases, the equivalent Δi will be within the range of $\Delta i j$ values, as is easily seen.

The second order counterpart to (3.40) is identical to (3.39), only with $D_{O}=D(i o)$ and $C_{0}=C(i o)$.

f. Duration_and_Convexity_Relationghipy

Relationships between the various duration and convexity values defined in the previous sections are developed in the following propositions:

Propgeition_B Let $N \neq 0$ be a direction vector. Then:
(3.41)
(3.42)

$$
\begin{aligned}
& D_{N}\left(i_{0}\right)=N \cdot D\left(i_{0}\right)=\sum_{n_{j}} D_{j}\left(i_{0}\right), \\
& C_{N}\left(i_{0}\right)=N^{\top} C\left(i_{0}\right) N=\sum \sum_{n_{j}} n_{k} C_{j k}\left(i_{0}\right) .
\end{aligned}
$$

Prog f Both formulas are restatements of the definitions of $\mathrm{D}_{\mathrm{N}}(\mathrm{i}$) and $C_{N}(i o)$, reflecting the directional derivative identities in (3.3). 11

Before continuing, it should be noted that for $M=(1, \ldots, 1)$, we have by Propositions 6 and B, the expected results:
(3.43)
(3.44)

$$
D_{M}\left(\mathbf{1}_{0}\right)=D\left(\mathbf{1}_{0}\right),
$$

$$
C_{M}\left(i_{0}\right)=c\left(i_{0}\right) .
$$

The following proposition summarizes a number of results regarding derivatives of the various duration functions.

Propgestion 9 Let $N \neq 0$ be a direction vector. Then:
(3.45)
(3.46)
(3.47)
(3.48)

$$
\frac{d}{d i} D\left(i_{0}\right)=D^{2}\left(i_{0}\right)-C\left(i_{0}\right),
$$

$$
\frac{\partial}{\partial i_{j}} D_{k}\left(i_{0}\right)=D_{j}\left(i_{0}\right) D_{k}\left(i_{0}\right)-c_{j k}\left(i_{0}\right),
$$

Prof Let $P(i)=P(i o+i M)$. Relationship (3.45) is derived by differentiating the identity, $P^{\prime}(i)=-P(i) D(i)$, solving for $D^{\prime}(i)$,
and substituting $i=0$. Similarly, (3.46) is derived from the identity, $P_{N}(i)=-P(i) D_{N}(i)$, where $P_{N}(i)$ denotes the directiorial derivative of $P(i)$. Here, however, it is the directional derivatives which are taken.

Similarly, differentiating the identity, $P_{k}(i)=-P(i) D_{k}(i)$ with respect to $i j$ leads to (3.47), while summing this result with respect to k and using (3.30) produces (3.48). If

Returning now to bounds for directional derivatives, we have:

Propogition 10 Let $P(i)$ be arice function and $D(i o)$ its total duration vector evaluated at io. Then for all duration vectors, N,

$$
\begin{equation*}
-|D(i 0)|\left|N: \leq D_{N}\left(I_{0}\right) \leq|D(I O)|\right| N \mid, \tag{3.49}
\end{equation*}
$$

where \mid i denotes the length of the given vectors. Further, the upper bound in (3.43) is achieved for all positive multiples of the unit vector:
(3.50)
$N_{0}=D(10) / \mid D\left(i_{0}\right) 1$.

Similarly, the lower bound is achieved for all positive muitiples of -NO.

Proof By multiplying the numerator and denominator of No in (3.50) by P(io), it becomes clear that this unit vector equals No of Proposition 4. By evaluating $D_{N}(i o)$ for $N= \pm N_{0}$ by (3.41), the
bounds in (3.49) are seen to be a simplified restatement of (3.13) and (3.13)', since the sign of $p(i 0)$ becomes transparent. is

It should be notad that by Proposition io, if $\mathrm{D}_{\mathrm{g}}(\mathrm{i}$ paraliel yield curve shifte simef then No $=(1,1, \ldots, 1) . \quad$ Next, Proposition 11 shows that given D(io), the range of price sensitivity displayed in (3.49) is minimized for this case.

Proposition 11 Let $D(i o)$ be a total duration vector with associated duration $\mathrm{D}(\mathrm{io})$. Then:

```
|D(io) | \geq |D(10)|/Jm,
```

where m is the dimension of $D(i o)$. Further, the lower bound in (3.51) is achieved if and only if $D_{J}(i o)=D(i o) \%$ for all J .

Progf Although this is a familiar calculus result, a simple noncalculus proof is possible. Changing notation, let A be the vector with $a_{J}=D\left(i_{0}\right) / n$, for all J , and let B also have the property that $\Sigma_{b_{j}}=D(i o) . \quad$ Then $C=B-A$ satisfies $\Sigma c_{i}=0$, so $|B| 2=$ $: A: 2+\mid C i 2$. Hence, since $|C| 2 \geq 0, \mid B i 2$ is minimized when $C=0.1:$

Propgetition_iㄹ Let $P_{1}(i)$ and $P_{2}(i)$ be price functions with corresponding total duration vectors $D_{1}(i), D_{2}(i)$, and total convexity matrices $C_{1}(i)$ and $C_{e}(i)$. Let $P(i)=P_{i}(i)+P_{e}(i)$. Then for $p(i) \neq 0$,

Progf As is the case for the traditional values, this result follows directly from the additive property of derivatives. it

Clearly, Propostion 12 implies that both partial values and directional values satisfy similar identities.

As a final comment, it should be noted that the coriclusiors noted in section $1 . e$. for the one variable models hold in the multivariate context as well. For example, the directional duration exponential approximations can be interpreted as the limiting case of applying the directional linear approximations to ever firer subdivisions of the segment $[i 0, i o+\Delta i N]$. The assumption of a coristant directiorial duration then leads to the first arder exponential formulas, while the assumption that this function is lirear over the segmerit leads to the second order formulas. As before, use of the second order directioral approximations with a constant directional convexity does not change this result. In addition, the exponential ideritity can be viewed as the limiting case of the corresponding first order approximations with exact directional duration values.

For the partial duration models restricted to $\Gamma(t)=10+t \Delta i$, similar results hold. For general $\Gamma(t)$, the linear approximation
converges to the exponential identity as can be shown by defiring the partition $\{j / n \mid\}=0, \ldots, n\}$ on $[0,1]$, the domain of $\Gamma(t)$, and proceeding as before.

日. Cowpound_Duration_Eunetions

In gection 1.e., the concept of the duration of duration was defined and used to restate the second order approximations in an intuitively natural way. Here, this compound duration approach will be generalized to the multivariate modele.

Definition $\mathbf{3}_{\mathrm{n}} 6$ Given a directional duration function $\mathrm{D}_{\mathrm{N}}(\mathrm{i})$, the gotingund_directignal_duration, $D_{N} D_{N}(1)$, is defined for $D_{N}(i) \neq 0$ as follows:
(3. 54)

Definition $\mathbf{3}_{\boldsymbol{L}} 7$ Given a partial duration furction, $\mathrm{D}_{\mathrm{k}}(i)$, the compound_akth_partigal_duration, $D_{j} D_{k}(i)$, is defined for $D_{k}(i) \neq 0$ as follows:
(3. 55)

$$
D_{j} D_{k}(i)=-\frac{\partial D_{k}}{\partial i_{j}} / D_{k}(i) \cdot i 1
$$

(3.56)
(3.57)

$$
\begin{aligned}
& D_{N} D_{N}(i)=C_{N}(i) / D_{N}(i)-D_{N}(i) \\
& D_{j} D_{k}(i)=C_{j k}(i) / D_{k}(i)-D_{J}(i) .
\end{aligned}
$$

As in section 1, the first order Taylor series approximation:

$$
D_{N}\left(1_{0}+t N\right) \approx D_{N}\left(1_{0}\right)\left[1-D_{N} D_{N}\left(i_{0}\right) t\right],
$$

can be substituted into the exponential ideritity (3.9) and integrated with respect to t to produce:
$p\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right) \approx \exp \left[-\Delta i D_{N}\left(i_{0}\right)\left(1-D_{N} D_{N}\left(i_{0}\right) \Delta i / e\right)\right]$.

A calculation shows that (3.59) is equivalent to the second order exporential approximation in (3.12). In a mimilar way, the secord order approximation in (3.7) can be restated as:
(3. 60)
$P\left(i_{0}+\Delta i N\right) / P\left(i_{0}\right) \approx 1-\Delta i D_{N}\left(i_{0}\right)\left[1-\left(D_{N} D_{N}\left(i_{0}\right)+D_{N}\left(i_{0}\right)\right) \Delta i / e\right]$.

As was the case in section 1.c., we see that these second order approximations can be interpreted as the corresponding first order approximations with adjusted directional duration values. The adjustments again correspond to a yield charge of $\Delta i / E$.

In a sinilar fashion, the approximation:

$$
D_{k}\left(i_{0}+t \Delta i\right) \approx D_{k}\left(i_{0}\right)\left[i-t \sum_{j} D_{k}\left(i_{0}\right) \Delta i j_{j}\right]
$$

can be substituted into the exponential identity (3.33), with
$\Gamma(t)=10+t \Delta i$, and integrated to obtaini
(3.62) $P\left(i_{0}+\Delta i\right) / P\left(1_{0}\right) \approx \operatorname{Exp}\left[-\Sigma \Delta i_{k} D_{k}\left(1_{0}\right)\left[1-\sum_{j} D_{k}\left(i_{0}\right) \Delta i_{j} / 2\right] 〕\right.$.

This exponential approximation is mquivalent to (3.36) withr(t) = io + t Δ. Finally, the gecond order approximation of (3. ee) car be restated:
(3.63)

$$
1-\Sigma \Delta i_{k} D_{k}\left(i_{0}\right)\left[1-\sum\left(D_{j} D_{k}\left(i_{0}\right)+D_{j}\left(i_{0}\right)\right) \Delta i_{j} / 2\right] .
$$

4. APPLICATIONS

a. Rartial Duration_and_Convaxity_Estimeterex

```
    In general, one can only apply the various derivative based
definitions directly when cash flows are fired and independent of
interest rates. For example, when financial options do not exist
which matee cash flows "interest sensitive."
    For example, given a fixed vector of annual cash flows, K =
(ci,..., ( m ), and a corresponding spot rate vector, i = (i,i,...,im),
the price furiction is given by:
\[
p(i)=\left[c_{J} \vee_{J}{ }^{J}\right.
\]
\[
\text { where } v_{J}=(1+i j)^{-1} \text {. A simple calculation produces: }
\]
```

```
\[
\begin{equation*}
C_{J J}(i)=1\left(J+\frac{1}{P}\right) C_{j} \sum_{J j} Y_{J}+2, \quad C_{j k}(i)=0, J \neq k . \tag{4.3}
\end{equation*}
\]
In this context, it is obvious that these partial durations sum to duration, and similarly for the partial convexities. In addition, because \(C(i)\) is diagonal matrix, the second order formulas sinplify. For example,
```

$$
(4,2)
$$

In the real world, however, many financial instruments contain options. Assets can be prempaid (i.e. "called") at the option of the borrower for a fixed price. Liability streams associated with guaranteed interest contracts (GICs), single premiun deferred annuities (SPDAs), savings accounts, etc., usually contain withdrawal (i.e. "put") options which benefit the contractholder. Also, contractiolder call options are common, whereby tife coritractholder car invest more in the original contract.
For such cash flaw streams, the formal derivatives af the price
function involve both derivatives of the interest factors, as in
this paper's examples, and derivatives of the cash flow strean
itself. Typically, cash flow sensitivity cannot be modelled
directly in closed mathematical form which lends itself to
differentiation. Rather, this sensitivity is modelled discretely
via interest rate projections and "if-then" algorithms.

So-called "option pricing" models are common today ([5], [7], [8], [ili]). With them, $P(i)$ and $P(i)$ are not defined directly in terms of discourited cash flows, but rather, are defined indirectly in a manmer which reflects the effect of options on the cash flow stream. These models are stochastic, in that variety of future projections are encompassed and summarized, rather than deterministic, whereby the future is treated as known. Naturally,
such option pricing models produce a price which is very much a function of the yield eurve assumed, so in particular, the price function can be discrietely estimated.

Abstract

Aㅇ common as such models are today, so it is common to use discrete definitions of duration and convexity. For example, orie can estimate $D(i)$ and $C(i)$ by thi following central difference formulas:

(4.6)

$$
\begin{align*}
& D \in(i)=-[P(i+\epsilon)-P(i-\epsilon)] / E \in P(i), \tag{4.5}\\
& C \in(i)=[P(i+E)-E P(i)+P(i-E)] / \in P P(i) .
\end{align*}
$$

Forward difference formulas are also common, even though they can often be "biased." That is, they better refleet. sensitivity to ar increase in interest rates, rather than sensitivity to change in gerieral. Df course, formulas (4. 5) arid (4.E) readily perieralize to difectional duration and convexity estimates. For this purpose, $P(i)$ is interpreted $a s P(i o)$, and $P(i+E)$ interpreted as $P(10+E N)$, where N is the direction vector. In the special case where $N=(1, \ldots, 1)$, the parallel shift vector, the formulas above provide estimates for the parallel shift approach discussed in section 2.b.

As for the proper value of E, one commorily uses judgement and some trial arid error. Theoreticaliy, one can estimate the erarar in
the duration and convexity estimates in (4.5) and (4.6) by expanding $P(i+\epsilon)$ and $P(i-\epsilon)$ as Taylor series in ϵ and substituting into the respective formulas. This produces:

Abstract

As can be seen from these formulas, the duration and convexity estimates improve quickly as \in decreases. However, the third and fourth derivatives of $P(i)$ are generally not known so the direct application of (4.7) and (4.8) to select ar E with a given errortolerance first requires their estimatior Logically, this formal approach is iterative in that an E is chosen, higher orderderivatives estimated, and the approximate error evaluated via (4.7) and (4, B). If necessary, the process is repeated. Error estimates so derived are only approximate since the estimated higher order derivatives will also contain errors depending on yet higher order derivatives. In practice, however, good results can often be obtained with equal to 1 to basis points.

[^4]$D \in(i)-D(i)=-P(3)(i) \in E / 6 P(i)+O\left(\epsilon^{4}\right)$,
$c^{\in(i)}-C(i)=p(4)(i) \in E / 12 p(i)+O\left(\epsilon^{4}\right)$.
$$
\left.D_{j} \epsilon_{i} i\right)=-\left[P\left(i+\epsilon_{j}\right)-P\left(i-\epsilon_{j}\right)\right] / \varepsilon \epsilon_{j} P(i),
$$
\[

$$
\begin{aligned}
C_{j k} \in(i)=\left[p\left(i+\epsilon_{j}+\epsilon_{k}\right)\right. & -p\left(i-\epsilon_{j}+\epsilon_{k}\right)-p\left(i+\epsilon_{j}-\epsilon_{k}\right) \\
& \left.+p\left(i-\epsilon_{J}-\epsilon_{k}\right)\right] / 4 \epsilon_{j} \epsilon_{k} p(i)
\end{aligned}
$$
\]

Here, $\epsilon_{j}=\epsilon_{j}(0, \ldots, 1, \ldots 0)$, where $\epsilon_{j} i s$ the j th coordinate, and $E=\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)$. As was true for the one variable model, judgement and trial and error are needed to determine an appropriate set of values for ϵ_{j}, which could be chosen to be equal for simplicity. Error estimation formulas gereralizing (4.7) and (4.8) can again be developed using multivariate Taylor series expansions, to praduce:

$$
\begin{equation*}
D_{J} \in(i)-D_{j}(i)=-p_{j}(3)(i) \epsilon_{J} 2 / 6 p(i)+\theta\left(\in_{j} 4\right) \tag{4.11}
\end{equation*}
$$

(4.12)

$$
\begin{aligned}
c_{j k} \epsilon_{(i)}-c_{J k}(i)= & {\left[\epsilon_{J} \sum_{p_{j k}}(3,1)(i)+\epsilon_{k} \sum_{p_{j k}}(1,3)(i)\right] / 6 p(i) } \\
& +\theta_{\left(\epsilon_{j}, \epsilon_{k}\right) 4 .}
\end{aligned}
$$

In (4.11), $p_{j}(3)$ denotes the third partial derivative with respect to ij, while in ($4.1 E$, the $(3,1)$ and $(1,3)$ notation denctes the corresponding mixed fourth order partial derivatives with respect to J and k. The second term on the right in (4.12) denotes a homogeneous fourth order polynomial in ϵ_{J} and ϵ_{k}, which for $\epsilon_{J}=\epsilon_{k}$ becomes $\mathscr{O}\left(\epsilon^{4}\right)$. In practice, 1 to 5 basis points will often suffice.

As a final comment, it should be noted that partial duration and convexity estimates should be "normalized" to satisfy Proposition 9. That is, these values should be scaled so that they sum to the estimated duration or convexity values, respectively.

Abstract

Orice the partial durations have been calculated, the first important exercise is one of observation. Since duration equals the sum of the partial durations, one can observe to what exterit parallel price sensitivity as measured by $D(i o)$ decomposes along the yield curve. In general, price sensitivity to nonparallel shifts will be greater if the partial durations are large, with some positive and others negative, rather than relatively uniform of size D(io)/m.

For example, the duration of the price furiction defined in (2.3) equalled . 0136, implying relatively little interest serisitivity. However, this value was seen to decompose irita partial durations of $\mathrm{D}_{1}\left(\mathrm{i}_{0}\right)=-1.4302$ and $\mathrm{D}_{2}\left(\mathrm{i}_{0}\right)=1.5038$, which had the effect of "leveraging" some nonparallel shifts into a great deal of price sensitivity. By "leveraging" is meant that the charge in price observed could be very large or of the opposite orientation relative to what would have been estimated based on $D(i)$ arid the actual values of Δi_{j}.

In those examples, had both partial durations been equal to . OO6B, this leveraging would not have occurred. That is, the actual Change in price would have been estimable by the duration, $D(i)$, and a yield charge value within the range of the $\Delta i j$ values.

Specifically, for Δi equal to the simple average of the $\Delta i j$. On the other hard, had the total duration vector been given by $\mathbf{D}=$ (-10.490e, 10.5038), more leveraging would have been observed for nonparallel yield curve shifte.

As ari example, assume that $\Delta i=$ (.00e5, .0075). Using (3.40), we see that for the original total duration vector, $\mathbf{D}=$ (-1.490e, 1.503B), the equivalent parallel shift would have been $\Delta i=.5554$. For the uniform vector, $D=(.0068, .0068)$, the equivalert parallel shift is $\Delta i=.005$ as expected. Finally, for the vector $D=(-10.490 \hat{e}, 10.5038)$, the equivalent parallel shift is calculated to be $\Delta i=3.8642$.

Beyond this informal exercise of observation, one car formally calculate price sensitivity a number of ways. Ey definitior, the duration value, $D\left(i_{0}\right)$, reflects sensitivity to parallel yield curve shifts, while the various partial durations, $D_{J}(i o), ~ r e f l e c t ~$ sensitivity to changes in the yield curve point by point. Similarly, for a given direction vector, N, one car calculate the directional duration $D_{N}(i o)$ from (3.41). This value then reflects price sensitivity to yield curve shifts which are proporticnal to N.

Ore direction vector of note is MO as defined in (3.50). As demonstrated in Proposition 10, this vector represents the yield curve shift which produces the maximum value of $\mathrm{D}_{\mathrm{N}}(\mathrm{i} \boldsymbol{O})$, and consequently, the greatest relative change in the price function,
given iNl 1. Similarly, yield curve shifts proportional to No also provide extreme values of DN_{N} (iol, and hence, represerit yield curve directions of maximal. relative price sensitivity. By Proposition 10, the length of the total duration vactor, iD(io)i, quantifies the mmount of this maximal relative price sensitivity.

Clearly, the value of $\mid D(i o l \mid$ providers a more rigorous basis for the "leveraging" ffect discussed above. For the three total duration vectore considered abover with D(io) =.0136, the correxpponding valums of |D(tol: area

(4.13a)	$(1-1.4902,1.5038) i=2.1171$,
$(4.13 b)$	$\|(.0068, .0068)\|=.0096$,
$(4.13 c)$	$(-10.4902,10.5038) \mid=14.8450$.

From Proposition 11, it is clear that of all two-dimensional total duration vectors with DP1o) $=.0136$, the vector in (4.13b) is of minimal length. Naturally, there is no correspondirg duration vector of maximal length given $D(10)$, so any amount of leveraging is possible at least in theory.

To formalize the notion of leveraging exemplified above, we seek a relationship between a yield curve shift, Δi, and the equivalent parallel shift value, Δi, so that the change in price due to Δi is estimable with $D(i o)$ and Δi. By (3.40), for $D(i o) \neq 0$ the parallel shift equivalent, Δi, of the vector Δi,
is given by:

$$
\Delta i=\frac{D(i a)}{D(i o)}-\Delta i=D_{-}-\frac{1}{D}\left(\frac{10}{10}\right)
$$

Consequently, by Proposition 10, we have

$$
\left.\left\lvert\, \Delta i i \leq \frac{1 D}{D D\left(i_{0}\right)}\right.\right)|\mid \Delta i l
$$

and the upper bound in (4.15) is achieved for Δi proportional to D(io).

This analysis motivates the following definition:

Definition_4. 1 Let $p(i)$ be a price function. The durational Leyerspe of $P(i)$ at $i o$ is defined when $P(10), D(i o) \neq 0$ as follows:
$L\left(i_{0}\right)=\mid D\left(\right.$ io $\left._{0}\right)\left|/\left|D\left(i_{0}\right)\right|\right.$. $|:$

From (4.15) we see that given Δi, the cormesponding parallel shift value can be as large as L(io) times 1 Ail. In addition, this maximum value is attained for shifts proportional to $\left.\mathbf{D}(i)^{\prime}\right)$. The durational leverage values corresponding to the examples in (4.13) are easily calculated to be 155.67, .71, and 1091.54 , respectively. By Proposition 11, it is clear that:
(4. 17)
$L(i o) \geq 1 / 5 m$,
with equality if and only if $D_{J}(i o)=D(i o) / m$ for all J. As was the case for (D(io) 1, L(io) has no upper bound in theory.

c. Price_sensitivity_=_Yield_Curve_sloge_Geproanh

One relatively common generalization today of the "parallel shift" model is the "linear shift" model. That is, where the direction vector, $L=(1, \ldots, 1 m)$ is defined by:
(4.18)

$$
l_{J}=a m_{J}+b,
$$

where m_{J} deriotes the time value of the pivotal yield curve poirit, ij. For example, one might have $m_{1}=.25, m_{2}=.5, m_{3}=1$, etc.

For such yield curve shifts, the associated directional duration and convexity functions are readily calculated by Proposition 8. For example, the directional duration is given by:
(4. 19)

$$
D_{L}\left(i_{0}\right)=a \Sigma_{m j} D_{j}\left(i_{0}\right)+b D\left(i_{0}\right)
$$

That is, the directional duration naturally splits into two first order components. The first component, $\sum_{M_{j}} D_{J}(i o)$, reflects price sensitivity to yield slope changes, while the second component, $D(i o)$, reflects price sensitivity to parallel yield changes as expected.

```
Similarly, the directional convexity is calculated to be:
```

Here we have used the symmetry of $\mathrm{C}\left(\mathrm{i}_{0}\right)$; that $\mathrm{is}, \mathrm{C}_{\mathrm{jk}}=\mathrm{C}_{\mathrm{kj}}$. Unlike duration, the directional convexity splita into three components, reflecting quadratic sensitivities to slope and level changes, as well as a miked slope/level sensitivity term. Analogous to (4.19), the pure parallel shift component is simply convexity, while the slope terms reflect weighted sums of partiel convexities.

An alternative "slope" model involves a reparametrizatior of the yield curve. That is, rather than interpret the yield curve as a vector, $i=\left(i_{1}, \ldots i_{m}\right)$, a yield slope vector, $=\left(s_{1}, \ldots, s_{m}\right)$ is defined as follows:
(4.21)

$$
s_{1}=i_{1} ; s_{j}=i_{\jmath}-i_{j}-1, j=2, \ldots, m_{1}
$$

Clearly, sj reflects the increase (or decrease) in the yield curve between the $(J-1)$ ant and the j th rate. This change is often referred to as the "slope" between the respective yield points.

From (4.21) we have that $s=A i$, where A is a inear
transformation. Here we again follow the notational convention that © and i are interpreted as column vectors. This transformation is given by:

```
(4.22)
```



```
    That i&, A = (ajk), where
(4.22)
                    ajk}={\begin{array}{rl}{1}&{j=k,}\\{-1}&{j=k+1,}\\{0}&{\mathrm{ otharwi=w.}}
Because A is linear, shifts in the yield rate vector readily
translate into shifts in the yifld mlope vector. That is,
        \Delta=A\Deltai
    It is easy to see that A is invertible, withs
(4.24)
            A-1=[:llllllll
    That is, A-1 = B where:
(4. 25)
\[
b_{j k}= \begin{cases}1 & j \geq k \\ 0 & \text { otherwise. }\end{cases}
\]
Based on this trarisformation, it is possible to convert the various approximation formulas in section 3 from functions of \(\Delta i\) to functions of \(\boldsymbol{A}=\).
```

$$
P(10+\Delta 1) / P(10) * 1-D\left(i_{0}\right) \Delta i+n_{1} \Delta \operatorname{Tc}(10) \Delta i
$$

Here, the duration term is rewritten in matrix form rather than as a dot product, with D(io) treated as a row matrix. Substituting ΔI^{T} $=\left[A^{-1} \triangle \equiv\right]^{T}$, and using the property of trarispose that $(X Y) T=V^{T} X T$, We get:
(4.27)
where 4 is given by (4.23) andt
(4. 玉B)
(4.29)

$$
D_{s}(10)=D(10) A^{-1}
$$

$$
C_{B}(10)=\left(A^{-1}\right) T C(10) A^{-1}
$$

Here, $D_{g}(i o)$ and $C_{g}(i o)$ are the total duration vector arid total convexity matrix, respectively, defined in the context of the yield slope vectors.

A calculation shows that the total duration vector is given by:

$$
\left.D_{s}(10)=\sum_{1}^{m} D_{j}(10), \sum_{2}^{m} D_{j}(10), \ldots, D_{m}(10)\right)
$$

That is, the relative sensitivity of the price function to the jth slope, Δs_{j}, is the sum of the partial durations from the $J t h$ to the mth value. Not surprisingly, the serisitivity of the price furiction to $\Delta 5_{1}$ equais the duration $D\left(i_{0}\right)$, since $\Delta s_{1}=\Delta i 1$, and for this
yield curve parametrization, Δi_{i} determines the change in the "level" of the yield curve.

Analogously, the total convexity matrix reflects sums of partial convexitien as follows:

$$
\left(C_{S}(i 0)\right)_{j k}=\sum_{a=j}^{m} \sum_{b=k}^{m} C_{a b}(i 0),
$$

where the jkth term quantifies the sensitivity of the price function to the product of the j th and kth slopes, i.e. $\Delta s_{j} \Delta s_{k}$. Again not surprisingly, the sensitivity to $\left(\Delta s_{1}\right)$ 2 is the convexity $C\left(i_{0}\right)$.

Although perhaps not readily apparent, the total duration vector and convexity matrix defined in (4.30) and (4.31) could have been calculated directly from Definition 3.5 by defining the price function directly in terms of $\begin{gathered}\text { (. In particular, given } p(i), ~ l e t ~ t h e ~\end{gathered}$ price function $R(s)$ be defined by:
(4.32)

$$
R(\xi)=P\left(A^{-1} E\right) .
$$

Then $D_{s}(i 0)$ as defined in (4.30) is just the total duration vector of $R(E)$ evaluated at mo $=$ Aio. Similarly, $C_{s}(i O)$ is the total convexity matrix of $R\left(\begin{array}{l}\text { en }\end{array}\right.$.

Proposition Let $p(i)$ be a smooth price function and let \{ij\} define a partition of the interval [io,i],
(A. 1)
(A. E)
(A. 3)
(A. 4)

$$
i_{j}=i_{0}+(j / n) \Delta i_{1}, \quad j=0,1, \ldots, n
$$

where $\Delta i=1-10$. Further, let K_{n} be defined as the approximation to $P(i) / P(i 0)$ obtained by applying (1. ia) to the terms in (1.29):
$K_{n}=\prod_{j=1}^{n}\left(1-D\left(1 j_{-1}\right) \Delta i / n+\mu_{2} C(i j-1)(\Delta i / n) \bar{e}\right)$.

Ther, if $D\left(i_{j}-1\right)=D\left(i_{0}\right)$ and $C\left(i_{j-1}\right)=C\left(i_{0}\right):$

Further, if $D\left(i_{j-1}\right)=D\left(i_{0}\right)+\left[D^{2}\left(i_{0}\right)-C\left(i_{0}\right)\right](J-1) \Delta i / n$ ard
$C\left(i_{j}-1\right)=C(10):$

$$
\lim _{n \rightarrow \infty} K_{n}=\exp \left[-D(i o) \Delta i+y_{2}[c(i o)-D E(i o)](\Delta i) 2\right] .
$$

Finally, for exact values of $D\left(i_{j-1}\right)$ and $C\left(i_{j-1}\right)$:

For all three limits above, the conclusions are the same if K_{n} is defined with respect to the linear approximation in (1.5) rather than the quadratic estimate (1.12).

Progf Because $P^{\prime \prime}(i)$ is continuous, $C(i)$ and $D(i)$ are bounded on (io,i). Hence, an initial value of no can be chosen so that for $n \geq$ no, K_{n} equals the product of positive factors. For such an n, In(Kn) is therefore well defined. Because $\ln \boldsymbol{X}$. is a continuous function, as is its invorse e^{x}, K_{n} will converge if and only if $\ln \left(K_{n}\right)$ converges.

Assume that $D\left(i_{j-1}\right)=D_{0}$ and $C\left(i_{j-1}\right)=$ Co. Then:
(A. 6)

$$
\ln \left(K_{n}\right)=\sum_{j=1}^{n} \ln \left[i-D_{0} \Delta i / n+N_{0}(\Delta i) 2 / n 2\right]
$$

Using the Taylor series expansion,
(A. 7)

$$
\ln (1+x)=x+\theta\left(x^{2}\right)
$$

which is allowable becauge the arguments in (A.6) are uniformly bounded for $n \geq$ no, we get:
(A. B)

$$
\left.\ln \left(k_{n}\right)=\sum_{J=1}^{n}\left[-D_{0} \Delta_{i} / n+n_{2} C_{0}\left(\Delta_{i}\right) 2 / r_{1} 2+\theta_{1} / n 2\right)\right]
$$

$$
=-D_{0} \Delta_{1}+\operatorname{mc}\left(\Delta^{1}\right) 2 / n+\theta(1 / n)
$$

From (A. B), limits are raadily taken to prove (A. 3).

Using a similar argument, assume that $D(i j-1)=$ $D_{0}+E_{0}\left(j^{-1}\right) \Delta i / n$, where $E_{0}=D_{0}{ }^{2}-C_{0}$, and $C\left(i_{j-1}\right)=C_{0}$. Then for n sufficiently larges
(A. 9)

$$
\ln \left(K_{n}\right)=\sum_{j=1}^{n} \ln \left(1-D_{0} \Delta 1 / n-E_{0}(J-1)(\Delta i) 2 / n ?+k_{2} C_{0}(\Delta i) 2 / n_{1} 2\right)
$$

Again using (A.7), and $\sum_{j=1}^{n}(J-1)=n(n-1) / 2$, we get:
(A. 10)

$$
\ln \left(H_{n}\right)=-D_{0} \Delta i-m_{0}(\Delta i) E(n-1) / n+m_{2} C_{0}(\Delta i) E / n+\theta(1 / n)
$$

Taking limits in (A. 10) demonstrates (A.4).

Using exact values for $D\left(i_{j}-1\right)$ and $C(i j-1)$ and (R.7):
(A. 11)

$$
\begin{aligned}
\ln \left(k_{n}\right)= & \sum_{j=1}^{n} \ln \left(1-D\left(i_{j-1}\right) \Delta i / n+k_{2}\left[\left(i_{j-1}\right)(\Delta i) 2 / n 2\right)\right. \\
& =-\sum_{j=1}^{n} n\left(i_{j-1}\right) \Delta i / n+(\Delta i / 2 n) \sum_{j=1}^{n} c\left(i_{j-1}\right) \Delta i / n+\theta(1 / n) .
\end{aligned}
$$

Taking limits in (A. 11), we see that the first summation converges to the Riemann integral of $D(y)$. The second term converges to zero
because the summation converges to the integral of $C(y)$, while its coeffecient converges to 0 . Hence, (A. 5) is demonstrated.

Finally, had the first order approximation been used in the definition of K_{n}, the same limits would have resulted. This is due to the fact that in each case above, the convexity adjustment was seen to be $\theta(1 / n)$, and consequently added nothing in the limit. if
[1]
Bierwag, G. D. Duration_Analysisi_Managing_Interest_Rate Risk. Cambridge, MA: Eallinger Publishing Company (1987).

Bierwag, G. O. "Immunization, Duration ard the Term Structure of Interest Rates," Journal of Financial_and_Quantitative Anglyis, 12 (December, 1977), 725-742.

Bierwag, G. O.; G.C. Kaufman; and C. Khang. "Duration and Bond Portfolio Analysis: An Overview," JFQA, 13 (November, 1978), 671-685.

Bierwag, G. D.; G.C. Kaufman; and A. Tecivs. "Eond Portfolio Immunization and Stochastic Process Risk," Journal_of_Eank Research, (Winter, 1983).
[5] Black, F.; and M. Scholes. "The Pricing of Options and Corporate Liabilities," Ihe_Journal_of_Politi트르﹎﹎ㅡㅇongoy, 3 (May -June 1973), 637-654.

Chambers, D. R.; W.T. Carleton; and R.W. McEnally. "Immunizing Default-Free Bond Portfolios with a Duration Vector," JFQA, 23 (March, 1988), 89-104.
[7] Clancy, R.P. "Optiors on Bands and Applications to Product
 (1985), 97-130.
[8] Cox, J.C.; S.A.Ross; and M. Rubenstein. "Optien Pricirig: A Simplified Approach," Journal_of_Einancial_Escnomics, 7 (1979), 2е9-263.
[9] Fisher, L; arid R.L. Weil. "Coping with the Risk of Interest Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," Iournal_of_Eysinegs (October, 1971), 408-431.
[10] Hicks, J. R. Value_and_Cagital. Oxford University Press, 1939.
[11] Ho, T.S.Y.; and S. Lee. "Term Structure Movemerits and Pricing Interest Rate Contingent Claims," Journal_of_Einance, 41 (1986), 1011-1029.

```
[12] Ingersoll, J;
                                J. Skelton; and R. Weil. "Duration Forty
                                Years Later," JFQA, 13 (November, 1978), EE7-650.
[13] Jacob, D.; G. Lord; and. J. Tilley. "Price, Duration and
Convexity of a Stream of Interest-Sensitive Cash Flows,"
Morgan Stanley \& Co., (April, 1986)
[14] Jacob, D.; G. Lord; and J. Tilley. "A Generalized
    Framework for Pricirg Contingent Cash Flows," Einancial
    Manga⿱gagemmᅳnt, (Autumn, 1987)
[15] Macaulay, F.R. Sone_Iheoretical_Prigblems_Suggesteg_by the Movements_of_Interest_Ratega_Egnd_Yieldss_arid_Stock_Prices_ir the_ U. S. Since_185․ New York: Natiorial Bureau of Ecormic Research, 1938.
[16] Redington, F.M. "Review of the Principle of Life Dffice
```



``` (1952), 285-340.
```


[17] Samuelson, P. A. "The Effect of Interest Rate Increases on the Banking System," 日merican_Esonomic_Review (March, 1945), 16-27.

[18] Stock, D. and D.G. Simonson. "Tax Adjusted Duration for Amortizing Debt Instrument," JFQB, 23 (September, 1988), 313-327.

[19] Vanderhoof, I. T. "The Interest Rate Assumptions and the Maturity Structure of the Assets of a Life Insurance Company," Iransactions_of_the_Egciety_of_Actuaries, XXIV (1972), 157-192.
[20] Vanderhoof, 1.T. "Interest Rate Assumptions and the Relationship Between Asset and Liability Structure," Part B Study Notes, Society of Actuaries ($8-201-79$).

[^0]: The various approximation formulas are also compared and characterized in terms of their underlying assumptiors concerning

[^1]: As part of the analysis of this second example, the notions of "directional duration" and "directional convexity" are introduced. Intuitively, these measures reflect price serisitivity to yield curve shifts which in a multivariate serse, are in directiors other than the parallel shift vector, $M=(1,1, \ldots, 1)$.

[^2]: A variety of results are then derived between the partial models arid directional models. Not surprisingly, as is true for

[^3]: For example, assume that the yield curve had increased only slightly from (.105,. 10) to (. 1052, . 1001). This shift is pasitive and rearly parallel, 50 given that $D(0)=.0136$, a portfolia decrease is expected. However, the portfolio value actualiy ircreases in this case by .015\%. Eoth linear ard quadratic

[^4]: To calculate the varicus directional derivatives and converities using Proposition $B_{\text {, }}$ it is sufficient to estimate only the partial duration and convexity values. The above formulas generalize in the natural way to:

