ON THE BALDUCCI HYPOTHESIS

Ho Kuen Ng

‘Abstract
This article investigates the simplicity of the Balducci hypothesis, and compares the fractional-age death

probability given by three widely used assumptions.

1. Introduction
There are three widely used assumptions for fractional-age mortality, namely, uniform distribution of
deaths, the Balducci hypothesis, and constant force of mortality 1, 2]. Respectively, they state that, for any

xandany 0<t<1,

(uniform distribution of deaths) 19z = tgz
(the Balducci hypothesis) 1—t@stt = (1 — £)¢=
(constant force of mortality) bz 44 = constant .

An important application of th.ese assumptions is in the construction of mortality tables. It has been
observed that the Balducci hypothesis is the most practical of the three, giving expressions most amenable to
calculations [1]. The first part of this article will study this simplicity, showing that the Balducci hypothesis
i3 the necessary and sufficient condition for the exposure equation to be lix;ear.

Most textbooks just observe that the three assumptions give very similar numerical values of fractional-
age death probabi.l_ity, and verify such observation by a few numerical examples. In the second part of this
article, we will give a mathematical justification of the above claim by calculating the absolute difference

among the three assumptions.
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2. The criteria of ‘simplicity’

As mentioned in the introduction, one of the important applications of an assumption for fractional ages
is in the construction of mortality tables. Suppose that, in a mortality study, A lives are under observation
at age x, m lives enter the study at ages z + r; ,$ = 1,2,...,m, n lives withdraw from the study at ages
z+85,7 =1,2,..,n, where r; and s; are between 0 and 1, and D deaths are observed between ages x and

x+1 among those in the study. We have the equation {1}

m n
qu + Z 1-riJz4r; = E 1-4;9z+e; = D.

=1 =1
Let us call this the exposure equation.
Agreeing that linear equations are the simplest equations, we postulate two criteria of simplicity:
(1) When regarded as an equation in g., the exposure equation is linear.

(2) When regarded as an equation in r; ,§ = 1,2,...,m, 3;,5 = 1,2,...,n, the exposure equation is linear.

Theorem: A necessary and sufficient condition for the criteria of simplicity is the Balducci hypothesis.

Proof:

(sufficiency) By the Balducci hypothesis, we have 1y gz4r, = (1 —7:)gz and 1,924, = (1 — 3;)¢z.
The exposure equation becomes
Agz+ X (1 —r)ge — X7 (1~ 800 = D, ie. (A+ T2 (1— 1) — 27.1(1 — 85))g: = D. Conditions
(1) and (2) then follow.

(necessity) With m = 1, n = 0, and r; = r which is any number between 0 and 1, the exposure
equation becomes Ag; +1—y ¢z+r = D, which must satisfy conditions (1) and (2). By (1), we have 1, gz4r =
gz f(r)+g(r), where f and g depend on r only. Thus the exposure equation is Ag;+¢: f(r) +9(r) = D. By (2),
we can write f(r) = ar+8, g(r) = 7r +5, where a, 8,7, are constants. Then 1_,¢s+r = gz(ar+p)+r+8é.
Forr=0,9,=q.f+6. Forr=1,0=ga+gf+7+6=gsa++q.. Therefore g;a+~v= —¢,. Then
1=rQatr = gsar + gz B +4r +6 = g + 6 + r(gza + ) = ¢« + r(—¢z) = (1 — r)gz, which is the Balducci

hypothesis.
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$. Error bounds
Since the assumption of uniform distribution of deaths is usually regarded as the most reasonable one,
we will use it as a measuring standard and calculate the error bound of the other two assumptions relative
to it.
Let gq( ), gqu), ¢q£ ) be the probability of death calculated according to the assumptions of uniform
distribution of deaths, Balducci, and constant force of mortality respectively.

From |[1, 2], we have

tqg )= tg: ,
@ = ,—_ﬁ’_‘;m ’
@) =1-em a1 (1-q)

We first compare ‘q(l) and ,q(z), for any x such that 0 < ¢, <1,and any 0 <t < 1.

2 1 t(1-¢t)q2
lqg) ( )= 1-(1-:5« —lg = 1-]1—!=q. 20.

We denote this difference by f(t). We note that f(t) is continuously differentiable in (0, 1), and that

fl(t) ( (1 - t)(i:)(:l _2:))::); t(l - t)Qs

Setting f'(t) = 0 and restricting to the interval (0, 1), we see that f(t) has only one critical point, namely
at to = 1~ 2=/I=8a, As f(0) = f(1) = 0, and f(t) > 0, o must give a maximum in the interval [0, 1]. Since
f(to) = (1 - /T=4¢.)?, we have

1-vi—a)?> ¢q( ) — gt > 0, providing upper and lower bounds for the difference a? - catt).

Using the binomial series, we have (1— /T—¢;)? =1+1-¢, — Zﬁ—_xk
=2-g, —2(1+ 3(—ge) + 33N (1) (—ge)? + Tiis H(3)E - (3 - 2)-(3 — k+ 1)(~3:)")

3_ 2 ks kl(l)(l - 1)(1 -2).. (1 k+1)(-gs)*

—23)(ENR) (525G - 23 - b+ 1)(-ea)*

5‘«12+}E:°=3q:=‘q3+} o) =0+ )< idife. <%

Thus we conclude that the maximum difference between ‘q£” and ¢gt" is O(g2), which is of an order

of magnitude lower than that of g,.
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Now we compare .qf) with tqﬁ‘), for any x with ¢; < 1, and any 0 <t < 1. Again we make use of the
binomial series.

@) =1-em =1 (1- )
=1~ (1+t(—qz) + Lt(t — 1)(—g2)? + Tpus Ht(t — 1)(t — 2)o.(t — & + 1)(—g.)*)
=tg, — 5t(t —1)g2 — o7 g He(t — 1)(t — 2)...(t — b+ 1)(—g:)*
= ool — Le(t - 1)q2 — 24 At(t — 1)(t — 2).(t — K+ 1)(~ga) -

It follows that ¢gf¥ — 4ql) = —1¢(t — 1)g2 — T2 Art(t — 1)(t — 2)...(t — k + 1)(—g2)*
and Jogf” ~ ol < 3fe(e — 1)la2 + 3lel¢ ~ V| Zhla(sag) (6 = 2t~ b+ 1)(-2)*]
Note that [¢(t — 1)] < 4. We then have [igf” — ¢o{"| < 3¢2 + 3| T22s ab] = 362 + 2a3(12)
=$201+ 1)< tdifg. <3

From the foregoing calculations, it also follows that |¢q9) - ¢q5=3)| < %qz if g, < %

In the following tables, we list the absolute differences of ,q&l), gqa(;z)

and gqf’) for various q’s and t’s,
and compare them with the upper bounds which we have derived. We see that our bounds are much larger
than the actual differences, and that they remain valid even beyond the predicted range of ¢. < %, the
reason being that we have used quite conservative estimates in our calculations. But the main point is that

for ¢, < % , which covers most of the human life span, the error introduced in substituting one assumption

for another is of a lower order of magnitude than ¢, .

Reference:
{1] Batten, R. W., Mortality Table Construction, 1978, Prentice-Hall.

{2] Bowers, N. L., Jr., et al, Actuarial Mathematics, 1987, Society of Actuaries.
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ABSOLUTE DIFFERENCE BETWEEN UNIFORM DISTRIBUTION OF DEFATHS AND THE BALDUCCI NYPOTHESIS

T= [+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Q 0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 O 0 0.000000 0.000000

8 1 0.000000 0.000969 0.001739 0.002258 0.002553 0.002632 0.002500 0. 65 0.001633 0.000909 0.000000
2 0.000000 0.0043%0 0.007619 0.009767 0.010909 0.011111 0.010435 0O 36 0 7 0.003673 0.000000

s 3 0.000000 0.011096 0.018%47 0.023924 O. 41 0.026471 0.024545 O. 69 0.015319 0.008351 0O )
4 0.000000 0.022500 0.037647 0.046667 0.( 6 0,050000 0.045714 0,038182 0.027826 0.015000 0

8 ] 0.000000 0.040909 0.066667 0.080763 0. 4 0. 333 0.075000 0.061765 0.044ul 0.023684 0
€ 0.000000 0.070435 0.110769 ' 0.1803%5 0.135000 0.128571 0.11368% 0.092195 0 4 0.034468 0

S 7 0.000000 0.119189 0.178182 0.201765 0. 758 0,188462 0.163333 0.130253 0.0911 0.047419 0 )
8 0.000000 0.205714% 0.284444 0.305455 0.295385 0.266667 0.225882 0.176842 0.1219 0.062609 0.000000

Q 9 0.000000 0.383684 0.462857 0.459730 0.422609 0.368182 0.303750 0.23301% 0.158049 0.080110 0.000000
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ABSOLUTE DIFFERENCE BETWEEN UNIFORM DISTRIBUTION OF DEATHS AND CONSTANT FORCE OF MORTALITY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 $25%QxQ
0.000000 ©0,000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.002500
0.000000 0.000481 0.000852 0.001114% 0.001268 0.001317 0.001260 0.001098 0,000834% 0.000467 0.000000 0.010000
0.000000 .002067 0.003648 0.004 0,005390 0.005573 0.005310 0.004612 0.003488 0.00194 0.000000 0.022500

.000000 0,005039 0.008850 .011 0.012960 0.013340 0.012656 0.010944 0.008241 0.004582 0.000000 0.040000
0.000000 0.009800 0.017120 0.022083 0.024807 0.025403 0.023978 0.020632 0.015460 0.008554 0.000000 0.053500
0.000000 0.016967 0.029449 0.037748 0.042142 0.042893 0.040246 0.034428 0.025651 0.014113 0.000000 0.090000
0.000000 0.027556 0.047447 0.060342 0.066855 0.06754% 0.062920 0.053u47 0.039580 0.021617 0.000000 0.122500
0.000000 0.043%32 0.073997 0.093155 0.102199 0.102277 0.094407 0.079488 0.058322 0.031617 0.000000 0.160000
0.000000 0.068660 0.115220 0.142966 0.15469% 0.152786 0.139269 0.115869 0,084084 0.045076 0.000000 0.202500
0.000000 0.115672 0.189043 0.228813 0.241893 0.233772 0.208811 0.17047% 0,121511 0.064107 0.000000 0.250000
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ABSOLUTE DIFFERENCE BETWEEN THE BALDUCCI HYPOTHFSIS AND CONSTANT FORCE OF NORTALITY

r= ] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 «75xQxQ
Q= 0.0 /] 0 0 0 0.000000 © 0 0 0 0 0 0. 8.007508
83 0.1 0 0 0.000887 0.001144 0.001285 0.001315 0.001240 0.001067 0.000799 0 0 -03000
= 0.2 1] 0.00 0.003972 0.005016 0.005519 0.005538 0.005124 0.004324 0.0031 0.001726 0 0.067500
= 0.3 0 0 0. 97 0.012447 0.013382 0.01 0.011890 0.009826 0.0070 0.003768 0 0.120000
= Q. 0. 0. 0.020528 0.02u584 0.025718 © 0.021736 0.017550 0.012366 0 44 0 0.187500
= 0.5 0. 0.023942 0. 17 0.043022 0.043573 0.04OMA 0.034 0.027337 0 794 0. 71 0 0.270000
z 0.6 0 0.042878 0 22 0.070003 0.068145 0.061027 0.050764 0.038748 0.025904 0. 51 0 0.367500
z 0.7 0.000000 0.0757 0.104185 0.108610 0.100559 0.086184 0.068927 0.050765 0.032841 O. 03 0 0.480000
= 0.8 0.000000 0.1370 0.169224 0.162488 0.140690 0.113880 0.086613 0.060973 0.037851 O. 32 0 0.607500
= 0.9 0.000000 0.268012 0.27381% 0.230917 0.180716 0.3134410 0.094939 2540 0.036538 0. 02 0 0.750000



