ACTUARIAL RESEARCH CLEARING HOUSE 1990 VOL. 1

Fluctuations of Pension Contributions and Fund Level

by

Daniel Dufresne, A.S.A., Ph.D.
Département de mathématiques et de statistique
Université de Montréal
P.O. Box 6128, Station A
Montréal, Québec
Canada
H3C 3 J 7

Abstract

What follows is an account of the talk I gave at the 24th Actuarial Research Conference in Montréal (August 1989). The talk was an outline of a project recently approved by the Actuarial Education and Research Fund. I wish to thank the AERF Board of Directors for funding the project.

1. Goal of project

The goal of the project is to study the variability of pension costs and fund levels under various funding methods. A number of authors have studied the dynamics of pension funding under more or less static conditions (see list of references). A better knowledge of the factors determining the volatility of pension costs (or expense) and fund levels would be of great value, both when choosing a funding method for the valuation of a particular plan, and also when establishing new minimum funding standards which will affect a large number of plans.

In Dufresne (1989), the author used a simplified model of pension funding, including random rates of return and amortization of unfunded liabilities over " n " years. It was shown that increasing n decreases the variance of contributions, but increases the variance of fund levels. It is proposed to use a more comprehensive model and to consider a greater number of funding strategies.

There are many factors causing fluctuations of contributions and fund levels; only variations of rates of return on assets will be considered below. More specifically, suppose

$$
\begin{align*}
R_{t} & =\text { rate of return for period }(t-1, t) \\
& =r+e_{t}+\beta_{1} e_{t-1}+\ldots+\beta_{m} e_{t-n} \tag{1}
\end{align*}
$$

where $\left\{e_{t}\right\}$ is an i.i.d. sequence with $E e_{t}=0,0<\operatorname{Var} e_{t}<\infty$ (i.e. $\left\{e_{t}\right\}$ is discretetime white noise). Eq. (1) says that $\left\{R_{t}\right\}$ is a constant r (the mean rate of return) plus a moving-average process of order n, i.e. $\left(R_{t}\right) \sim M A(m)+r$.

2. The simplest case: the accumulated value of 1 per annum

One of the simplest "pension plan" imaginable is one for which constant contributions are paid in (yearly), while no benefits are paid out. Let $F_{0}=0$ and

$$
F_{t}=\left(1+R_{1}\right) F_{1,1}+1
$$

Case $m=0$. Here $R_{t}=r+e_{t}$ and thus

$$
\begin{aligned}
E F_{t} & =E\left(1+R_{1}\right) E F_{1-1}+1 \\
& =(1+r) E F_{t-1}+1 \\
& \Rightarrow E F_{t}=s_{\overline{1}_{1}} .
\end{aligned}
$$

This is an instance of the nice property of some processes $\left\{\mathrm{R}_{\mathrm{t}}\right\}$: "mean accumulated values $\left(E F_{t}\right)$ grow at the mean rate of return $\left(E R_{1}=r\right)$ ".

Remark l. The nice property is equivalent to

$$
E\left(1+R_{t} \mid F_{t-1}\right)=r \text { a.s. }
$$

All higher moments of F_{1} can be found recursively:

$$
\begin{aligned}
E F_{1}^{k} & =E\left[\left(1+R_{1}\right) F_{t-1}+1\right]^{k} \\
& =\sum_{j=0}^{k}\binom{k}{j} E\left(1+R_{t}\right)^{j} E F_{t-1}^{j}
\end{aligned}
$$

Remark 2. This extends the formulas in Boyle (1976).

Case $m=1 . F_{t}=\left(1+r+e_{t}+B e_{t-1}\right) F_{t-1}+1$

$$
\begin{aligned}
& \Rightarrow F_{t-1} \text { and } R_{t} \text { are dependent } \\
& \Rightarrow \text { above trick does not work. }
\end{aligned}
$$

One way out is to use a markovian representation: let $G_{t}=e_{t} F_{t}=>$

$$
\begin{aligned}
G_{t} & =e_{t}\left(1+r+e_{t}+\beta e_{t-1}\right) F_{t-1}+e_{t} \\
& =e_{t}\left(1+r+e_{t}\right) F_{t-1}+\beta e_{t} G_{t-1}+e_{t}
\end{aligned}
$$

or

$$
\underbrace{\binom{F_{t}}{G_{t}}}_{\bar{F}_{t}}=\underbrace{\left(\begin{array}{cc}
1+r+e_{t} & \beta \tag{2}\\
e_{t}\left(1+r+e_{t}\right) & \beta e_{t}
\end{array}\right)}_{M_{t}} \underbrace{\binom{F_{t-1}}{G_{t-1}}}_{\bar{F}_{t-1}}+\underbrace{\binom{1}{e_{t}}}_{\bar{e}_{t}}
$$

In Eq. (2) M_{t} and \bar{F}_{t-1} are independent, so

$$
E \bar{F}_{t}=M E \bar{F}_{t-1}+\overline{\mathrm{e}}, \quad \mathrm{M}=E M_{t}, \quad \overline{\mathrm{e}}=E \bar{e}_{t}
$$

From this vector difference equation we obtain a two-dimensional formula for $E \bar{F}_{1}$:

$$
\begin{aligned}
E \bar{F}_{t} & =\left(I+M+\ldots+M^{1-1}\right) \overline{\mathrm{e}} \\
& =(M-I)^{-1}\left(M^{t}-I\right) \overline{\mathrm{e}}
\end{aligned}
$$

(since $F_{0}=0 \Rightarrow \bar{F}_{0}=0$).

Example: Effect of dependence of $\left\{\mathrm{R}_{1}\right\}$ on $\left\{E F_{t}\right\}$.

Here $R_{t}=r+e_{t}+\beta e_{t-1} \Rightarrow E E R_{t}=r$, Var $R_{t}=\left(1+\beta^{2}\right) \sigma^{2}, \operatorname{Cov}\left(R_{t}, R_{t-1}\right)=\beta \sigma^{2}$. One experiment that comes to mind is the calculate $E F_{t}$ for fixed values of $E R_{1}$ and $\operatorname{Var} R_{1}$, but to vary $\operatorname{Cov}\left(R_{1}, R_{t-1}\right)$. Let U_{1} the the accumulated value at time t of one unit invested at time 0 . The table below shows $E U_{15}$ and $E F_{15}$ when $E R_{t}=.10$, Var $R_{1}=.01$ and $\rho=\operatorname{Corr}\left(R_{t}, R_{t-1}\right)=\beta /\left(1+\beta^{2}\right)$ varies from -.5 to +.5 .

$\boldsymbol{\beta}$	$\boldsymbol{\rho}$	$\mathbf{1 0 0 0} * \mathbf{E U}_{\mathbf{1 5}}$	$\mathbf{1 0 0 0}{ }^{*} \mathbf{E F}_{\mathbf{1 5}}$
1.00	.500	4,424	32,805
.75	.480	4,414	32,763
.50	.400	4,374	32,596
.25	.235	4,292	32,255
0	0	4,177	31,772
-.25	-.235	4,065	31,297
-.50	-.400	3,987	30,968
-.75	-.480	3,950	30,809
-1.00	-.500	3,941	30,769
		$4,177(1 \pm 6 \%)$	$31,772(1 \pm 3 \%)$

Table $1 \mathrm{EU}_{15}$ and $E F_{15}$ when $E R_{1}=.10$, Var $R_{1}=.01$

The case $\beta=0$ corresponds to i.i.d. rates of return. The nice property does not hold when $\beta \neq 0$. In this particular case the rate of growth of mean accumulated values is

$$
\begin{equation*}
\mathbf{r}^{\prime} \doteq \mathrm{r}+\operatorname{Cov}\left(\mathrm{R}_{\mathrm{t}}, \mathrm{R}_{\mathrm{t}-1}\right) /(1+\mathrm{r}) \tag{3}
\end{equation*}
$$

Remark 3. Approximation (3) is justified as follows. From Eq. (2)

$$
\begin{align*}
E F_{t} & =(1+r) E F_{1-1}+\beta \sigma^{2} E F_{1-2}+1 \tag{4}\\
& \Rightarrow E F_{1}=p_{1}+c_{1} \lambda_{1}^{t}+c_{2} \lambda_{2}^{t}
\end{align*}
$$

where p_{1} is a particular solution of (4), $\left\{\lambda_{i}\right\}$ are the solutions of

$$
\lambda^{2}-(1+r) \lambda-\beta \sigma^{2}=0
$$

and $\left\{\mathrm{c}_{\mathrm{i}}\right.$) are such that the initial conditions

$$
E F_{0}=0, E F_{1}=1
$$

are satisfied. When $r+\beta \sigma^{2} \neq 0$ we find

$$
p_{1} \equiv p=-1 /\left(r+\beta \sigma^{2}\right)
$$

The λ 's are

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left((1+r)+\left[(1+r)^{2}+4 \beta \sigma^{2}\right]^{1 / 2}\right) \\
& \lambda_{2}=\frac{1}{2}\left((1+r)-\left[(1+r)^{2}+4 \beta \sigma^{2}\right]^{1 / 2}\right)
\end{aligned}
$$

which are real and distinct when $(1+r)^{2}+4 \beta \sigma^{2}>0$. The constant $\left\{c_{i}\right\}$ are then

$$
\begin{aligned}
& c_{1}=\left[1+p\left(\lambda_{2}-1\right)\right] /\left(\lambda_{1}-\lambda_{2}\right) \\
& c_{2}=\left[p\left(1-\lambda_{1}\right)-1\right] /\left(\lambda_{1}-\lambda_{2}\right)
\end{aligned}
$$

Under most assumptions (e.g. $|\beta| \leq 1, \sigma^{2}<1 / 4, r \geq 0$) $\left|\lambda_{2}\right|<1$ and $c_{2} \lambda_{2}^{\prime}$ quickly dies out as t increases. Thus

$$
E F_{t} \doteq p+c_{1} \lambda_{1}^{t}
$$

and the growth rate of EF_{1} is approximately

$$
\begin{aligned}
\lambda_{1}-1 & =\frac{(1+r)}{2}\left(1+\left[1+4 \beta \sigma^{2} /(1+r)^{2}\right]^{1 / 2}\right)-1 \\
& \doteq \frac{(1+r)}{2}\left(1+1+2 \beta \sigma^{2} /(1+r)^{2}\right)-1 \\
& =r+\beta \sigma^{2} /(1+r) \\
& =r+\operatorname{Cov}\left(R_{t}, R_{t-1}\right) /(1+r)=r^{\prime} .
\end{aligned}
$$

For example, in the case at hand $r=.10, \sigma^{2}=.01 /\left(1+\beta^{2}\right)$, and
$\beta=1 . \quad \mathrm{i}=.104027 \Rightarrow \mathrm{~s}_{\overline{15} \mathrm{I}_{\mathrm{i}}}=32.805$,

$$
\begin{aligned}
& \lambda_{1}=1.104527, \lambda_{2}=-.004527 \\
& r^{\prime}=.104545 .
\end{aligned}
$$

$\beta=-I \quad i=.095945 \Rightarrow s_{\overline{15} \mid \mathrm{i}}=30.769$,

$$
\begin{aligned}
& \lambda_{1}=1.095436, \lambda_{2}=.004564 \\
& \mathbf{r}^{\prime}=.095455
\end{aligned}
$$

The approximation $(1+x)^{1 / 2} \doteq 1+x / 2$ used to derive $r^{\prime} \quad$ slightly overstates $\lambda_{1}-1$.

It should be emphasised that approximation (3) only relates to the case $\left\{R_{t}\right\}-r+M A(1)$.

Var F_{1} can also be calculated; from Eq. (2)

$$
\begin{aligned}
& \bar{F}_{t} \bar{F}_{t}^{\prime}=M_{t}\left(\bar{F}_{t-1} \bar{F}_{t-1}^{\prime}\right) M_{t}^{\prime}+M_{t} \bar{F}_{t-1} \bar{e}_{t}^{\prime} \\
&+\bar{e}_{t} \bar{F}_{t-1}^{\prime} M_{t}^{\prime}+\bar{e}_{t} \bar{e}_{t}^{\prime}
\end{aligned}
$$

(primes denote transposed matrices). A recursive equations is obtained for second-order moments upon taking expectations on both sides and applying the vec operation.

Case $\mathbf{m}=$ 2. $\mathbf{R}_{\mathbf{t}}=\mathbf{r}+\mathrm{e}_{\mathbf{t}}+\beta_{1} \mathrm{e}_{\mathrm{t}-1}+\beta_{2} \mathrm{e}_{\mathrm{t} \cdot 2}$. A markovian representaiton is harder to obtain, as the next example shows.

Example. $\mathrm{U}_{\mathrm{t}}=\left(1+\mathrm{r}+\mathrm{e}_{1}+\beta_{1} \mathrm{e}_{1-1}+\beta_{2} \mathrm{e}_{\mathrm{t}-2}\right) \mathrm{U}_{\mathrm{t}-1}$. Define $\mathrm{U}_{1, \mathrm{t}}=\mathrm{U}_{\mathrm{t}}, \quad \mathrm{U}_{2, \mathrm{t}}=\mathrm{e}_{\mathrm{t}} \mathrm{U}_{\mathrm{t}}$, $U_{3, t}=e_{t-1} U_{t}, \quad U_{4, t}=e_{t}^{2} U_{1}, \quad U_{5, t}=e_{t} e_{t-1} U_{1}$ and

$$
\bar{U}_{t}=\left(U_{1,}, \ldots, U_{5,}\right)^{\prime}
$$

Then $\bar{U}_{1}=N_{t} \bar{U}_{t \cdot 1}$ where

$$
N_{t}=\left[\begin{array}{ccccc}
1+r+e_{t} & \beta_{1} & \beta_{2} & 0 & 0 \\
e_{1}\left(1+r+e_{1}\right) & \beta_{1} e_{t} & \beta_{2} e_{t} & 0 & 0 \\
0 & 1+r+e_{t} & 0 & \beta_{1} & \beta_{2} \\
q_{1}^{2}\left(1+r+e_{t}\right) & \beta_{1} e_{t}^{2} & \beta_{2} e_{t}^{2} & 0 & 0 \\
0 & e_{1}\left(1+r+e_{t}\right) & 0 & \beta_{1} e_{t} & \beta_{2} e_{t}
\end{array}\right]
$$

With this representation, calculating $E U_{t}$ is a problem in dimension 5 , while calculating $E U_{1}^{2}$ is a problem in dimension 25 (or 15 using the vech operation instead of vec). (The representation above may not be minimal, however.)

3. Aggregate funding method

Suppose a pension model with no inflation, stationary population and a fixed valuation rate of interest, and let F, B and C stand for fund level, benefit payments and overall contributions, respectively. F is the value of the fund at the beginning of the year, just before B is paid out and C paid in. Under the Aggregate method

$$
\mathrm{C}_{1}=\left(\mathrm{PVFB}-\mathrm{F}_{\mathrm{t}}\right) /(\mathrm{PVFS} / \mathrm{S})
$$

where PVFB is the present value of future benefits, PVFS the present value of future salaries and S the annual payroll. We obtain

$$
\begin{aligned}
F_{t} & =\left(1+R_{t}\right)\left[F_{t-1}+C_{t-1}-B\right] \\
& =a\left(1+R_{t}\right)\left(F_{t-1}+b\right), a, b \text { constants }
\end{aligned}
$$

which says that $\left\{F_{t}\right\}$ has nearly the same structure it had in the previous section. The mean and variance of F_{t} (and $\left.C_{t}\right)$ can be calculated when $\left\{R_{t}\right\}-\mathrm{MA}(m)+$ constant, $\mathrm{m}=0,1$ or 2 . The case $\mathrm{m}=0$ (that is to say i.i.d. rates of return) has been dealt with in Dufresne (1986) and (1988b).

Further points to be studied in connection with this model include:
. non-stationary populaton

- variable valuation rate of interest
- random inflation on salaries
- minimum funding requirements.

4. Amortizing annual gains/losses

Consider an individual funding method (e.g. unit credit, entry age normal) and suppose:
. no inflation

- stationary population
- valuation rate of interest (denoted "iv") is fixed
- $\mathbf{L}_{\mathrm{q}}=$ actuarial loss in ($\mathrm{t}-1, \mathrm{t}$) (positive or negative)
- $\mathrm{NC}=$ normal cost
- $\mathrm{AL}=$ actuarial liability.

What is meant by "amortizing losses" over n years is that overall contributions are

$$
C_{t}=N C+\frac{L_{t}}{a_{n}}+\frac{L_{t-1}}{\ddot{z}_{n}}+\ldots+\frac{L_{t-n+1}}{\dot{a}_{n}} .
$$

It can be shown (Dufresne, 1989) that

- $L_{i}=\left(R_{t}-i_{v}\right)\left[\sum_{k=1}^{n-1} \beta_{k} L_{t \cdot k}-A L\left(1+i_{v}\right)\right]$ where $\left(\beta_{k}\right)$ are constants
. if $\left(R_{t}\right)$ is i.i.d. and $E R_{t}=i_{v}$, then $\left(L_{t}\right)$ is an uncorrelated sequence, and the mean and variance of ($\mathrm{F}_{\mathrm{v}}, \mathrm{C}_{\mathrm{V}}$) can be calculated from those of (L_{l})
- when the amorization period n is lengthened Var C decreases while Var F increases.

Other questions of interest include:

- $\left[\mathrm{R}_{\mathrm{t}}\right] \sim$ constant $+\mathrm{MA}(\mathrm{m}), \mathrm{m}=0,1,2$
. constant non-zero inflation
- different treatment of gains ans losses
- making i_{v} variable
- random inflation.

5. Final remark

All the processes described above are members of the class of bilinear autoregressive processes with general form

$$
X_{t}=\sum_{i=0}^{P} \sum_{j=1}^{Q}\left(a_{i}+b_{i} e_{t-i}\right) X_{t-j}+\sum_{i=0}^{R} c_{i} e_{t-i}
$$

where $\left\{e_{t}\right\}$ is i.i.d. . See Granger and Andersen (1978), Subba Rao and Gabr (1984).

References

Bowers, N.L., Hickman, J.C. and Nesbitt, C.J. (1976). Introduction to the dynamics of pension funding. Transactions of the Society of Actuaries, 28, 177-203.

Bowers, N.L., Hickman, J.C. and Nesbitt, C.J. (1979). The dynamics of pension funding: Contribution theory. Transactions of the Society of Actuaries, 31, 93119.

Bowers, N.L., Hickman, J.C. and Nesbitt, C.J. (1982). Notes on the dynamics of pension funding. Insurance: Mathematics and Economics, 1, 261-270.

Boyle, P.P. (1976). Rates of return as random variables. Journal of Risk and Insurance, 43, 693-713.

Dufresne, D. (1986). Pension funding and random rates of return. In: Insurance and Risk Theory, M. Goovaerts et al., eds, Reidel, Dordrecht.

Dufresne, D. (1988a). Pension funding methods in a static environment. Transactions of the 23rd Internation Congress of Actuaries, 2, 99-114.

Dufresne, D. (1988b). Moments of pension contributions and fund levels when rates of return are random. Journal of the Institute of Actuaries, 115, 535-544.

Dufresne, D. (1989). Stability of pension systems when rates of return are random. Insurance: Mathematics and Economics, 8, 71-76.

Granger, C.W. and Andersen, A.P. (1978). An Introduction to Bilinear Time Series Models. Vandenhoeck \& Ruprecht, Göttingen.

O'Brien, T. (1987). A two-parameter family of pension contribution functions and stochastic optimization. Insurance: Mathematics and Economics,6, 129-134.

Subba Rao, T. and Gabr, M.M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models. Lecture Notes in Statistics, Springer-Verlag, New York.

Taylor, J.R. (1967). The generalized family of aggregate cost methods for pension funding. Transactions of the Society of Actuaries, 19, 1-12.

Trowbridge, C.L. (1952). Fundamentals of pension funding. Transactions of the Society of Actuaries, 4, 17-43.

Trowbridge, C.L. (1963). The unfunded present value family of pension funding methods. Transactions of the Society of Actuaries, 15, 151-169.

