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What follows is an account of the talk I gave at the 24th Actuarial  Research 

Conference in MontrEal (August 1989). The talk was an outline of  a project recently 

approved by the Actuarial Education and Research Fund. I wish to thank the AERF Board 

of  Directors for funding the project. 

1. Goal  of  p ro jec t  

The goal of the project is to study the variability of  pension costs and fund levels 

under various funding methods. A number of  authors have studied the dynamics of  

pension funding under more or less static conditions (see list of  references). A better 

knowledge of  the factors determining the volatility of pension costs (or expense) and fund 

levels would be of great value, both when choosing a funding method for the valuation of a 

particular plan, and also when establishing new minimum funding standards which will 

affect a large number of plans. 

In Dufresne (1989), the author used a simplif ied model  of pension funding, 

including random rates of return and amortization of unfunded liabilities over "n" years. 

It was shown that increasing n decreases the variance of contributions, but increases the 

variance of fund levels. It is proposed to use a more comprehensive model and to consider 

a greater number of funding strategies. 
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T h e r e  are  m a n y  fac to r s  c a u s i n g  f l u c t u a t i o n s  o f  c o n t r i b u t i o n s  and  f u n d  leve ls ;  on ly  

v a r i a t i o n s  o f  ra tes  o f  r e tu rn  on  asse ts  wil l  be c o n s i d e r e d  be low.  M o r e  spec i f i ca l ly ,  suppose  

R t = ra te  o f  r e tu rn  for  p e r i o d  ( t - I ,  t) 

= r + e t + 13 t e t  t + .. .  + 13m et. n ( I )  

w h e r e  let} is an  i.i .d, s e q u e n c e  w i t h  Ee  t = 0,  0 < V a r  e t < 00 (i.e. {et} is d i s c r e t e -  

t i m e  w h i t e  no ise) .  Eq .  (1)  says  tha t  {Rt] is a c o n s t a n t  r ( the  m e a n  ra te  o f  r e t u rn )  p lus  a 

m o v i n g - a v e r a g e  p r o c e s s  o f  order" n, i.e. [Rt} - M A ( m ) + r .  

2 .  T h e  s i m p l e s t  c a s e :  t h e  a c c u m u l a t e d  v a l u e  o f  1 p e r  a n n u m  

O n e  o f  t h e  s i m p l e s t  " p e n s i o n  p l a n "  i m a g i n a b l e  is o n e  fo r  w h i c h  c o n s t a n t  

c o n t r i b u t i o n s  are  pa id  in (year ly) ,  wh i l e  no  bene f i t s  are pa id  out .  Le t  F o = 0 a n d  

F t = ( l + R t ) F t _ l + l .  

C a s e  m = 0. H e r e  Rt=  r+e  t a n d  thus  

E F  t = E ( I ÷ R t ) E F t .  1 +1 

= ( l + r ) E F t .  I + 1 

= >  EFt  = si-I r • 

T h i s  is an  i n s t a n c e  o f  the  nice property  o f  s o m e  p r o c e s s e s  {Rt}:  " m e a n  

a c c u m u l a t e d  va lues  (EFt)  g r o w  at the m e a n  rate of  re tu rn  (ERt  = r)".  

Remark I. The n ice  p rope r ty  is e q u i v a l e n t  to 

E ( l + R t l F t . i ) = r  a.s. ISI 

All  h i g h e r  naomen t s  o f  F t can  be found  recurs ive ly :  

EF~ = E I ( I + R t ) F t _ I + I ]  k 

k 

j=o 
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Remark 2. This extends the formulas in Boyle (1976). 1:21 

Case  m = l .  F t = ( l+r+e t+Bet . l )F t . l+ l  

=> Ft. t and R t are dependent  

=> above trick does notwork .  

One  way out is to use a markovian representation: let G t = e t F t => 

Gt _ et(l+r+et+13et_l)Ft.l+et 

= et( 1 +r+et)Ft_ I +13etGt.l+e t 

or 

F t = ( l + r + e  t 13 + ( 1  

Ft Mt Ft-I et 

In Eq. (2) M t and Ft-I are independent,  so 

Eft t = M EFt_ I + ~, M = EM t, ~ = EF a. 

(2) 

From this vector difference equation we obtain a two-dimensional formula for EFt: 

EF t = ( I+M+. . .+Mt l )~  

= (M-I)-I(Mt-I)E 

(since F o = 0 = > F o  = 0 ) .  

Example: Effect of  dependence of {Rt} on {EFt}. 

Here R t = r+et+13et. 1 => ERt = r, Var R t = (1+132)o 2, Cov(Rt, Rt_l) = [32.  One 

experiment  that comes to mind is the calculate EF t for fixed values of ERt and Vat Rt, 

but to vary Cov(Rt, Rt_l). Let U t be the accumulated value at time t of one unit invested 

at time 0. The table below shows EU15 and EF15 when E R r =  .10, V a r R  t = .01 and 

19 = Corr(R t, Rt_l) = 13/(1+~ 2) varies from -.5 to +.5. 
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13 

1.00 

.75 

.50 

.25 

0 

-.25 

-.50 

-.75 

-1.00 

p 1000 * EUis 1000 * EFis 

.500 4,424 32,8[)5 

.480 4,414 32,763 

.400 4,374 32,596 

.235 4,292 32,255 

0 4,177 31,772 

-.235 4,065 31,297 

-.400 3,987 3(I,968 

-.480 3,950 30,809 

-.500 3,941 30,769 

4,177 (1±6%) 31,772 (1+3%) 

Tab le  1 EU15 and EFt5 when ERr= .10, Var R t=  .01 

The case 13 = 0 corresponds to i . i .d rates of  return. The nice property does not 

hold when 13 ~ 0. In this particular case the rate of growth of mean accumulated values is 

r' =" r+Cov(R t, Rt_l)/(l+r). (3) 

Remark 3. Approximation (3) is justified as follows. From Eq. (2) 

EF t = ( 1 +r)EF t. 1+ 13o2EFt_2 + 1 (4) 

I t 
= >  E F  t = p t+c l~ , , l+C2~ . ,  2 

where Pt is a particular solution of  (4), {~,i} are the solutions of  

~2.(I +r)~.-13o 2 = 0 

and {cl} are such that the initial conditions 

EF o = 0, EF I = 1 

are satisfied. When r+[3c2;~0 we find 
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The ~.'s are 

pt -= p = _ I/(r+[3(12). 

~'1 = 12--(( I +r)+[(  ! +r)2+4~302] 1/2) 

k 2 = 21-(( 1 +r)-[(1 +r)2+4[~o'21 It2), 

which are real and distinct when (1+r)2+413o 2 > 0. The constant {ci] 

Under  most  assumpt ions  (e.g. 

out  as t increases.  Thus 

c l . =  [ l+p(k2-1) l /CkrL2)  

c 2 = [p( 1 -Xl)- 1 l ick 1-~,2). 

I]31< 1 , ( 1 2 < I / 4 ,  r > 0 )  Ik21< 1 

• ! 

E F  t = p + c l k  I 

and the growth rate of  EF  t is approximately 

~.1_ 1 = ( l+ r )  (l+[l+413(12/(l+r)211,r2).l 
2 

_ ( 1 +r) ( 1 + 1 +213(12/(1 +02)  - 1 
2 

= r+~o2/( l  +r) 

= r+Cov(Rt,  Rt_l)/( l+r) = r'. 

For  example ,  in the case at hand r = .10, (12 = .01/(1+132), and 

3 = 1 .  i = .104027 => s]~li = 32.805, 

k I = 1.104527, k 2 = -.004527 

r ' =  .104545. 

are then 

and c2~.t2 quickly  dies 
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/3 = -1 i = .095945 : >  ST51i = 30.769, 

~-1 = 1.095436, ~-2 = .004564 

r' = .095455. 

The approximat ion  ( l + x ) l / 2 -  -" l+x/2  used to derive r' s l ightly overstates 

7t1-1. 1:2 

It should  be emphas i s ed  that approx ima t ion  (3) on ly  relates to the case 

{ R t l  - r+MA(I ) .  

Var F t can also be calculated; from Eq. (2) 

(primes denote transposed matrices). A recursive equations is obtained for second-order 

moments  upon taking expectations on both sides and applying the vec operation. 

Case m = 2. R t = r+et+~let_l+~2et.2 , A markovian representaiton is harder to obtain, as 

the next example shows. 

E x a m p l e .  U t = ( l+r+et+131et. l+132et.2)Ut.  t. Define U1, t = Ut, U2, t = etUt, 

U3, t = et IUt , 04, t = et2Ut' Us, t = etet-lUt and 

Then Ut = Nt Ut-1 where 

m i 

Ut = ( U i , ,  . . . . .  Us, ,). 
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N t = 

l+r+et ~1 92 0 0 

et(l+r+et) [~iet 92e t 0 0 

0 l+r+e t 0 91 92 

q ( l+ r+e  t) 9te~ 92e~ 0 0 

--  0 et(l+r+e t) 0 ~let 92e t _ 

With this representation, calculating EU t is a problem in dimension 5, while calculating 

EU~ is a problem in dimension 25 (or 15 using the vech operation instead of  vec). fl 'he 

representation above may not be minimal, however.) 

3. Aggregate funding method 

Suppose a pension model with no inflation, stationary population and a fixed 

valuation rate of interest, and let F, B and C stand for fund level, benefit payments and 

overall contributions, respectively. F is the value of the fund at the beginning of  the year, 

just before B is paid out and C paid in. Under the Aggregate method 

C t = (PVFB - Ft) / (PVFS/S) 

where PVFB is the present value of future benefits, PVFS the present value of future 

salaries and S the annual payroll. We obtain 

F t = (I+Rt)[Ft_I+Ct.I-B ] 

= a(l+Rt)(Ft_t+b), a, b constants, 

which says that {Ft) has nearly the same structure it had in the previous section. The 

mean and variance of F t (and C t) can be calculated when [Rt} - MA(m) + constant, 

m = 0, ! or 2. The case m = 0 (that is to ,;ay i.i.d, rates of return) has been dealt with 

in Dufresne (1986) and (1988b). 

Further points to be studied in connection with this model include: 
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non-stat ionary populaton 

variable valuation rate of interest 

random inflation on salaries 

min imum funding requirements. 

4. Amortizing annual gains/losses 

Cons ide r  an individual  funding method  (e.g. unit credit ,  entry age normal)  and 

suppose:  

no inflation 

stationary population 

valuation rate of  interest (denoted "iv") is fixed 

L t = actuarial loss in ( t - l ,  t) (positive or negative) 

NC = normal cost 

AL = actuarial liability. 

What  is meant by "amortizing losses" over n years is that overall  contributions are 

L t Lt. l Lt.n+ 1 C t = N C + - -  + + . . . + - -  

It can be shown (Dufresne, 1989) that 

n-1 
L, =(Rt-i , , )  [ ~ ]3kLt_k-AI.J(l+iv) ] where {13k} are constants 

k=l 

if  {Rt} is i.i.d, and ERt = i v, then (Lt] is an uncorrelated sequence, and 

the mean and variance of (Ft, C O can be calculated from those of {l_a} 

when the amortization period n is lengthened Var C decreases while Var F 

increases.  
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Other questions of interest include: 

{Rt} - constant + MA(m), m =0,  1, 2 

constant non-zero inflation 

different treatment of gains ans losses 

making i,, variable 

random inflation. 

5. Final remark  

All the processes described above are members of  the class of  bilinear 

autoregressive processes with general form 

Xt 
P Q R 

= X X (a,+b,e,_i)x,_j + X cie,., 
i=0 j=l i=0 

where {et] is i.i.d.. See Granger and Andersen (1978), Subba Rao and Gabr (1984). 
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