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What follows is an account of the talk I gave at the 24th Actuarial Research
Conference in Montréal (August 1989). The talk was an outline of a project recently
approved by the Actuarial Education and Research Fund. I wish to thank the AERF Board

of Directors for funding the project.

1. Goal of project

The goal of the project is to study the variability of pension costs and fund levels
under various funding methods. A number of authors have studied the dynamics of
pension funding under more or less static conditions (see list of references). A better
knowledge of the factors determining the volatility of pension costs (or expense) and fund
levels would be of great value, both when choosing a funding method for the valuation of a
particular plan, and also when establishing new minimum funding standards which will

affect a large number of plans.

In Dufresne (1989), the author used a simplified model of pension funding,
including random rates of return and amortization of unfunded liabilities over "n" years.
It was shown that increasing n decreases the variance of contributions, but increases the
variance of fund levels. Itis proposed to use a more comprehensive model and to consider

a greater number of funding strategies.
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There are many factors causing fluctuations of contributions and fund levels; only

variations of rates of return on assets will be considered below. More specifically, suppose
R, =rate of return for period (t-1, 1)
=r+e+Bie+. ... +PBnen 43

where (e} isan iid. sequence with Ee, =0, 0 < Vare < (ie. {e] is discrete-
time white noise). Eq. (1) says that (R,) is a constant r (the mean rate of return) plusa

moving-average process of order n, ie. [R,) ~ MA(m)+r.

2. The simplest case: the accumulated value of 1 per annum

One of the simplest "pension plan” imaginable is one for which constant

contributions are paid in (yearly), while no benefits are paid out. Let F, =0 and
F, = (14R)F +1.
Case m = 0. Here R=r+e, and thus

EF, = E(1+R)EF, | +1

= (14nEF_; + 1

=>EF =5p,.

This is an instance of the nice property of some processes (R;}: "mean

accumulated values (EF)) grow at the mean rate of return (ER, =1)".

Remark 1. The nice property is equivalent to
E(1+RIF ) =r as. O

All higher moments of F, can be found recursively:

EF' = E[(14R)F +1]¥

KL .
- 2;) ( ;‘) E(1+RY EF_.
£
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Remark 2. This extends the formulas in Boyle (1976). O

Case m=1. F, = (1+r+e+Be )F, +I]

=> F,; and R, are dependent

=> above trick does not work.
One way out is to use a markovian representation: let G, =¢ F =>
G, = e(l+r+e+Pe, F, | +e,

= g(l+r+e)F,_+Pe,G +e,

or
F I+r+e B F_ 1
vl t t-1 . ?)
G, e(l+r+e) Pe, G, , e,
T T I ——
Fy M, Fii Y

InEq. (2) M, and F,, are independert, so
EF, =MEF,; +§, M=EM, &=Eg.
From this vector difference equation we obtain a two-dimensional formula for EF:
EF, = (I+M+...+M" e
= M- (M"1)
(since F,=0=>F, = 0).
Example: Effect of dependence of (R,} on [EF}.

Here R, =r+e+Pe,; => ER, =1, Var R, = (1+B%)0?, Cov(R,, R ;) = Bo’. One
experiment that comes to mind is the calculate EF, for fixed values of ER, and VarR,,
butto vary Cov(R;, R ;). Let U, be the accumulated value at time t of one unit invested
at time 0. The table below shows EU;s and EF;5 when ER,=.10, VarR, =.01 and

p =Corr(R, R }) = [3/(1+B2) varies from -.5 to +.5.
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B P 1000 * EU,s 1000 * EF s

1.00 500 4,424 32,805
75 .480 4,414 32,763
.50 .400 4,374 32,596
25 235 4,292 32,255
0 0 4,177 31,772

-.25 -.235 4,065 31,297

-.50 -.400 3,987 30,968

-.75 -.480 3,950 30,809

-1.00 -.500 3,941 30,769
4,177 (126%) 31,772 (143%)

Table 1 EU,5 and EF;5 when ER, =.10, Var R, = .01

The case 3 =0 corresponds to i.i.d. rates of return. The nice property does not

hold when B # 0. In this particular case the rate of growth of mean accumulated values is
r' = r+Cov(R,, R )/(1+1). 3)
Remark 3. Approximation (3) is justified as follows. From Eq. (2)
EF, = (14nEF, | +B0’EF 3+1 )
=>EF, = p,+c,7x‘1 +o:27xt2
where p, is a particular solution of (4), (A;} are the solutions of
7L2-(l+r)7t-[302 =0
and {c;) are such that the initial conditions
EF, =0, EF; =1

are satisfied. When r+B02¢0 we find
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PED= -I/(r+[302).
The A's are

A =%((l+r)+[(l+r)2+4‘302]”2)

A = (an-1(14n+4pe™)'™),

which are real and distinct when (l+r)2+4[302 > 0. The constant {c;) are then

cp-= [14py- DA -Ay)
C2 = [p(l-ll)-lll(lr)kzl

Under most assumptions (e.g. PI< 1, o’ < 1/4,r20) M, <1 and czx; quickly dies

outas t increases. Thus
EF, = pro )
and the growth rate of EF, is approximately

Ayl = “;’) (1+{1+4BoY(1+1)"1")-1

= “;” (1+1+42Bo/(1+1))-1

= r+[302/(1+r)

= r+Cov(R,, R, D/(1+41) =1

For example, in the case at hand r = .10, o’ = .01/(1+B2), and

B=1 i =.104027 => T 32.805,
1

A = 1.104527, A, = -.004527

r' = .104545.
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B=-1  i=.005945 =>5_ =30.769,
A, = 1095436, X, =.004564
r = .095455.

The approximation (]+x)”2 = 1+x/2 used to derive r' slightly overstates

;x.l_l. D

It should be emphasised that approximation (3) only relates to the case

{R,} ~ r+MA(1).

Var F, can also be calculated; from Eq. (2)

(primes denote transposed matrices). A recursive equations is obtained for second-order

moments upon taking expectations on both sides and applying the vec operation.
Case m =2. R, =r+e+B,e, ,+B,e,.5. A markovian representaiton is harder to obtain, as
the next example shows.

Example. U = (l+r+e+Bye +Bse, 50U, . Define U, ,=U, U, =eU,

2
Uz =¢Up UA’ = %VUu Us=ee U and
U, =y, ... Us ).

Then U, =N, U.; where
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B I+r+e, B, B, 0] 0 ]
e(l+r+e) e B.e, 0 0
N, = 0 I+r+e, 0 B, B,
e(1+r+e) B, el2 ﬂzelz 0 0

- 0 e(l+r+e) 0 B,e. Be,

With this representation, calculating EU, is a problem in dimension 5, while calculating
EU? is a problem in dimension 25 (or 15 using the vech operation instead of vec). (The

representation above may not be minimal, however.)

3. Aggrepate funding method

Suppose a pension model with no inflation, stationary population and a fixed
valuation rate of interest, and let F, B and C stand for fund level, benefit payments and
overall contributions, respectively. F is the value of the fund at the beginning of the year,

just before B is paid outand C paid in. Under the Aggregate method
C, =(PVFB -F)) / (PVES/S)
where PVFB is the present value of future benefits, PVFS the present value of future
salaries and S the annual payroll. We obtain
F, = (1+R)[F_,+C,;-B]

= a(1+R))(F,_|+b), a, b constants,
which says that {F,) has nearly the same structure it had in the previous section. The
mean and variance of F, (and C,) can be calculated when (R,) ~ MA(m) + constant,

m=0, 1 or 2. Thecase m =0 (thatis tosay i.id. rates of return) has been dealt with

in Dufresne (1986) and (1988b).

Further points to be studied in connection with this model include:
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non-stationary populaton
. variable valuation rate of interest
random inflation on salaries

minimum funding requirements.

4. Amortizing annual gains/losses

Consider an individual funding method {e.g. unit credit, entry age normal) and

suppose:

- no inflation
. stationary population
valuation rate of interest (denoted "iy") is fixed
. L, =actuarial loss in (t-1,t) (positive or negative)
. NC =normal cost

. AL = actuarial liability.

What is meant by "amortizing losses” over n years is that overall contributions are

L L
C,=NC+.I_1+ gy el
in o & i

It can be shown (Dufresne, 1989) that

n-1
. L :(R‘-iv)[ Z BkL(-k'Au(1+iv)] where {B,} are constants
k=1

. if {R,} is i.id. and ER =i, then (L.} is an uncorrelated sequence, and

the mean and variance of (F,, C)) can be calculated from those of (L)

. when the amortization period n is lengthened Var C decreases while Var F

increases,
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Other questions of interest include:

{R,} ~ constant + MA(m), m=0, 1,2
. constant non-zero inflation
. different treatment of gains ans losses
making i, variable

random inflation.

5. Final remark

All the processes described above are members of the class of bilinear

autoregressive processes with general form

Mo

R
(ai+bicl_i)X,_j + Z CiCy.i
i=0

P
Xe=2,
i=0 j

[l
—

where (e,) is i.i.d.. See Granger and Andersen (1978), Subba Rao and Gabr (1984).
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