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ABSTRACT 

A mathematical model is described which facilitates the 

comparison of different pension funding methods. Rates of return 

are assumed firstly to be random and then to be represented by an 

autoregressive model for the corresponding force of interest. 

Expressions for the variability of contributions and fund levels 

can be derived. This leads to a discussion of the "optimal" 

method of funding. A fuller description of the methodology is 

given in Dusfresne's doctoral thesis (I) and in recent papers by 

Haberman and Dufresne (2) and Dufresne (3,4). 
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I. TYPES OF FUNDING METHOD 

Broadly, there are two types of funding methods. 

With individual funding methods (e.g. Projected Unit Credit and 

Entry Age Normal), the normal cost (NC) and the actuarial 

liability (AL) are calculated separately for each member and then 

summed to give the totals for the population under consideration. 

With aggregate funding methods (e.g. Aggregate and Attained Age 

Normal), there is no hypothecation of normal cost or actuarial 

liability to individuals; instead the group is considered as an 

entity, ab initio. 

Let C(t) and F(t) be the overall contribution and fund level at 

time t for a particular pension scheme. 

For an individual funding method, 

C(t) = ~ NC(x,t) + ADJ(t) (I) 

where NC(x,t) is the normal cost for a member aged x at time t,~ 

denotes summation over the membership subdivided by attained age 

and ADJ(t) is an adjustment to the contribution rate at time t 

represented by the liquidation of the unfunded liability at time 

t, UL(t). UL(t) is defined by 

UL(t) = ~ AL(x,t) F(t) 

where AL(x,t) is the actuarial liability for a member aged x at 

time t. 
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For an aggregate method, the overall contribution is directly 

related to the difference between the present value of future 

benefits and the fund. Specifically, 

C(t) = I PVB(t)PVS(t)- F(t) ] 
S(t) (2) 

where S(t) is the payroll at time t, PVB(t) is the present value 

of future benefits (of all members including pensioners) at time 

t and PVS(t) is the present value of future salaries (of active 

members) at time t. 

This paper considers the behaviour of C(t) and F(t) in the 

presence of random investment returns. 

At any time t, a valuation is carried out to estimate C(t) and 

F(t), based only on the scheme membership at time t. However, as 

t changes we do allow for new entrants to the membership so that 

the population remains stationary - see assumptions below. 

In the mathematical discussion, we make the following 

assumptions. 

I . All actuarial assumptions are consistently borne out by 

experience, except for investment returns. 

2. The population is stationary from the start. 

3. There is no inflation on salaries, and no promotional 

salary scale. For simplicity, each active member's 

annual salary is set at I unit. 

4. The interest rate assumption for valuation purposes is 

fixed. 
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5. The real interest rate earned during the period, (t,t+ 

I) is i(t+1). The corresponding force of interest is 

assumed here to be constant over the interval (t,t+1) and 

is written as ~(t+1). Thus I + i(t+1) = exp (;(t+1)). 

6. E[1+i(t)] = E[exp ~(t) ] = I+i, where i is the valuation 

rate of interest. This means that the valuation rate is 

correct "on average". This assumption is not essential 

mathematically but iK is in agreement with classical 

ideas on pension fund valuation. Further, we define ~ = 

Var (i(t}). 

Assumptions I., 2., 3., and 4. imply that the following 

parameters are constant with respect to time, t: 

NC the total normal contribution 

AL the total actuarial liability 

B the overall benefit outgo (per unit of time). 

Further, assumptions I., 2., and 6. imply that 

AL = (I + i) (AL + NC - B). (3) 

The paper adopts a discrete time approach. It is possible to 

approach this problem using a continuous time formulation; 

however, the mathematics requires familiarity with stochastic 

differential equations and the details have been omitted here 

the interested reader is referred to Dufresne (I) 



2. RANDOM INDEPENDENT I IDENTICALLY DISTRIBUTED RATES OF 

RETURN: BASIC RESULTS 

It is assumed in this section that the earned rates of return 

i(t) for t > I are independent, identically distributed random 

variables with i(t) > I with probability I. 

2.1 MOMENTS OF C(t) AND F(t): INDIVIDUAL FUNDING METHODS 

There are two general ways in which the ADJ(t) term may be 

computed. Under the "amortization of losses" method, we define 

ADJ(t) = 1 L(t-j ) (4) 

where L(t) is the loss in year (t-l,t), between two valuation 

dates. Thus, ADJ(t) is then the total of the intervaluation 

losses arising during the last M years (ie between t-M and t) 

divided by the present value of an annuity for a term of M years 

(ie spread over an M year period). The unfunded liability at 

time t is then given by 

UL(t) = Z Lit-j) aM--~ 15) 

The properties of this method are not pursued here and the 

interested reader is referred to Dufresne(1'4) for a detailed 

discussion. 

Under the "spread" method, we define ADJ(t) = UL(t) 
,i 

°~ 

ie the adjustment to the normal cost is equal to the overall 

unfunded liability divuded by the present value of an annuity for 

a term of M years. Then, 
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C(t) = NC , (AL - F(t)) 

This paper concentrates on the "spread" method. 

Then 

F(t+1) = (I + i(t+1))(F(t) + C(t) - B) 

= (I + i(t+1))[F(t) + NC + (AL - F(t))/aM~- B] 

= [(I + i(t+1))/(1 + i)](qF(t) + r) 

(6) 

(7) 

where q = (I + i)(1 - I/a~) and r = (I + i) (NC - B + AL/a~). 

Then, it can be proved that 

E F(t+1) = E E (F(t+1) Ht) 

= E (q F(t) + r) = q E F(t) + r (8) 

This is a recurrence relation which can be solved to give 

E F (t) = ~tF(0) + r (I - qt)/(1 - q) for t) 0. 

If M I, then it can be shown that 0 < q < I and so 

Lim E F(t) = r/(1-q). 
% 

Using AL = (I+i) (AL + NC - B), it can be shown that 

r/(1-q) = AL. (9) 

implies that E C(t) = NC + (AL - EF(t))/a~ and so Equation (6 
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Lim E C(t) = NC. (10) 

A consequence of equations (8) (10) is that, if F(0) = AL, then 

E F(t) = AL and E C(t) = NC for t> 0. 

Concerning second moments, we use the result 

Var F(t+1) = E Var (F(t+I)IH t) + Var E (F(t+1) I H t) 

from which it can be proved that 

Var F(t+1) = a Var F(t) + b (E F (t+l)) 2 (11) 

where a = q2(I + ~2(I+i) -2) and b = ~2 (i+i)-2. 

Equation (11) is also a recurrence relation which may be solved 

in successive steps to give 

Var F(0) = 0 

Var F(1) = b (E F(1)) 2 

Var F(2) = a b(E F (I)) 2 + b(E F(2)) 2 and so on. 

% 

Generally, Var F(t) = b ~ a t-k (E F(k)) 2 for t> I. 
kaL 

It can then be shown that 

(12) 

Lim Var F(t) = bAL2/(1-a) if a < I ~ (13) 

] if a )1 

Also, Var C(t) = Var F(t)/(a~) 2. 

It is also possible to work out covariances. Thus, it can be 

proved that 
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Cov(F(t÷u), F(t)) = qUVar F(t), u • 0. 

Similarly, 

and 

Cov(C(t+u), C(t)) = qUVar C(t) 

Cov(C(t÷u), F(t)) = -qUVar(F(t)/a~ 

Thus, if a < I, the correlation coefficients satisfy 

Lim Cor(F(t÷u), F(t)) = Lim Cor(C(t+u), C(t)) 

= -Lim Cor(F(t÷u), C(t)) 

= q lul 

2.2 MOMENTS OF C(t) AND F(t): THE AGGREGATE FUNDING METHOD 

As noted in Equation (2), the Aggregate Funding Method is such 

that 

C(t) = (PVB - F(t)).S/PVS 

with 

S = Pensionable earnings; 

PVB = Present value of future benefits 

(including pensioners); 

PVS = Present value of future earnings. 

S, PVB and PVS are aggregate values, relating to the whole 

population of current members, and here are constants (from 

assumptions I., 2., 3. and 4.). 
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Here 

F(t+1) = (I + i(t+1))(F(t) + C(t) - B) 

= (I + i(t+1))[F(t)(1 S/PVS) + S.PVB/PVS - B] 

= [(I + i(t÷1))/(1 + i)](q'F(t) +r') 

where q'= (I + i)(I - S/PVS) and r' = (I + i) (S.PVB/PVS - B). 

As before 

EF(t÷I) = q'EF(t) + r'. 

It can then be shown that 0 ( q'( I. 

Therefore, 

Lim EF(t) = r'/(1 - q'). 

Clearly, EC(t) = (PVB - EF(t)).S/PVS. 

Again, 

Vat F(t+1) = a'Var F(t) + b[EF(t+1)] 2, 

With a' = (q')2(I + ~2(I + i)-2). 

Eq. (12) still holds, and the earlier result becomes 

b[Lim EF(t)]2/(I - a') if a'( I 

Lim Var F(t) = 

% ~ if a'> 1. 

(14) 

Clearly, Var C(t) = (Var F(t)).S2/PVS 2 " Covariances and 

correlation coefficients are derived in the same fashion, 

substituting q' for q. 
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Remarks 

(a) Trowbridge (5) has shown that in some cases the Aggregate and 

Entry Age Normal methods are asymptotically equivalent. The 

conditions he supposed are assumptions I. - 6. inclusive plus 

7. There is only one entry age into the scheme; and 

8. 2 = Var i(t) = 0. 

Clearly if assumption is maintained but assumption 8. is dropped 

(i.e. ~2 > 0) then Trowbridge's proof still applies, but now to 

EF(t) and EC(t), yielding 

Lim EAGGF(t) = Lim EEANF(t) = EANAL; 
% t 

(15) 

Lim EAGGc(t) = Lim EEANc(t) = EANNc. 

(b) It should be noted that in this simple framework the 

Aggregate method is really a particular case of the Entry Age 

Normal method (assuming assumption 7. is still in force); 

equation (15) implies 

AGGc(t) = (PVB - AGGF(t)).S/PVS 

= (PVB - EANAL).S/PVS + (EANAL - AGGF(t))S/PVS 

= EANNc + (EANAL _ AGGF(t))/aN~ (16) 

where N is defined so that a~ = PVS/S. Equation (16) says that 

the Aggregate and Entry Age Normal methods are identical, if the 

latter is applied together with an N-year spread of (A!, F(t)). 

This fact was previously noted by C.J. Nesbitt in his 

contribution to the discussion of Trowbridge (6) 
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(c) If M = I, then equation (7) does not apply; instead 

F(t+1) = (I + i(t+1))[F(t) + NC + (AL - F(t)) - B] 

= [(I + i(t+1))/(1 + i) ] (I + i)(AL + NC - B) 

= [(I + i(t+1))/(1 + i) ] AL. 

Thus, for each t > I, 

and 

EF(t) = AL, 

EC(t) = NC 

Var C(t) = Var F(t) = ~2(I + i) -2 AL 2. 
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3. AUTOREGRESSIVE RATES OF RETURN: BASIC RESULTS 

It is apparent from the discussion in Section 2 that the 

equations for the moments of F(t) and C(t) are of the same type 

for individual and aggregate funding methods. This section, 

therefore, considers only one type, viz individual funding 

methods. 

In order to investigate the effects of autoregressive models for 

the earned real rate of return, the paper follows the suggestion 

of Panjer and Bellhouse (7) and consider the corresponding force 

of interest and assume that it is constant over the interval of 

time (t,t+1): the notation used will be ~(t+1). 

Now it is assumed that the (earned real) force of interest is 

then given by the following autoregressive process in discrete 

time of order I (AR(1)): 

[(t) : @ + @ [~(t-1) -@ ] + e(t) (17) 

where e(t) for t=1,2, ... are independent and identically 

distributed normal random variables each with mean 0 and variance 

12. Equation (17) replaces assumption 5. introduced earlier. This 

model suggests that interest rates earned in any year depend upon 

interest rates earned in the previous year and some constant 

level. Box and Jenkins (8) have shown that, under the model 

represented by equation (17), 

E[~(t)] : 8 

~% 2 Vat [6(t)] = = ~ , say 

Cov [~(t), I (s)] : ( 
|M-L1 

= ;(t,s), say. 
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The condition for this process to be stationary is that I~[< I. 

Boyle (9) investigated the simpler model. 

~(t) = ~ + e(t) (18) 

where ~= 0. Clearly this model bears a close resemblance to that 

considered in section 2. Appendix I confirms that equation (18) 

leads to similar results to those presented in section 2.1 for 

individual funding methods. 

In order to apply the autoregressive model (17) to determine 

moments of F(t) and C(t), it is necessary to abandon the approach 

of section 2 (and Appendix I) whereby recurrence relations 

between, for example, E F(t+1) and E F(t) were sought. The 

presence of a dependence on the past in the autoregressive model 

would make such an approach problematic. 

The approach begins with considering the series generated by the 

recurrence relation (7), which for convenience is rewritten here 

as 

F(t+1) = (1+i(t+1)) (Q F(t) + R) (19) 

where Q = I I =vq, R = (NC - B + A__LL) = vr and v = (I+i) -I . 

Then F(t) = F(0). Qt e ~(t) + Qt-IRe~{t) +Qt-2 R eA(t)-~(1) 

+ ........ + R e ~(t)- ~t-1) (20) 

where ~(tl : X ~(u). 

In order to obtain an expression for E F(t), it is necessary to 

consider terms of the form E(e A(t)-A(s)) for s=0,1 ..... t-1. 
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Given the distributional assumption for e(t), and that 

E(~(t)) = E(~(u)) = t 

Var(6(t)) = Var(~ ~(u)) = 2 ~ lu,wl 

~ 7_,," ~,uw, 
% & 

then E(e a(t)-6(s)) = exp[(t-s)@ + ± ~ Z ~(u,w)] 

= exp[(t-s)e+ ~ 2 G(t,s)] , 

where G ( t , s )  - '  ~_ ~ ~ |U-Wl -7. = l z (t-s)+ ~ Z 

= ± (t-s) + Z Z @ x where x=w-u 

W-U 

(t-s) + Z (t-s-x)~ x 

! 
= ~ u - s j  + J 

2. 

(21) 

on changing the order of summation and 

simplifying. 

An expression for J = ~ (t-s-x){ x, a decreasing geometric 

progression, can be obtained by standard techniques. Hence 

GIt,s¿ = ~( ~_~)(t-sl - ~ 0-~ ~-') 

Thus E[e ~(t)-A(sl ] = exp [(t-s)(@ + _(~q)~2)_{~, ] 

If the subsidiary parameters c = exp ((9 + ~{L.~u 2) and 
~ 1--l-~; 

(22) 

(23) 

are introduced then E[e A(t) A (s)] ct-S e-d(1- ~'$) - = . (24) 
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Equation (20) implies that 

~-i 

EF(t) = F(0) Qt E e ~(t) ÷ R ~ Qt-s-1 Ele~(t)-~(s)~ 
$.-O 

= (F(0)Qtcte dq ~ + REQt-s ct-S ed~ ~-s )e-d. 

Q ~ o  

(25) 

The second term is of the form of the present value in 

conventional life contingencies of a temporary annuity based on 

Gompertz's or Makeham's law of mortality. 

In section 2.1, it was noted that 0 < q< I. 

So cQ = exp (-@-~-v 2) exp (e ÷~/~ 2) 

= q exp (~2) = q if ~ = 0. 

For convergence as t-~, we require cQ < I. And we note that I~I 

<I. 

It can then be shown that 

Lim E (F(t)) = R Qc 

t Q I -Qc 

e-d 

= vrc e-d 

I -vqc 

If ~=0 then c = exp (@+_~w 2) = I+i and d=0 and 

hence Lim E F(t) = r as in equation (11). 

1-q 

(26) 

The above result simplifies since 
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VC = e x p  [~+~(_1+4a)~ ,2  - 0 - { ~ , 2 ]  = exp [ ~2] 

(i -~) 

I,~IL,I ! 
to give Lim E F(t) = r exp [ - ~7:~L] 

1-q exp[ ~ ] 

# AL. 

Then E C(t) = NC + AL - E (F(t)} 

a~ 

from equation (6). 

To obtain an explicit expression for Var (F(t)), it will be 

necessary to consider E(F(t)2), which itself will depend on terms 

of the form 

E(e6(t) -~(s) + A(t) - ~(r) 

for r,s = O, I,..., t-1. 

For such cross-product moment terms, we begln with consideration 

of 

Var (~(t) - A(s) + A(t) - A(r)). 

Without loss of generality, we take r>s and rewrite the argument 

as 

A(r) -A(s) + 2 (~(t) - ~(r)). 

Then Var [A(t) - A(s) + ~(t) - A(r)] 

= Var [A(r)-A(s)]+4 Var [A(t)-A(r)]+4 Cov [A(r)-A(s),A(t) - ~(r)] 
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Given the distributional assumptions for e(t), we thus have 

E(e (t)- (s)+ (t)- (r)) = exp ((t-s) +(t-r) ÷ (u,w) 

+ 2 (u,w)) 

where, in this case of an AR(1) model, 

(u,w) = 2 u-w 

For convenience, we can write 

E(e (t)- (s)+ (t)- (r)} = exp [ (t-s) +(t-r) + 

and consider the simplification of H(t,r,s) in Appendix II. 

Rewriting equation (20) gives 

F(t) = (F(0)Q t + Qt-IR)e (t) + Qt-2 R e (t) - (I) 

÷ Qt-3 R e (t) - (2) + ..... + R e (t) (t-l) 

For convenience, we will take F(0) = 0. 

Then, E(F(t)) 2 = E [ e (t)- (s) e 

= 2R 2 

Q2 

+ R 2 

Q2 

2H(t,r,s)] 

(t)- (r) Qt-l-s Qt-l-r R 2] 

Qt-s Qt-r E~c (t)- (s)+ (t)- (r)) 

Q2(t-s) E(e 2( (t)- (s))) 
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Given the distributional assumptions for e(t), we thus have 

E(e ~t)-~s)+~(t)-~(r)) = exp ((t-s)0+(t-r),+ - ~  ~(u,w) 

b % 

+ 2 ~[~ ~(u,w)) 

where, in this case of an AR(1) model, 

]~(u,w) = ~2 ~|u-wl . 

For convenience, we can write 

E(e A(t)-l%(S)+~(t)-A(r)) = exp [(t-s)8 +(t-r)8 + ~2H(t,r,s)] 

and consider the simplification of H(t,r,s) in Appendix II. 

Rewriting equation (20) gives 

F(t) = (F(0)Q t + Qt-IR)e ~(t) + Qt-2 R e ~(t) - ~(I) 

+ Qt-3 R e ~(t) - ~(2) + ..... + R e ~(t) - ~(t-1) 

For convenience, we will take F(0) = 0. 

k °i k-i 

Then, E(F(t) )2 = E [ ~ ~ e a(tI-~(s) e A(t)-A(r) Qt-l-s Qt-l-r R 2] 
S : O  ~=*0 

W ~.  r - L  

= 2R2 ~ Z Qt-s Qt-r E(eL&(t)-~(sl+G(t)-~(r)) 
~2 r:, ~:o 

k * |  

+ R2 Z Q2(t-s) E(e 2(~(t)-~(s))) 

Q2 5- -o  

159 



%-| r - i  

= 2R 2 %~ ot-sot-rexp[8(t-s)+(t-s)11+~)u2lexplelt-r)+(t-r)(1+~)_,w~ 

t-s+1 r-s+1 ]) 
. ,x,r-%'~_1 .exp(,2[2(r-s)~)r-s ÷ 2~t-r'1 + .  .. 2, - ~ 

+R 2 ex£[-~' 1 ~_ Q2(t-S)exp [2(t.-s)e+2(t-s){l+~)#2]ex p [ ~ ]  

using the simplified versions of H(t,r,s) from Appendix II. 

These double summations are in a complicated form but are again 

related to annuity values. 

It can then be shown that (see Appendix III for details) 

Lim E(F(t) 2) = e -3d 2R2Qc2w + e -4d R2cw 

( I -Qc) ( I -Q2cw) ( I -Q2cw) 

where d = ~2~ , c = exp (@+~I+~)u2), 

(I _~)2 2(I-~) 

W = exp (8 +!(I+~)u2). 
2 
(i -~) 

Q=vq, R=vr as before and 

We note that I~<I, by assumption, and that 
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Q2c w = q2v2 cw = q2 e~ (I+3~)~2) 

(~-~1 

For convergence, as t~ we require Qc <I and Q2cw <I. 

Then, Lim Var F(t) = e -3d 2R2Qc2w + e -4d 

t (1_Qc)(1_Q2cw) 

R2cw 

(1-Q2cw) 

- R2c 2 e -2d 

(I -Qc) 2 

Then, formulae for Lim Var C(t) = Var F(t) may be obtained. 

The next stage in this study is to investigate further the 

properties of these moment equations and relationships between 

them. 
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4. CONCLUSIONS 

The variability of contributions (C(t)) and fund levels (F(t)) 

resulting from random (real) rates of return has been studied 

mathematically. The funding methods considered are Aggregate 

Method and those methods that prescribe the normal cost to be 

adjusted by the difference between the actuarial liability and 

the current fund, divided by the present value of an annuity for 

a term of "M" years. A simple demographic/financial model 

permits the derivation of formulae for the first two moments of F 

and C, when the earned rates of return form an independent 

identically distributed sequence of random variables. 

The approach has been extended to include the case of a first 

order autoregressive model for the real rates of return. 

Expressions for the first two moments of C(t) and F(t) have been 

obtained and their detailed properties are currently under 

investigation. 
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APPENDIX I 

Consider 6(t) = e + e(t) (18) 

where e(t) for t=l,2, . .... are independent and identically 

distributed normal random variables with mean 0 and variance 2. 

Using the notation of section 2.1, equation (7) becomes 

F(t+l) = e (6(t+l) - 8 -~ 2) (q F(t) + r) (7a) 

Then E(F(t+I)) = E E (F(t+llHt) 

I 2 
= E(e6(t+l) O - 2 ~ ) E(q F(t) + r) 

= (q E F (t) + r) (8) 

i 2 
S i n c e ,  u s i n g  m o m e n t  g e n e r a t i n g  f u n c t i o n s ,  E ( e  8 ( t + l ) )  = e O+27 = l + i .  

And so, equations (9) and (I0) and the associated results would follow. 

Concerning second moments, we again use the result that 

Var (F(t+l)) = E Var (F(t+l) IHt) + Var E (F(t+l) IHt). 

Var (F(t+l) IHt) = Var (e 6(t+I)-0-~2) (q F(t) + r) 2 

2 2 
Vat (e  6 ( t + l ) )  = e 20 + ~ ( e  7 - 1) u s i n g  m o m e n t  g e n e r a t i n g  

functions. 

2 
So Var (F(t+l) IHt) = e-2O-72e2e+72(e 7 - i) (q F(t) + r) 2 

2 
= (e ¥ - i) (q(F(t) - E F(t)) + q E F(t) + r) 2 

2 

Hence E Var(F(t+l)IHt) = (e ~ - i) [q2 Var F(t) + (E F(t+l)) 2] 

From (8), E(F(t+I) IHt) = (q F(t) + r) 

Hence Var (E(F(t+I) IHt)) = q2 Var F(t). 
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We therefore obtain 

2 2 2 

Var F(t+i) = ( e 7-i) q2 Var F(t) + q2 Var F(t) + (e;-l) (E F(t+l)) 
2 2 

e 7 q2 Var F(t) + (e ¥ - i) (E F(t+l)) 2 

2 
a Var F(t) + b (E F(t+l)) 

where a and b correspond exactly to the definitions given earlier. 

And so, equations (12) and (13) and the associated results would 

follow. 
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Appendix I I  

= ] lu-wl+ 1u-el 
H(t,r,s) ~ ~ 2 ~ = A + B, say. 

w:5÷l u:S+1 w:S+l u = r * l  

t (r-s) + (r-s-x) x i_ (r-s) + w-u = Then A = 2 
u=S*l w=- u.*-I 1 

as proved in section 3, in the discussion leading up to equation 

(22). 

To obtain, a simplified expression for the second term, B, we can 

think of the summands 2~ u-w as being entries awu in an array 

with (t-s) rows and (t-r) columns and r > s without loss of 

generality. It is convenient to divide up the array into three 

regions (following Appendix I of Panjer and Bellhouse(7)). 

° -  ~- q,-..t i q e "  ~.1. ~. 
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R 1 is the set of values in the array of awu bounded by w=s+l, 

u=t and u-w=r-s. 

R 2 is the set of values in the array bounded by u=r+l, u=t, 

u-w=r-s-I and u-w=l. 

R 3 is the set of values in the array bounded by u=r+l, w=t and 

u-w=0. 

This sub-division is best illustrated by an example. 

r=5, s=l then the array is as follows 

Let t=ll, 

~g 
Ull ~ ann ~ ' 

R 
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t-s-1 

x=r-s 
R 

I 

r - G - 1  

2 Z Z ~)lu-w' = 2 ( t - r )  Z X 
X=1 

R 2 

t - r - I  

Z = 2(t-r) + 2 

R3 x= 1 

(t-r-x) x 

Hence H(t,r,s) = A + B 
r - g - I  t - s - 1  

- 21 (r-s)  + Z ( r -s -x)  ip x + 2 Z ( t -s -x )  i~ x 
x=1 x=r-$ 

r - s - 1  t - r - 1  

+ 2 ( t - r )  ~ ~px + 2 ( t - r )  + 2 Z ( t - r - x )  ~px 
X=1 x = l  

I (r-s) + (r-s)~ -- ~(I-~ r-s) + 2(t-s) r-s 
2 

2 
~-~ (i-~1 ( i - ~ )  

- 2~ ( r-s t-s) 

2 
(~-~1 

+ 2(t-r) ~ (I-~ r-s-l) + 2(t-r) + 2(t-r) 

(i-@) (i-~) 

- 2~ (.i-~ t-r) 
2 (~-~) 

which simplifies further to 

r-s+l 
H(t,r,s) = ~ (t-s) (I+~) - 

2 ( i -~) (z-~) 

r-s 
+ 2 (r-s) @ 

(l-e) 

+ 3 I t-r+l + (t-r) (i+~) + 2 t-s-i 

(i-~) [ (i-~) 2 
- 3~ 

(I-~) 2 
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If r=s, this simplifies to 

H(t,s,s) = 2(t-s) i+~ ] + 4 t-s+l _ 4~ 

1-(p J (1-~p) 2 (1-1P) 
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Appendix III 

Consider the double summation 

t-I r-1 

Q2 r = l  $ = o  

Qt-s Qt-rct-S wt-r 

where c = exp 
I 2 i+~ 

e + y u 
i-~ 
-- ] and w = exp [ 8 +3- u 2 I+@ ] 

2 i-~ 

I (t) = 2R 2 
I Q2 

t-1 r-1 
Qt-r wt-r [ Qt-s ct-S 

r=1 $ = o  

= 2R 2 
Q2 

%-1 
X Qt-r wt-r Qc 

l-Qc 

Q2 I-Qc r = 

((Qc) t-r- (Qc) t) 

t-! 
(Q2cw)t-r- (Qc) t ~ (Qw) 

r=l 

t-r 

Q2 I-Qc 

As t ~ =, Lira I (t) = 2R 2 
I 

Q~ 

Q2c w - (Q2c w) t - 

I-Q 2 c w 

I-Q2cw 

(Qc)tIQW-l-Qw (Qw)t] ] 

/ 
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Consider the double summation 

I 2 (t) = R_~ 2 t~l 

Q2 s=o 

Q2(t-s) (c w) (t-s) 

= R 2 (Q2 cw) 

Q2 
[l-(Q2cw) t 

l-Q2cw ] 

As t ~ ~, Lim I (t) = R 2 
2 Q2 

Q2 cw 

l-Q2cw 

-3d Hence Lim (e 
tg~ 

- 4d I (t) + e 
1 

I2(t) ) 

- ad 2R2Qcaw 
= e 

(I-Qc) (l-Q2cw) 
+ 

-4d 
e R2cw 

l-Q2cw 

Appendix.chi 
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