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ABSTRACT 

Interest Rate Volatility and Equilibrium Models of the Term Structure: 

Empirical Evidence 

This  p a p e r  examines  t h e  j u s t i f i c a t i o n  o f  u s i n g  the  o n e - f a c t o r  g e n e r a l  

equilibrium model of Cox, Ingersoll, and Ross (CIR) [1985] to model both the 

term structure of interest rates and its associated volatility. A proposed 

maximum likelihood approach attempts to match both the yield curve and the 

yield volatilities, using a short history of zero coupon bonds (strips) from 

the U.S. government securities market. Although the CIR model appears to 

match fairly well the yield curve, matching simultaneously both the yield 

levels and their volatilities is found to be more difficult. This evidence 

raises objections in using a one-factor model to explain yield curve 

volatility behavior. 
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I. INTRODUCTION 

The aim of this paper is to examine the Justification of using the 

one-factor general equilibrium model of Cox, Ingersoll, and Ross (CIR) [1985] 

to model both the term structure of interest rates and its associated 

volatility. A maximum likelihood approach that attempts to match both the 

yield curve and the yield volatilities is proposed, using a short history of 

zero coupon bonds (strips) from the U.S. government securities market. 

Although the CIR model appears to match fairly well the yield curve, the 

simultaneous matching of both the yield levels and their volatilities is found 

to be more difficult. This evidence raises objections in using a one-factor 

model to expalin yield curve volatility behavior. 

The paper is organized as it follows. Section 2 describes the nature of 

the CIR model of interest rates, along with the empirical investigations of 

that model. Section 3 explains the statistical estimation method used to 

solve the particular identification problem of the CIR model. A maximum 

likelihood procedure is used and the estimation, and asymptotic properties are 

presented. Section 4 describes the financial data used for the estimations. 

Section 5 presents the results and analyzes the likely causes of the model's 

failure to explain simultaneously both the yield curve and its associated 

volatility using the same one-factor model. Section 6 concludes. 
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2. THE COX-INGERSOLL-ROSS (1985) MODEL OF INTEREST RATES 

2.1 The One-Factor Model 

In Cox, Ingersoll, and Ross [1985], thereafter CIR, the problem of 

determining the term structure is posed as a problem in general equilibrium 

theory. A rational asset pricing model to study the term structure of 

interest rates is used. The current prices and stochastic properties of all 

contingent claims, including bonds, are derived endogenously. Anticipations 

of future events, risk aversion, investment alternatives, and preferences 

about the timing of consumption all play a role in determining the term 

structure. The model thus includes the main factors traditionally mentioned 

in a way which is consistent with maximizing behavior and rational 

expectations. 

The dynamics of the simplest form of the CIR [1985] model for the interest 

rate process are given by 

(i) dr - ~(0-r) dt + o Jr dz , 

where ~, #, a 2 are constants, with ~8>0 and o2>0. The model thus assumes that 

the term structure is fully specified by the instantaneous riskless rate 

r(t). For 6>0 and ~>0, this corresponds to a continuous time first-order 

autoregressive process where the randomly moving interest rate is elastically 

pulled toward a central location or long-term value, 0. The parameter 

determines the speed of adjustment. 

Let's recall the valuation equation of a default-free discount bond, 

P[r,t,T], that pays one unit at time T, ~-T-t periods from now. Using the 

drift and variance formulae for r as well as the term for the factor risk 
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premium, ~, the fundamental equation is given by 

(2) (I/2)°2rPrr + m(0"r)Pr + Pt -ArPr -rP - O. 

with the boundary condition P(r,T,T) - I. Ito's Lemma gives the expected price 

change for the bond as 

(3) (I/2)a2rPrr + m(8"r)Pr + Pt 

thus ArP r+rP is the expected return on the bond, and r+ArPr/P is the rate of 

that expectation. Obviously, ~-ArPr/P is the term premium on the bond, and 

can be written in two parts as 

(4) ~-(~r) (Pr/P) 

where lr is the covariance of changes in r with the percentage changes in 

"market portfolio", and Pr/P is the elasticity with respect to the interest 

rate, or the negative of the modified price duration. Since Pr<O, z>0 if ~<0 

(i.e. negative correlation with optimally invested wealth (the market 

portfolio). 

In the present single factor model, the returns on all assets are 

perfectly correlated to the extent they are all exposed to the risk inherent 

in the interest rate process. The instantaneous interest rate on the zero 

coupon bond can be written as 

(5) dP/P - [~(~-r)Pr/P + Pt/P + (i/2)o2rPrr/P] dt+ oJr Pr/P dz 

- ~(r,t,T) dt + u(r,t,T) dz. 

By taking the relevant expectations, and using the Brown and Dybvig [1986] 

notation, the solution of the fundamental equation is of the form 

(6) P[r,t,T]- AIr,T]* e "B[t'T]r 

where for ~ - T~t, 
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( T a )  

( 7 b )  

where 

(7c) 

(7d) 

(7e) 

AIr,T]- { ~lexp(~2 T) / (~2[exp(~l~)-l]+~ I) } 

B[t,T]- [exp(@ir)-i ] / [(~2[exp(~lV)-l]+~l)] 

~i - { (~+A)2 + 2a2 } 1/2 

~2 - (~+~ + ~I ) / 2 

2 
~3 - 2~8 / a . 

~3 

2.2 Previous Empirical Tests of the CIR Model 

In a recent paper, Brown and Dybvig [1986] tested the nominal form of the 

one-factor CIR model of the term structure on 373 cross- sections of monthly 

US Treasury, default free coupon bond prices data from 1952 through 1983. Each 

cross-section was used to produce maximum likelihood estimates of the 

identifiable parameters. Using their cross-sectional methodology, they 

pointed out that the CIR [1985] model was not fully identified. Nevertheless, 

they came out with estimates of the short-rate of interest (which was treated 

as an additional parameter), the long-term rate or mean reversion rate, and 

the variance parameter. 

Stambaugh [1986] offered another test of the Cox-Ingersoll-Ross [1985] 

model by focusing on the nature of the expected excess returns. In such a 

model, the expected excess returns are linear functions of forward premiums, 

where the number of latent variables captured by the forward premiums equals 

the number of state variables in the pricing relation. Stambaugh pointed out 

that when the maturities of the forward premiums match those of the excess 

returns, the number of state variables required to describe expected returns 

can appear to be large due to measurement errors. An alternative set of 

forward premiums with non-matching maturities is postulated to reduce the 
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problems arising from measurement error. Tests of the number of latent 

variables in expected returns on U.S. Treasury bills were performed in a 

Generalized Method of Moments (GMM) framework and rejected a slngle-variable 

specification of the term structure. But Stambaugh provided some evidence 

that two or three latent variables appear to describe expected returns on 

bills of all maturities. Expected returns estimated using two latent 

variables vary with business cycles in a manner similar to what Fama [1986] 

observed for forward rates for the full range of maturities. Nevertheless, 

Stambaugh concluded by affirming chat expected returns on U.S Treasury bills 

appear to change over time in a manner that is consistent with parsimonious 

models of the term structure, such as models developed by Cox, Ingersoll, and 

Ross [19851 . 

3. THE ECONOMETRIC METHODS 

In the nominal form of the CIR [1985] model, the successful identification 

and estimation of the parameters are sufficient to price nominal bonds of any 

maturity. Moreover, the yields on these bonds are perfectly positively 

correlated. This follows from 

(Sa) 

(8b) 

(8c) 

Pt(r,~) - A(T) exp{-B(T)r(t)} , 

Yt(r,~) - - In[Pt(r,~)]/, - a(f) + b(~)r(t) , 

a(T) - -In[A(~)]/~, b(f) - B(~)/r , 

(Sd) COV[Yt(r,,l),Yt(r,~2) ] - b(~l)b(,2)VAR[r(t) ] , 

(8e) VAR[Yt(r,Ti) ] - b(Ti)2VAR[r(t) ] , 

where COV and VAR are unconditional covariances and variance operators, and 

where VAR[r(t)] - o2r(t). 
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In this section, we will lay out the econometric method used to estimate 

the parameters of the interest rate model. Both the generalized method of 

moments and the maximum likelihood estimation procedures will be explained, 

along with their statistical properties and inference. A statistical testing 

methodology for contingent claims models will be developed, using the 

principle of invariance. But before, let's address the identification problem 

of the CIR [1985] model, as suggested by Brown and Dybvlg [1986]. 

3.1 The Identification Problem of the CIR Model 

In practice, what we observe is the nominal price of a discount bond at 

date t for a dollar deliverable at t+r. In a single model of the term 

structure of interest rates, if the state variable is observable, and if there 

are several bonds of different maturities to permit identification of the 

problem, then simply equating the functional form with the observed discount 

bond prices or yields, at a point in time, would represent a way to estimate 

the parameters of the model from a cross-section of securities, using 

non-linear regression techniques. To that effect, Gibbons and Ramaswamy 

[19861 , in their two-factor model of the real term structure, add 

Even without observing the state variable, non-linear 
cross-sectional regressions may allow identification and 
estimation of the underlying parameters as long as the state 
variables are treated as additional parameters. However, it is 
not clear how to link the time series properties of the state 
variables to the estimated parameters [p. 7]. 

Brown and Dybvig [1986] mentioned an identification problem, 

associated with the GIR model. Originally cast using four parameters 

and a state variable, or five parameters, (~, 6, A, o, r), the model 

cannot be separately identified, using cross-sectional data. The reason 

lies in the appearance of ~ and A as ~+A almost everywhere in the model, 

so that, when considering a single cross-section, the four parameters 

(~, 6, A, o) can be expressed as three (41, 42, 43). One way to 
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alleviate the problem is to impose the no-arbitrage condition, the 

so-called Local Expectations Hypothesis, i.e set A-0. 

Another way to solve the identification problem is to take advantage 

of the availability of the dynamic specification of the single forcing 

variable, the instantaneous riskless rate, r(t). Specifically, one can 

observe the term structure at different points in time, the so-called 

time series approach, and make use of the availability of a functional 

form within the CIR model for the relevant densities of the unobservable 

forcing variable, r. In doing so, our system becomes "overidentified", 

since a single forcing exogenous variable is used to explain two sets of 

endogenous variables. One is then able to exploit this availability in 

testing the overldentifying restrictions and arriving at parameter 

estimates. 

In estimating a nonlinear system related to the proposed one, 

Gibbons and Ramaswamy [1986] used the Generalized Method of Moments 

(GMM) first developed by Hansen [1982] and employed in Hansen and 

Singleton [1983], Brown and Gibbons [1985] and elsewhere. Gibbons and 

Ramaswamy used the restrictions on the population first and second 

moments of the CIR model to identify the parameters. The first moment 

restrictions are given by the functional form of the CIR model for the 

discount bonds, taken separately, at the same given point in time. The 

second moment restrictions, or cross and autocovariances, are given by 

the functional form of the variance and autocovariance functions of the 

model, for two discount bonds, identical or different, taken at two 

different points i_nn time. 

Our approach somewhat differs form the one taken by Gibbons and 

Ramaswamy [1986], but nevertheless, carries the essential of the moment 

matching idea. In a first step, the term structure of interest rate, 

i.e. the yield curve for discount securities of different maturities, 

is calculated at a given point in time, assuming starting values that 

would made mean reversion possible (~,0>0). In a second step, we use 
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these estimates of the yield curve equation as initial estimates, 410, 

420, and o0, for the yield curve volatility or second moment 

restrictions. Alternatively, we can use these initial estimates to 

estimate jointly both the yield and yield volatilities simultaneously, 

by using also a non-linear estimation technique. In that case, the 

mlnimand uses both the errors in the yields and in their volatilities. 

The One-Step Theorem ensures us that, for the parameters estimated in 

the first procedure, i.e. 41, 42 , and a, the final estimates for those 

estimates have the same statistical properties as the estimates of the 

first step. 

The yield curve volatilltles are measured using the daily yield 

observations of the recent, past trading days. Usually, a three-month 

period, consisting of approximately 60 trading days is chosen; but 

periods such as one month (last 20 trading days), or one year (252 

trading days) could be chosen. Different methods of estimations could 

be chosen to obtain a standard deviation of the yield estimates, the 

proxy for the volatility. Usually, the simple maximum likelihood 

estimate of the standard deviation will be chosen. If the data is 

thought to be unreliable, a robust estimate, one that minimizes the 

absolute mean deviation, as opposed to the square of the deviations, 

could be used. 

Working with daily bond price data also uncovers the problems 

associated with nonsynchronous trading, which is thought to cause the 

observed autocorrelations in daily returns on asset prices. Fama [1970] 

found slightly positive average autocorrelations in examining daily 

security returns with a lag of one day and no empirical evidence of 

significant autocorrelatlons for higher lags. Also, daily market- index 

returns exhibit a pronounced positive first- order autocorrelatlon. 

This index phenomenon has been called the Fisher effect since Lawrence 

Fisher [1966] hypothesized its probable cause. Hence a correction for 

auto-correlation of daily errors in yields would be used, in calculating 

the second moments of the yield relationships. 
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Since the volatility restrictions do not depend on the 

mean-reversion parameter, 6 (CIR notation), or equivalently, ~3 

(Brown-Dybvig notation, thereafter BD), values for the parameters 41, 

42, and o can be found by a non-llnear estimation procedure. 

3.2 The Maximum Likelihood Estimation Procedure 

The maximum likelihood estimation procedure proposed here, which 

differs from the ones used in estimating the CIR model by Brown and 

Dybvig [1986] and Gibbons and Ramaswamy [1986], nevertheless carries the 

essential of the moment matching idea. It exploits the dynamic 

specification of the CIR model in testing the overidentifylng 

restrictions and arriving at parameter estimates. Specifically, we 

still want to minimize the quantity (mlnlmand) 

(9) nini.ize ~(~) - gT(~)'o-l&r(~) 

#~B 

where ~-~(r,~,8,o,A) are the model parameters, ~ is a weighting matrix, 

the asymptotic covariance matrix of the vector of sample moment 

conditions, gT(@); the vector ET(~) is now defined by stacking the 

vectors from the relations on the first moment (the yield curve) and the 

second moment (the yield curve volatility): 

(10a) hlt(rl;~) m yt(,i) - a(¢i) - b(ri)r(t ) 

(10b) h2t(ri;~) - SD[Yt(rl) ] - b(,i)SD[r(t) ] , i, j- 1 ..... n 

where SD is the unconditional (relative) standard deviation operator, 

and where n is the number of available maturities for the pure discount 

instruments. In practice, the unconditional standard deviation is 

estimated using recent daily observations, correcting for the Fisher 

effect (first autocorrelation, due to nonsynchronous trading). Since 
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hit and h2t are assumed to be normally distributed, our procedure 

involves choosing ~ from a feasible region B to minimize these 

deviations from the model. Note that the state variable, r(t), can be 

either left outside of the estimation, if it is observable with 

precision at the valuation date, or can be incorporated in the 

maximization procedure, as an additional parameter. 

The estimation problem we face is the joint estimation of the system 

(~,n). Usual applications of the MLE require a two-step procedure to 

find ~, where ~ is first set equal to the identity matrix, and the 

resulting set of estimates for ~ are used to construct a second 

matrix, different from the identity matrix. In the procedure described 

above, the special structure of the orthogonality conditions, ht(~), is 

used to avoid this first step. Looking at the special nature of the 

estimation problem, the assumption of serially uncorrelated ht(~), due 

to a rationality assumption that agents use all past information, would 

be reasonable. There is no reason, a priori, to expect the errors in 

the yield curve matching, the hit condition, could be correlated with 

the ones in the yield curve volatility matching, the h2t condition, nor 

there is any reason to expected correlations in the two hits or h2ts of 

different maturities. For these reasons, the diagonal structure will be 

adopted for the weighting matrix. The asymptotic justification for MLE 

only requires that the weighting matrix be a consistent estimator of the 

asymptotic variance- covariance matrix for h(~). 

The covariance matrix of the asymptotic distribution of the MLE 

estimator for ~ can then be consistently estimated by: 

* - -i (lla) Var(~*) - [Dr(~ )~ ID(~*)] , 

* T-I (llb) D(~ ) - ~t aht/a~ I~_~* 

Asymptotic tests and inference can be conducted on the MLE estimates, 

using the well known three asymptotic tests mentioned in Engle [1984]; 

these are the likelihood ratio test (LRT), the Wald's test, and the 
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Lagrange Multiplier (124) or Rao test. All three tests can be shown to 

have the same limit Chisquare distribution, x2(q), under the null 

hypothesis, where q is the number of parameters to estimate. In our 

case, Wald's test would be the easiest to use, since it requires only to 

estimate the score and Hessian functions under the unrestricted form. 

This contrasts with the Lagrange Multiplier test, which requires a new 

estimation for each restricted values of the parameter, and the LRT, 

which requires both restricted and unrestricted estimations. 

4. DATA SOURCES AND DESCRIPTION 

The empirical results reported in this research are based on a cross- 

section of data on the Government securities market. These data can be 

obtained from several sources, such as the CRSP tape and the Wall Street 

Journal. Using the methodology described previously, we estimate the 

parameters of the term structure of interest rates on the basis of data on the 

prices of U . S .  Treasury issues trading at a given point in time. Treasury 

issues, other than Treasury bills, are coupon bonds and can be represented in 

the model if we regard each as the sum of a series of discount issues 

corresponding to each coupon payment, plus a discount issue corresponding to 

the terminal payment on the bond. In fact, this decomposition of coupon bonds 

into coupons and principal repayment of different maturities make possible the 

estimation of the highly non-llnear bond price function with only a handful of 

coupon bonds, using a cross-sectional sample of bond prices at a given point 

in time. 

Data on US Treasury securities prices were obtained from the Goldman, 

Sachs & Co. database in August 1986. Those prices were either the trading 

prices or the mean of the bid and ask price quotations where trading prices 

were otherwise not available, plus the accumulated interest (for coupon bonds) 

as of that date. For each price, the corresponding time to maturity as well 

as (for coupon bonds) the coupon payments, number of payments remaining and 
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time to next payment were also recorded. 

The market for pure discount (zeros or strips) bonds has expanded 

dramatically over the last years. These pure securities are available at 

maturities varying between three months and thirty years. So, the universe of 

U,S. pure discount securities offers a cross- section of between Ii0 and 120 
i 

securities, traded at a given time. For this reason, and because the 

liquidity problem associated with current versus seasoned issues is not as 

important an issue (in fact, to some extent, all zeros are equally illlquld), 
2 

we will use, when available, data from the pure discount securities. 

5. EMPIRICAL RESULTS 

The estimation of the term structure of interest rates, under the CIR 

[19851 model involves a two-step procedure, as described in a previous 

section. In a first step, the yield curve is estimated using the universe of 

traded US Treasury Strips at a point in time. This yields initial estimates 

of the parameters of interest ~ - [r ~I ~2 ~3 ]' as proposed by Brown and 

Dybvig [1986]. The results of the estimation are shown in Graph I. 

I. The author recognizes that a nonsynchronous trading problem might exist 
here. Typically, as in the case of the coupon securities, some bonds are 
traded more actively than others. In that case, at the end of the day, bonds 
that did not trade are adjusted up or down before being inputted in the data 
base. Nevertheless, the pure discount securities offer an analytically 
tractable way of imposing moment restrictions to identify the parameters of 
the term structure. 

2. Gibbons and Ramaswamy [1986] observed the presence of these stripped, 
single payment certificates, derived from coupon- bearing Treasuries, but felt 
that, for their 1964-1983 period of observation, they lacked a sufficient 
history. Our approach, while raising the problems associated with daily data, 
does not require a long history of stripped securities. 
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The point estimates of the cross-sectional estimation were 

r - 0.05278, 41 - 0.41436, 42 - 0.40736, ~3 - 11.998 . 

As Brown and Dybvig noted, it is impossible to separately estimate the five 

parameters of interest ~ - [r m A o 0], using only a cross-sectlon, unless the 

Local Expectations Hypothesis (LEH) assumption is used. Using the 

transformation mentioned in Brown and Dybvig [1986], mainly 

(7c) ~I - ( (~+A)2 + 2a2 } 1/2 

(7d) #2 - (~+A + 41 ) / 2 

2 
( T e )  4 3 - 2~9 / ~ , 

the identification problem is highlighted by the following system of 2 

equations with three unknowns 

( 1 2 a )  ~e - 0.03378 

(12b) ~+A - 0.40036. 

Hence, in a second-step, the yield volatility curve is estimated using a 

time-series of daily yields on the universe of traded US Treasury Strips for 

the past 60 trading days prior to the valuation date. The volatillties were 

adjusted for the econometric problems mentioned in a previous chapter, The 

results of the volatility estimation are shown in the first fitted curve 

(Fitted Volatility-l) of Graph 2, 

215 



I 3 0 0  - 

Graph 2 

Comparison of Actual Io Fitted Strip Yield Volatilities 
Estimated using US Treasury Sfrips Universe - DATE: 0 8 / 2 8 / 8 6  

o 
0 
> 
"u 

>- 

2bO 

20,0 

150 

I0 .0  

50 

O 0  

O0 

~ c o r P ;  M 
. . 4 )  

\ 
\ 

\ 

o Actual Volatility 
Fitted Volatility_-1 
Fitted v o l a f i ! i t y - 2  

~ ~ m . ~ r ~ o o  ° o o o o o o o o 

n -  . . . . . .  r . . . .  I - - -  - ] 

2.5 5.0 2.5 I0,0 12.,5 1,5.0 17,5 20 .0  2 .5 25.0 2 .5 

Maturity (in years) 
30.0 



Note that the estimates are biased. Several initial estimation points were 

tried, but, in all cases, the resulting likelihood estimates were found to be 

downward biased. This is perceived to be due to the intrinsic limitation of 

the one-factor model used in this research. Nevertheless, the corresponding 

"underidentified" system in that case was 

(13a) ~O - 0.00157 

(13b) ~+A - -0.01464. 

Note also that the long-term mean reversion parameter, 0, is a parameter 

of interest only in the yield curve matching, and not in the yield volatility 

curve matching. Since the long-term mean reversion parameter, O, was found, 

in the yield curve matching, to be of the order of 8.5%, this would imply the 

following point estimates for the speed of adjustment and the risk premium 

parameter in the volatility matching: ~ -0.0185, A --0.0331. If this point 

estimate were to be significant and correct, the excess return on a strip of 

maturity r- T-t would be -% f. This is obtained from the equilibrium rate of 

return relationship shown previously in the risk premium section. Recalling 

that 

(14) ~(r,t,T)- ~(r) - r + A (r,t) Pr/P - r + A r Pr/P - r + A Dmo d , 

and since the duration of a zero is equal to its maturity, this would have 

mean that the expected return on a 30-year zero would have been of the order 

of 5+(3.31)30 - 104%. Since there is no reason a priori to expect the excess 

return on a 30-year zero to be ten times as much as the one on a 3°year zero, 

and 30 times as much as the 3.3% excess return on a 1-year zero, the joint 

estimation of the yield curve and yield curve volatilities was redone, using 

the initial estimates of the yield curve only estimation and the LEH 

assumption. The results are found in Table 1 
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Table 1 Parameter Estimates of Cox, Ingersoll and Ross Model of 
Term Structure, August 1986 (Standard errors in 
parentheses) 

Point Estimates 

r ~ o # 

0.05278 0.40037 0.07551 0.08544 

(0.01065) (0.00517) (0.02767) (0.05539) 

Variance-Covarlance/ Correlation Matrix (lower- correlation) 

* * * 9: 
r ~ a @ 

0.0001134 0.0000013 0.0001577 0.0002462 

0.023 0.0000267 -0.0001103 -0.0002412 

0.53 -0.77 0.0007656 0.0015136 

0.42 -0.84 0.98 0.0030681 

Long-run yield (r L ) - 8.40% 

Short-Rate Volatility - o*/Jr* - 32.9~ 
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The yield curve matching was left almost unchanged. But the yield curve 

volatility matching is found to be much worse. This is shown in the second 

fitted curve (Fitted Volatility-2) of Graph 2, where the second fitted 

volatility is obtained from the final maximum likelihood estimation. The 

downward sloping volatility curve was observed by other researchers, such as 

Black, Derman, and Toy [1987] and is often associated with the mean reverting 

behavior of the short term interest rate: 

"In our model, today's long rate reflects expected future short 
rates, and today's long-rate volatility reflects expected future 
short-rate volatillties. Therefore, when we match today's term 
structure to expected future short rates, our model's future short 
rate volatility must also decrease with time. In our model... 
the expected short rate volatility depends only on time and not on 
the short rate itself. If future short rate volatilities decrease 
with time, then high future short rates become less likely as time 
goes by. This damping out of fluctuations in high short rates is 
equivalent to mean reversion. So, in our model the declining 
volatility curve is equivalent to mean reversion. [p. 14] 

Even if, as in the CIR model, the expected short rate volatility 

depends not only on time, but also on the short rate itself, these 

conclusions somewhat remain the same. Specifically, if A and 8 are 

positive, then one can show that 

(B.5) lim -i B(,) - 0 

i.e. in a one-factor model, the yield variability of the long-term zero 

coupon bond tends to zero, implying a declining yield volatility curve. 
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6 .  CONCLUSION 

This paper examined the justification of using the one-factor general 

equilibrium model of Cox, Ingersoll, and Ross (CIR) [1985] to model both the 

term structure of interest rates and its associated volatility. A maximum 

likelihood approach attempted To match both the yield curve and the yield 

volatilities, using a short hi: :ory of zero coupon bonds (strips) from the 

U.S. government securities market. Although the CIR model appears to match 

fairly well the yield curve, matching simultaneously both the yield levels and 

their volatilities is found to be more difficult. 

The evidence provided here r, ised objections in using a one-factor model 

to model yield curve volatility iehavior. In a related study to this paper, 

Stambaugh [1986] tested the numh~ r of latent variables in expected returns on 

U.S. Treasury bills, using a Generalized Method of Moments (GMM) framework and 

rejected a single-variable speci: :cation of the term structure. But Stambaugh 

provided some evidence that tw~ or three latent variables appear to describe 

expected returns on bills of all maturities. Nevertheless, Stambaugh and most 

researchers agree that expected returns on U.$ Treasury bills appear to change 

over time in a manner that is consistent with parsimonious models of the term 

structure, such as models develo~.ed by Cox, Ingersoll, and Ross [1985]. 

We have discussed here one limitation of the Cox, Ingersoll, and Ross 

[1985] model, which imposes restrictions on the joint determination of yield 

curves and yield volatilitles. Because the same parameters determine both the 

yield curve and the yield curve volatilltles, subtle combinations of term 

structure and volatilities are iN:,ossible. For instance, a model where mean 

reversion occur could not poss:',ly have a rising yield volatility curve. 

Nevertheless, one- and two-facto: models of the term structure remain popular 

because of their tractability. 
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