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A QUEUEING T H E O R E T I C  A P P R O A C H  TO T H E  
A N A L Y S I S  OF T H E  CLAIMS P A Y M E N T  P R O C E S S  

A B S T R A C T  

This paper represents an attempt to fommlate a cohesive and consistent approach 
to the analysis of claim liabilities. Probabilistic tools from risk and queuing theory 
have been incorporated into a stochastic model which quantifies the variability 
inherent in such liabilities, while at the same time reproducing intuitive results 
which may be arrived at from a deterministic standpoint. The model can be used to 
estimate various quantities of interest while providing a yardstick with which to 
measure the accuracy of the estimates. NurI~rical examples are used to illustrate the 
methodology. 

Chapter 1 describes the nature of the problem, together with a review of some 
results from probability and risk theory. The liability of  unreported claims is the 
subject matter of chapter 2, where the first two sections outline an intuitive model 
which is well suited for practical implementation, as is evidenced by numerical 
examples. More general approaches which take into account seasonality of claims 
incurral, inflation, business growth, variations in risk levels, and other factors are 
considered in the final section. 

The analysis of the liability of reported claims is considered in chapter 3. This 
liability is shown to be statistically independent of the liability of unreported claims. 
A queueing theoretic approach to the modelling of the claim settlement process is 
proposed. In addition, models of varying degree of complexity are analyzed, and 
some numerical examples are provided. A recumng theme of this chapter is the 
approximate right tail behaviour of the distribution of the liability of reported 
claims. This allows for estimation of the amount needed to cover such liabilities 
with a specified probability. 

In chapter 4 analysis of the delay in claims processing is discussed. An example 
illustrating how this information may be used to help analyze the efficiency of the 
claims administration system is given. Again, an approximation technique is 
developed for the distribution of the delay. Chapter 5 discusses areas for future 
research. 
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A Q u e u e i n g  T h e o r e t i c  A p p r o a c h  to the  A n a l y s i s  o f  the  C l a i m s  P a y m e n t  

Process  

C h a p t e r  1 - I n t r o d u c t i o n  

1.1 T he  c la ims  p a y m e n t  process  

The claims payment  process is a subject  of considerable interest to insurers for various 

reasons It normally involves a t ime lag following incurral of the accident, death or other 

claim causing event until the t ime at which final payment  is made and the claim is settled. 

A consequence of the delay in payment  of claims is the need to es t imate  outs tanding claim 

liabilities as of a particular accounting date. This adlows for the measurement of profit and 

loss within a part icular  accounting period to be made on a revenue basis. Est imat ion of these 

outs tanding claim liabilities is a required component  of any insurance company financial 

s ta tement ,  whether it be annual s ta tements  required by regulatory authorit ies,  in which case 

reporting is usually done on a s ta tu tory  (conservative) basis, or an internal profit and loss 

s ta tement  on a more realistic basis. The  import  a t tached to the accuracy of such est imates 

is demonstra ted in health insurance, for example,  by the requirement that  a retrospect ive 

test be performed to determine the accuracy of such liabilities in Schedule H of the NAIC 

statement  in the U.S. Fundamental  concepts involved in the analysis of these liabilities may 

be found in [3] or [2, chapters 5 and 9]. More advanced discussion of the philosophy of these 

liabilities and their intended purposes may be found in t18]. See also [1]. 

The time required to pay claims is also a reflection of the efficiency of the insurers'  claims 

area in the processing of claims. Thus, a less efficient system will take longer, on average, to 

process a claim than will a more efficient one. This may be a part icularly impor tant  criterion 

in the selection of a carrier in group life and health insurance. The  speed with which an 

insurer can efficiently process claims and remit payment may help to determine whether or 

not new business can be obtained.  Obviously, the need to monitor the whole claims payment 

process (as well as its consti tuent components)  is crucial for insurers. 
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A mathematical model of the claims payment process can be quite useful in several ways, 

particularly in light of the above discussion. Numerical estimates of quantities of interest 

such as the l iabil i ty at a point in time (needed for financial statement purposes) or the time 

required to process a given type of claim can normally be obtained from the model. If it is 

determined that a component of the system is unacceptable relative to expectation, then the 

mathematical model can help to predict the effect of a change in the system. For example, if 

it is felt that the time to approve a claim is unduly long due to too high a volume of claims, 

then the effect of hiring additional staff may be assessed. Thus, a mathematical model which 

captures the salient physical features of the process can act as a ~window" which allows one 

to "see" the world that is being modelled. Considerable insight into the nature of the process 

can be obtained, a point which is also discussed in [3, p. 26] where it is suggested that such 

a model is of particular use for new blocks of business or where information is difficult or 

even impossible to obtain. 

One such mathematical model was proposed in [13]. A major drawback of this model 

lies in its deterministic nature. Clearly, the problem is of a stochastic nature since the 

exact amount of outstanding claims cannot be ascertained in general. As a result, any 

deterministic formulation of the problem cannot capture the random variability inherent 

in the claims incurral process (the subject matter of risk theory, e.g. [2]) or the effect of 

an increased volume of claims in course of settlement, resulting in an increase in the total 

time to pay claims. Furthermore, the accuracy of the amount held for claim liabilities in 

various financial statements (the subject of the test discussed earlier) should more properly 

be assessed in light of its inherent variability before deciding whether the process used to 

set such amounts needs modification. This is particularly important since this variability 

can be quite large for some types of coverages, and such assessment cannot be made using 

a deterministic model. It is worth noting that in [3, p. 36] it is suggested that the use of 

confidence intervals are appropriate in this connection; specifically, it is recommended that 

the amount held should have a "three-to-one likelihood of sufficiency ~. Such a requirement 
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necessitates the use of a stochastic rather than a deterministic model. 

A wide variety of stochastic models have been proposed in connection with "loss reserv- 

ing", and many of these are described in [29] and [32]. These models consider the "incurred 

hut not reported" or IBNR issue, and, as noted in [27], do not refer to the use of queueing 

theoretic techniques, nor do they attempt to integrate the methodology with standard risk 

theoretic models (e.g. [2]). 

In this paper, the use of queueing techniques is shown to retain the advantages of other 

stochastic models, with respect to quantifying the inherent variability, while at the same 

time allowing for the modelling of other important features such as the effect of congestion 

(due to large numbers of claim.s) on the claims payment process. Consequently, in addition 

to providing a stochastic model for the total time from incurral of a claim to the time of 

payment (as well as the constituent parts), models for the number of outstanding claims at 

each stage of the payment process may be obtained (amounts held to cover the associated 

liabilities may need to be subdivided similarly for statement purposes; see [21, p. 105]). In 

some situations, a model for the number of claims reported but unpaid may be deemed to 

be unnecessary since one may be able to obtain the required claim counts exact])'. [n many 

instances, however, such data may not be available in the required format (particularly if 

collected for another purpose), or they may be costly to obtain. Furthermore, one is often 

interested in forecasting profit and loss statements for several accounting periods into the 

future, and in these situations predictions of reported claims may need to be made. 

Risk theoretic tools (e.g. [2]) may be employed to combine information on individual 

losses with the number of claims reported but unpaid, resulting in a stochastic model for 

the outstanding liability, and hence allowing variability to be quantified. Thus, the accuracy 

of an amount set aside to cover such liabilities may be assessed in light of the associated 

variability (which can be quite substantial). 

An additional feature of the queueing theoretic approach employed is the fact that, unlike 

man), other models, (cf. [27]), the results are both consistent with and enhanced by the use of 
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risk theory models. A consequence of this fact is that the data  required to use the models are 

the same as that needed for s tandard risk theoretic calculations. Thus, for weekly indemnity 

type coverages, for example, a continuance table (e.g. [2, p. 377]) would be needed, whereas 

for life insurance the face amount and mortali ty rates axe required (e.g. [2, section 13.3]). 

For other health and casualty type coverages, the da ta  on individual losses axe the same 

as that required for rate setting purposes. A thorough discussion of modelling claim size 

distr ibutions based on observed losses may be found in [12]. 

The aim of this paper is to indicate various ways in which queueing theoretic tools can 

provide valuable insight into the claims payment process. While some characteristics of 

practical situations are considered, it is not intended that the models or methods be used 

in any given situation. Consequently, only standard queueing methodology is used, but a 

k,,owledge of risk theory at the level of [2] is sufficient background, as all other ideas are 

presented as needed. Furthermore, whereas the techniques may be applied to blocks of 

bl,siness in various lines of insurance (e.g. group or individual, life or health), there mav be 

specific coverages which are of a sufficiently long term nature (e.g. long term disability) that 

the methods are not recommended. 

1.2  O u t l i n e  of  t he  p a p e r  

The remainder of the paper is devoted to the analysis of the claims payment process. 

Section 1.3 briefly reviews some of the important probabilistic and risk theoretic concepts 

which are needed. This includes generating functions, some parametric distributions, and 

compound distributions. Chapter  11 of [2] covers many of these concepts. The claims 

incurraI process is discussed in section 1.4. It is assumed that the number of claims process 

is a Poisson process, the usual risk theoretic assumption [2, chapter 12]. 

Chapter 2 deals with models for the claim liability due to unreported claims. The basic 

model is presented in section 2.1 along with a numerical example involving life insurance 

which helps to illustrate the methodology. A more general approach allowing one to relate 
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the reporting time to factors such a.s the size of the claim (a claimant may report a large claim 

more promptly than a relatively insignificant one) is proposed in section 2.2. A numerical 

example is given. Other important  subjects such ~ inflation (clearly of interest in connection 

with various types of medical coverages), seasonality of claims incurral and reporting, growth 

of the business, and heterogeneity of risk levels, a,e treated in section 2.3. 

Reported claims are the subject matt¢r of c',,,pter 3. Section 3.1 considers the reported 

claims process, and section 3.2 presents the basic model with a numerical example. Section 

3.3 utilizes queueing network theory in the simultaneous modelling of claims in various 

stages of the claims evaluation process. Such a breakdown is sometimes needed for s tatutory 

purposes (cf. [21, p. 105]). A more complicated model with respect to the claim approval 

process is considered in section 3.4. It is also shown quite generally in chapter 3 that 

relatively simple estimates of the claim liability may be obtained using these models. Thus, 

for example, one can easily estimate the amount needed to cover the liability with a specified 

confidence level, in the terminology of [3, p. 36]. 

Chapter 4 deals specifically with the analysis of the time that a claim is delayed in various 

stages of the processing system. Thus, a policyholder or certificate holder may be interested 

in the total time for incurral of a claim until payment is actually received, as this determines 

the delay in receipt of monetary funds. The insurer, on the other hand, may be interested in 

the time from receipt of notification of the claim until final approval or even actual disposal 

of the proceeds, since this time reflects the efficiency of the claims administration system. 

Chapter 5 includes various concluding remarks, indicating areas for further research. 

1.3 C o n c e p t s  f rom p r o b a b i l i t y  and risk t h e o r y  

This section includes a review of concepts which will prove to be useful in the stochastic 

modelling of the claims payment process. 

Suppose that X is a random variable with probability density function (pdf) f x ( z )  if X 

is continuous or probabi!ity function (pf) fx(z) if X is discrete. The distribution function 
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(df) is 

Fx(z)  = Pr(X < r) (1.3.1) 

and the moment generating function (mgf) of X is 

Mx(s) = E(e "x) = 7 e~'dFx(z)" (1.3.2) 
- o a  

If X is a discrete random variable defined on the non-negative integers, it is often convenient 

to use the probabili ty generating function (pgf) 

Px(s) = E(s x) = k f ( z )  s= (1.3.3) 
z m O  

rather than (1.3.2). Evidently, Mx(s) = Px(e ' ) .  The moments of X may be obtained from 

(1.3.2) or (1.3.3). Thus, one has 

E ( X )  = M. 'y(O)= P',c(t), 

whereas, for the variance, 

(1.3.4) 

Far (X )  = Mx(O ) - { 3G(O) }  a = Px(1)  + Px(1)  - {P~,(1)} 2. (1.3.5) 

[f no ambiguity results, the subscript X may be dropped from (1.3.1), (1.3.2), or (1.3.3). 

Various probability distributions will be used for modelling purposes. A flexible family 

of distributions is the gamma family, with pdf 

~ - ¢ , Z ~ -  1 ~-a¢/,3 
f ( z )  = ,z  > 0 (1.3.6) 

r ( a )  

and mgf 

?,l(s) = (1 - ds)-° ,s  < fl -L, (1.3.7) 

where ct and /3 are positive parameters, The exponential distribution is the special case 

a = 1 .  and in this case the df is given by 

F(z) = 1 - e - ' l a ,  z > 0 (1.3.$) 
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A second family of distributions which has slightly thicker tails than the gamma is the 

inverse Gaussian, with pdf 

and mgf 

2 s - ~ B  2 ~, 3 , 1 / 2 - ~  
I ( z )  . . . . .  e .o ,  z > O 

2,0rza J 
(1.3.9) 

M(s) = e-"llt-°'l't2-tI,s _< 3 -1, (1.3.10) 

where ~, and 3 are positive parameters. This latter family is discussed in detail by in [7]. 

'various other continuous pdf's are of use in various insurance contexts, and many of these 

are considered in detail in [12] in connection with individual losses. 

Of fundamental importance in connection with claim counts is the Poisson distribution 

with pf 
Aze-i 

f ( z )  = z! , z = 0 , 1 , 2  .... (1.3.11) 

and pgf 

P(s) = exI'-~l,s < oo. (1.3.12) 

Many important distributions in insurance may be obtained by mixing (cf.[12, section 

2.7]). For example, if f,(z) is a pdfor  pf for each i~(1,o,...,k),then so is 

i 

f (z)  = ~-']~ q,A(z) (1.3.13) 
, = 1  

where {q,;z = 1,2 ..... k} is a probability distribution. Mixtures of exponentials, for example. 

have been used in [2, chapter 12] in connection with ruin theory. An important class of 

discrete distributions is obtained by letting the Poisson parameter be random, thus 

7(A~/Ve -~v 
f ( z )  = z! u(y)d~l, z 0,1, ° (1.3.14) 

0 

where u(~/) is itself the pdf of a positive random variable. The pgf associated with (1.3.14) 

is 

/ e"d'-')u(~/)dy = M, { A(s - 1)}, (1.3. i5) P(s) 
0 
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where Ml(.~) = "]'e'Vu(v)dv is the mgf ~soc ia ted  with the pdf u(V). Mixed Poisson distribu- 
0 

tions are impor tan t  in insurance modelling, ~s well ~ in a queueing context. The negative 

binomial  d is t r ibut ion is the special case when u(!t) is a gamma pdf, and in this case (1.3.14) 

becomes (with A = 1) 

/ Q+Z--I 
/ ( z )  = [ 

k 

and (1.3.15) is, using (1.3.7) 

p(~) = {I - a ( ~  - i ) )  - ° ,  

The geometric dis t r ibut ion is the special c a s e  o = 1. 

. . . . .  (1:3.16) 

3 < 1 + ~ - ' .  (1.3.17) 

Except in special cases (such as the above), the integral in (1.3.14) is diffacult to evaluate. 

An approximation may be given for large z, however. Using the notat ion a(x) ~ b(x), z --. ~c 

to mean l i_moa(x) /b(z )  = 1, it can be shown (cf. [361)that if 

u(z) ~ Cx % -~'*, z -. oo (1.3.18) 

where C > O, -oc < 0 < o~, and ~ _> O, then (1.3.14) satisfies 

C:" A , 

f(~) (~+w)..,(~--T-~),~-o¢. (1.3.10) 

Compound dis t r ibut ions play an important  role in what follows. If .V is a discrete ran- 

dom variable taking values on the non-negative integers, and if" {XI, X2 .... } is a sequence 

of independent  and identically distr ibuted random variables (also independent  of N) with 

common mgf 3Ix(s ) ,  then the random variable Y = ,¥, + .\'2 + "'" + .\':¢ (where Y = 0 

if .V = 0) has a compound distr ibution with mgf , l l y ( S )  = P v{.%lx(s)} .  See [2, chapter 

11], for example. The dis t r ibut ion of )" is complicated, but [231 gives a recursive numerical 

algorithm for the evaluation of fy(x)  for various choices of f.,,.(x). Also, suppose that 

f,~(z) "-- Cz~O ~, z - -  ~ ,  (1.3.20 i 
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where C > 0, - o o  < ¢ < oo, and 0 < O < 1, ~md assume that there exists ~¢ > 0 satisfying 

Mx(~¢) = 0 - ' .  Then it can be shown (of. [8] and [35]) that 

1 - F v ( z )  ",. C l z # e  - ' "  , z ~ oo (1.3.21) 

Cl = C ~  { ( e "  - 1) (0M~¢(~¢)) ~ ' l }  if X is itself discrete on the non-negat ive  integers where 

and C, = C/{~(0MJc(~¢)) ~+'} if X is continuous. Clearly, (1.3.19)is itself of the form 

(1.3.20), and so tail estimates for the distribution of Y hold if N is negative binomial, for 

example. 

1.4 T h e  c l a ims  i n c u r r a i  p r o c e s s  

One of tile main building blocks in the construction of a model for the claims payment 

process is a model for the claims incurral process. In this regard it is assumed that the 

number of incurred claims process {l(,;t >_ 0} is an ordinary Poisson process (i.e., Ift is the 

number of claims incurred in (0, t]). This is the usual model employed in the subject of risk 

theory (cf. [2, chapter 12]). Thus, {K,;t >_ 0} has the following properties: 

i) N 0 = 0  

ii) {K(;t > 0} has stationary and independent increments 

iii) P r { / ' f , + ~ - N h  = k }  = ( A t ) % - ' ~ ' / k ! ; k = 0 , 1 , 2  . . . . .  

Tile parameter A is called the rate of the process. A more detailed discussion of the assump- 

tions leading to a Poisson process may be found in [2, pp. 346-350]. 

There are a few other properties of the Poisson process which will be used subsequently. 

a~cI tiler are recorded here for completeness. If a claim is classified upon incurral as being of 

type I with probability p and as type 2 with probability 1 - p ,  independently of other events, 

then the number of type 1 and the number of type 9 claims incurral processes are independent 

Poisson processes with rates Ap and A(1 - p) respectively. See [26, pp. '303-_'206] for a proof 

of this statement. Thus a Poisson process may be decomposed into independent Poisson 
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processes, and the extension to more than 2 types of claims follows easily by induction. 

Similarly, if two independent Poisson processes with rates Al and A~ are superimposed (i.e. 

only the total process is observed), then the sum of the two processes is a Poisson process 

with rate A~ + A2. The sa.,ne property holds for more than 2 processes by induction. 

Furthermore, the times of the k claims in (O,t], given that k claims were incurred in 

(0, t], are independent and identically distributed, each with the uniform density f t ( x )  = t -1, 

0 < z < t. See [26, pp. 209-211]. 

The total claims incurred process {Yt;t _> 0} is then a compound Poisson process. Sup- 

pose that { X I , X 2 , . . . }  is a sequence of independent and identically distributed random 

variables representing claim sizes (i.e. X, is the size of the i-th claim), also independent of 

{K , ; t  >_ 0}. Then ],~ = Xt +X~ +.. .+.k'a-,  (with Yt = 0 if K, = 0). This process is the study 

of much of risk theory (e.g. [2, chapters 11-13]). Similar decomposition and superposition 

properties hold for {F~;t > 0} as they do for the Poisson process (cf. [15, pp. 430-436]). In 

particular, the total of all claims of a certain size (i.e. claims whose size is contained in a 

specified subset of the real line) is'a compound Poisson process, independently of claims of 

other sizes. 

In the remainder of the paper this model will be assumed for the claims incurral process. 

and results quoted here will be used freely in studying properties of the claims payment 

process, 
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C h a p t e r  2 - U n r e p o r t e d  C l a i m s  

2.1 T h e  bas ic  m o d e l  

One of the main components of the claim liability is the portion a t t r ibutable  to the 

unreported claims. A wide variety of methods have been proposed (see [32] and [29]) but, 

as noticed in [26], these do not make use of queueing theoretic techniques. 

In this paper, the compound Poisson model for incurred claims (consistent with risk the- 

ory) is assumed, a.s discussed in section 1.4. Suppose that  the number of incurred claims 

{Kt;t >_ 0} follows a Poisson process with rate A. Let B be the random variable denoting 

the time from incurral of a claim to the time of reporting with distribution function FB(z). 

Furthermore, assume that reporting times are independent of each other. Then the distri- 

bution of N~, the number of incurred but unreported claims at time t, can be determined. 

As shown by in [26, p. 212], in connection with the infinite server ( M / G / ~ )  queue, the 

distribution of N~ is itself Poisson with mean 

I 

= A / { 1  - FB(z)}dz. (2.1.1) A~ 

0 

Under the risk theoretic model, the total unreported claims is compound Poisson, i.e. is 

given by Ut = )(1 + X2 + ""  + XN,. As shown in [22] for example, if the single claim sizes 

(denoted generically by .~') are discrete on the positive integers, then the distribution of g_'~ 

may be calculated recursively usirJg the formula 

f u , ( x )=  --'~'~-~.yfx(Y)fu,(z-y), z > 0  (2.1.2) 
X ~----1 

beginning with ft,,(0) = e -~'.  A similar formula holds if X has a continuous distribution 

(cf. [23]). Using (2.1.2), one can easily obtain numerical values of the percentiles of the 

distribution of Ut. The first two moments are 

E(U,) = A,E(X) (2.1.3) 
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and 

va , (u , )  = A,E(X~). (2.1..~) 

It is worth noting that when statistical equilibrium has been reached, considerable sim- 

plification follows, and numerous intuitively appealing results can be obtained. From (2.1.1), 

one has 

and so evaluation of Aoo requires only knowledge of the mean reporting lag E(B)  rather 

than the distribution function Fs(z)  as is the case for At when t < oc. In particular, no 

distributional assumption need be made about B. Also, from (2.1.3) with t --. oc, 

i.e. 

E(Uoo) = A E ( B ) E ( X )  = E(Y~)E(B),  

expected liability = expected annual clairn.s × expected reporting lag. 

(2.1.6) 

This result is very intuitive and might well be used in the absence of any formalized model. 

The model considered here may' consequently be viewed as an aid to intuition, and not 

a replacement. Since A, < A~, one has E(Ut) <_ E (Y t )E (B)  and so (2.1.6) provides a 

conservative bound on the mean claim liability. 

Models of the type considered here have also been considered in [16], [24], and [27] A 

numerical example is now presented. It should be noted that the numerical values chosen are 

for illustrative purposes only and are not meant to be representative of a realistic situation. 

E x a m p l e  2.1.1 

The authors in i31] considered a portfolio of lives insured under life insurance. Table 

2.1.1 gives the number of lives n ,  in the portfolio for each insurance amount i and mortality 

rate q: 
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T a b l e  2 . 1 . 1  

N u m b e r  o f  l i v e s  n i l  

A l~1oulIL 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
I4 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2q 

25 
26 
27 
28 

100,000 

804 1000 1262 1605 2064 2670 3476 4544 5962 7847 10339 13642 

16 14 14 7 6 3 1 
1 8 13 9 11 $ 10 

2 2 1 
3 3 1 1 3 1 

5 5 1 
1 16 14 11 
3 7 12 13 

7 5 6 
2 [ 6 

6 

4 1 
6 4 7 2 5 
6 1 2 
I I 2 
I I 

I0 6 2 I I 
26 18 9 6 5 4 3 
II 15 19 6 7 8 8 
4 9 8 4 5 4 7 
7 6 6 6 3 7 4 
6 9 4 10 4 1 6 
1 4 2 4 2 4 
1 2 1 1 1 
3 1 2 1 l 

2 4 3 I 

2 1 3 1 
1 

3 1 

I 
I 3 

1 
l 1 

T h e  c o m p o u n d  P o i s s o n  m o d e l  in [2, pp .  381 -382 ] ,  m a y  be  u s e d .  De f ine  

a n d  

~(i)= - ~ . , , l o g ( t  - q,) 
J 

i 

lSOO9 

(2 .1 .7 )  

(2 .1 .8 )  

23784 
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According to the model, the total incurred claims process for the portfolio is a compound 

Poisson process with Poisson rate A = 4.27137 and single claim amount distribution given 

by 

Ix (z )  = A(x)/A. (2.1.9) 

Suppose that previous studies indicate that the average reporting time for a claim is 

one month. Then, from (2.1.5), A= -- A/12 = 0.355947 and the total claim liability U~o is 

compound Poisson with parameter A= and single claim size distribution fx(z). In particular, 

the mean is 3.10424 from (2.1.3) and the vaxia, nce is 36.7392 from (2.1.4). The distribution 

of U~ is easily obtained from (2.1.2), and the results axe given in Table 2.1.2 together with 

the single claim size distribution fx(z) and df Fx(x). 

The mean could be used in choosing a numerical value to cover the liability. Alternatively. 

one could choose an amount which is to be adequate a specified proportion Of time, as 

suggested in [3 I. For example, an amount of 7 would be expected to cover the liability S0~ 

of the time, as is evident from the above table. The model can be seen to yield simple 

quantitative estimates of the variability inherent in the liability, requiring only the mean 

reporting times as input. In fact, the entire distribution can be easily obtained numerically. 

2.2 I n d i v i d u a l  va r i a t i ons  in report ing patterns 

While the model discussed in the previous section is sufficiently general for many appli- 

cations, there may be characteristics of paxticu]ax situations which require refinements. One 

situation which may present itself involves differences in reporting patterns for various seg- 

ments of the portfolio. In particular, it may be the case that reporting patterns are related 

to concomitant factors which are independent of the number of incurred claims process. The 

decomposition properties referred to in section 1.4 may be used to produce a refinement of 

the mode~ of section 2.1. 

Suppose that there are rn different classes of individuals in the portfolio with respect to 
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T a b l e  2.1 .2  

z / x ( z )  r x ( z )  / v . ( z )  rv , , ( t )  
0 0.000000 0.000000 0.700509 0.700509 
1 0.047510 0.047510 0.011846 0.712356 
2 0.081115 0.128628 0.020326 0.732682 
3 0.062511 0.191137 0.015929 0.748611 
4 0.028870 0.220007 0.007757 0.756368 
5 0.010687 0.230694 0.003244 0.759612 
8 0.053674 0.284368 0.013821 0,773433 
7 0.102390 0.386758 0.026007 0.799440 
8 0.145270 0.532028 0.037151 0.836591 
9 0.103832 0.635860 0,027584 0.864175 
10 0090073 0.725933 0.024687 0.888862 
11 0.080285 0.808219 0,022321 0.911183 
12 0.052252 0.858471 0,015264 0,926447 
13 0.009860 0.868330 0,004736 0.931183 
14 0.018292 0.884623 0.006509 0.937692 
15 0.019981 0.904604 0,007629 0.045321 
16 0.015322 0.919925 0.006732 0.952053 
17 0.014234 0.934159 0.006629 0.958682 
18 0.006948 0.941107 0.004879 0.963561 
19 0.009121 0.950228 0.005166 0.968727 
20 0.007058 0.957285 0.004167 0972894 
21 0.005505 0.962790 0003303 0.976197 
22 0.012820 0.975610 0.004867 0.981064 
23 0.004315 0.979924 0.002562 0.983626 
24 0.003248 0.983173 0.002107 0.985733 
25 0000000 0983173 0.001159 0.986893 
26 0.007480 0.990653 0.002902 0989795 
27 0.005093 0.995745 0.002205 0991999 
28 0,004255 1.000000 0.001935 0.993935 

repor t ing  times, and  the  probabi l i ty  t ha t  a given incurred claim is of type  Z is q,: , = 

1.2, . . . .m.  Then  the  incurred claims process for class Z is compound  Poisson with Poisson 

pa ramete r  Aq, and  single claim size d is t r ibu t ion  f , ( z ) ,  say. Let B, deno te  the  repor t ing  t ime 

r andom variable  for class i. Applying the  results of section 2.1 to each class, one finds t h a t  

the  total  c la im liability for class i may be modelled as a compound  Poisson r a n d o m  variable  

with Poisson pa rame te r  Aq, E(B,) and single claim size d i s t r ibu t ion  f,(z), i ndependen t ly  of 

o ther  classes. Thus,  by the  addi t iv i ty  proper ty  of independen t  compound  Poisson r a n d o m  

variables (cf. [2, p. 327]), the  total  claim liability Uo~ is compound  Poisson with Poisson 
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parameter  
~t  

Ao = ~ ~'~q,E(B,) (o..2.1) 
i m l  

and "single claim amount"  dis t r ibut ion 

E q,E(B,)f,(z) 
f.(x) = '= '  (2.2.2) 

q,E(B,) 
111 

Hence, the moments  and probabili ty distr ibution of U~o may be easily obtained using the 

results of section 2.1, but  with Aoo and fx(x) replaced by A. and f.(z) respectively. 

The use of the more complicated model of this section clearly depends on the knowledge 

of q, a n d / , ( x )  for each class. In at least one important  s i tuat ion this is not difficult. Suppose 

that it has been found that  the time to report a claim depends on the size of the claim (for 

example, large claims may have a shorter mean reporting t ime than small claims). 7hen  

the total incurred claims process may be modelled as in section 2.1 as a compound Poi~son 

process with parameter  )~ and claim size pdfor  pffx(z) and df Fx(z). Part i t ion the posi:ive 

real line I0, ~c) into the intervals Ic,_l,c,) for i = 1,2 ..... m, where co = 0 and c~ = ~c. Let 

a claim be of type i if the amount  of the claim is in the interval [c,_l,c,). Then 

f dFx(z); i = 1,2 ..... m (2.23) q, 
(c._,.,.) 

and 

fx(~)/q,, xt[c,_l,c,) 
L(x) = (2.2.-~ 

0, otherwise. 

Hence, q, and f , (z)  are easily constructed from fx(x) ,  and one needs only to determine 

the parti t ion described above. This should be done on the basis of observed variations it, 

report ing time. 

A numerical example is given, and no significance should be attached to the actual choice 

of numerical  values, since they are purely for illustrative purposes. 
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Example  2.2.1 

Consider the life portfolio of example 2.1.1. Suppose that it has been determined from 

previous studies that the average reporting time of claim~ in excess of I0 is one half of a 

month, whereas claims of amount I0 or less are reported in one and a quarter months on 

average. This suggests the choice m = 2 and the partition [0,10.5) and [10.5, oo). Using the 

distribution fx(:C) as given in example 2.1.1, one finds that ql = .725933 and q2 = .274067. 

Since E(B~) = 5/48 and E(B2) = 1/24, one finds from (2.2.1) that X. = .371769. The 

distribution fl(z) and f2(z) may be obtained from (2.2.4), and from (2.2.2) one finds that 

.f.(x) -- .$68790f~ (x) + .131201f~(x). (;.2.5) 

Values of ft(z),  f2(z), and f.(z) and the associated df F.(z) are given in table 2.2.1. 

Using A. and f.(z) in place of A~ and fx(x) in the results of section 2.1, one finds that 

the mean claim liability' is 2.78077 from (2.1.3). The variance is 27.8008 from (2.1.4). Using 

('2 I 2) one easily finds the distribution of Uo¢, and this is given in Table 2.2.2. The third 

column may be used to select an amount to be adequate to cover the liability a specified 

proportion of the time. 

2.3 O the r  gene ra l i za t ions  

In the previous two sections relatively simple models were proposed for the claim liability. 

In this section, it is indicated how various realistic phenomena such as the effect of seasonality 

with respect to the incurral of claims, growth in the business, and heterogeneity of risks in 

the portfolio may be incorporated into the model by assuming a more general number of 

claims incurral process than the Poisson, Other factors which may be modelled include 

inflation and seasonality of claims reporting. 
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T a b l e  2.2.1 

z fl(z) f2(z) A(z)  F.(z)  

0 0.000000 0.000000 0.000000 0.000000 
1 0.065447 0.000000 0.056860 0.056880 
2 0.111740 0200000 0.097079 0.153939 
3 0.086111 0.000000 0.074813 0.228753 
4 0.039770 0.000000 0.034,5,52 0.263305 
5 0.014722 0.000000 0.012790 0.276095 
6 0.073938 0.000000 0.064237 0.340332 
7 0.141046 0.000000 0.122541 0.462872 
8 0,200115 0.000000 0.173860 0.636732 
9 0.143033 0,000000 0.124267 0.760999 
10 0.124079 0,000000 0,107799 0,868799 
11 0000000 0,292941 0038434 0.907233 
12 0000000 0.190654 0025014 0.932247 
13 0000000 0035976 0.004720 0.936967 
14 0.000000 0.059447 0.007800 0.944767 
15 0.000000 0.072905 0.009565 0.954332 
16 0.000000 0.055905 0.007335 0.961667 
17 0 000000 0.051936 0.006814 0.968481 
18 0.000000 0.025350 0.003326 0.971807 
19 0.000000 01033280 0.004366 0.976173 
20 0.000000 0.025751 0.003379 0.979552 
21 0 000000 0.020085 0002635 0982187 
22 0.000000 0.046776 0.006137 0.988324 
23 0.000000 0.015743 0.002065 0.990389 
24 0.000000 0.011852 0001555 0.991944 
25 0.000000 0.000000 0 000000 0.991944 
26 0.000000 0.027292 0 003581 0.995525 
27 0.000000 0.018582 0.002438 0.997963 
28 0.000000 0.015524 0.002037 1,000000 

2.3.1 T h e  n u m b e r  of  c l a i m s  i n c u r r e d  p r o c e s s  

The assumpt ion  tha t  the number of incurred claims process {K,;t > 0} is a Poisson 

process is reasonable  in many si tuat ions,  but there are other  cases where it may be felt to be 

too restrictive. Since the rate of the  process is a constant  £ which does not change with time, 

the number of claims which are incurred in any period of t ime has the same dis t r ibut ion as 

the number  incurred in any other  period of the same length. It may be of" interest to relax 

this assumpt ion  in various si tuations.  

In this section it is assumed that  ( K , ; t  > 0} is an order stat ist ic  process. This more 
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T a b l e  2 . 2 . 2  

= I v . ( : )  rv,,(*) = fv , , ( t )  Iv.(=) 

0 0.689513 0.689513 15 0.005955 0.961491 
1 0.014576 0.704089 16 0,005948 0.967439 
2 0.025039 0,729128 17 0,005819 0.973257 
3 0.019705 0,748833 18 0.004525 0.977783 
4 0.009717 0,758550 19 0.003903 0.981686 
5 0.004172 0.762722 20 0.002906 0.984592 
6 0.017144 0.779866 21 0,002066 0.986658 
7 0.032151 0,812017 22 0.002683 0.989341 
8 0.046001 0.858018 23 0,001490 0.990830 
9 0.034467 0.892485 24 0.001310 0.992140 
lO 0.031073 0.923558 25 0.000829 0.992969 
11 0013414 0.936972 26 0.001628 0.994597 
12 0.009567 0.946539 27 0001240 0.995837 
13 0.004007 0.950546 28 0.001068 0.996905 
14 0.004990 0.955536 

general process has the property that ,  given A', = k _> 1, the times of the k claims are 

independent and identically distr ibuted over (0, t) with df 

E ( K = )  0 < z < t. (2.3.2) 
H , ( z )  = E ( K , ) '  

This more general process can be used to accommodate  the following factors. 

a) Incurred claim seasonality and business growth 

It may be the case that  there is a seasonal pattern to claims incurral. For example,  there 

may be a higher incidence of health-related claims during the winter months than in the 

summer. This can have a significant impact on the unreported claim liability at a given 

point in time. Another factor which can have an effect is a change in the size of the portfolio 

over time. Growth in the business would be reflected by an increase over t ime in the rate 

of claims incurral. Then phenomena cannot be reflected by the ordinary Poisson process of 

claims incurral. 

The  nonhomogeneous Poisson process (e.g. [25, pp. 46-49, 53]) can be used in these 

s i tua t ions  This process does not require that  E(I'(~.) be proport ional  to z as the ordinary 
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Poisson process does. Thus  the  ra te  of the  process A(: )  = ~E(K:) is not restr ic ted to a 

cons t an t ,  bu t  need only be nonnegat ive .  Consequent ly ,  it may vary wi th  t ime in such a 

m a n n e r  as to descr ibe  these  phenomena .  Seasonal i ty  in claims incurr~l may be ob ta ined  by 

choosing A(z) to be a function both of the integer part of x in order to represent the year 

as well as the fr~ctionaJ part of z to represent the scion. Similarly, growth in the business 

can be modelled by letting A(z) reflect the corresponding rate of change. For example, if the 

growth rate can be assumed to be of exponential type, this may be reflected by the choice 

E(I(,) = at b=, and thus the rate of the process is A(z) --- abe 6~. One could choose A(z) to 

reflect both seasonality of claims incurrM and growth of the business. 

b) Heterogeneity of risk levels in the portfolio 

All risk classification schemes attempt to discriminate between different types of risk, 

with the intended result that all risks within a particular "cell" may be considered to be ho- 

mogeneous with respect to the risk level. Unfortunately, this is not completely accomplished 

by even the most discriminating risk classification scheme, and there is some heterogeneity 

of risk ]evels (i.e. some good and bad risks relative to the average) remaining. 

This characteristic may be reflected through the use of another fairly general type of 

process with the order statistic property, namely the mixed Poisson process (e.g. [341). In 

this case 

Pr{I t ' t+h  - Ix'h = k} = ~ / (xt!~e-~' k--------V---, dU(A) (2.3.2) 
O 

where U(A) is the df of a nonnegative random variable (if U(A) is a gamma dr, then the 

process is referred to as a Polya process). This model is common in automobile insurance. 

and in [4, equation (2.3.2)] is interpreted as the probability that one risk taken at random 

from the portfolio gives rise to k claims in (h, h+t). The "structure function" U(A) represents 

the distribution of the levels of risk in the portfolio (as measured by the expected number 

of claims incurred), and thus provides a mechanism for dealing with the nonhomogeneity. 
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2.3.2 A g e n e r a l  m o d e l  

Let W(z,t) denote a random variable representing the liability at t ime t a t t r ibutable  

to a claim which is incurred at t ime z. Then the total fiability Ut at t ime t is the sum of 

the liabilities from all claims incurred before time t. The distr ibution of U, is most easily 

characterized in terms of its mgf. By conditioning on both the number  and times of the 

claims incurred, it follows that 

t I t k 

: -_o,+ / / . .  

Since the k-fold integral factors into the same integral repeated k times, it follows that the 

mgf of Ut is 

Mu,(~) = P~., {Mw,{~)} (2.3.3) 

where Pt,,(s) is the pgf of /(t and 

Mw,(s) = / E{e"W{'~'~}}d~H,(z) (2.3.4) 
0 

is the mgf of a random variable obtained by mixing the distr ibution of W ( z , t )  over the 

interval (0, t) by the mixing distribution Ht(x). 

It is evident from the discussion in the paragraph following (1.3.21) that the representa- 

tion (2.3.3) implies that U~ has a compound distribution. Thus, if K~ = 0 then //~ = 0, and 

if /(t > 0, then Ut is the sum of/x'~ independent random variables, each with mgf (2.3.-t). 

2 .3.3 I n f l a t i o n  a n d  s e a s o n a l i t y  of r e p o r t i n g  

The relationship between the liability 1,V(x, t) at time t for the claim incurred at time x 

and both the amount  of the claim and the reporting time can be quite complex when one 

considers the effects of inflation and seasonality in the reporting time of the claim. 

a) Inflation 

To allow for inflation, assume that X is a random variable representing the amount  of a 

single claim at some time point in the past, (i.e. before t), such as at time 0 or at time z. 
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Then,  a.s in [12, section 5.2], the effects of inflation are such that the value of the claim at 

t ime t is a scalar mult iple of X,  namely a(x,t)X. Suppose, for example, that  X represents 

the amount  payable on a claim incurred at t ime 0. If claims inflation is characterized by a 
f6~{y}dv 

force of inflation 61(y) then the amount payable on a claim incurred at time x is Xeo 

If the time value of money involves a force of interest 62(y), then the value at time t of a 

claim incurred at time x is Xe* • if interest is payable on claim amounts.  This 

suggests that  one could choose 

I 

a(~,t) = e° • (2.3.5) 

Since a(z,t) may be an arbi t rary function, however, other inflationary patterns could be 

used. 

b) Seazonality in claims reporting 

Seasonality in reporting may also be modelled by assuming that  the reporting time B~ of 

a claim incurred at time x depends on the time of incurral z, perhaps through the integral 

and fractional part of z. With these assumptions, it is clear that  

O, B , < t - x  
W(x, t) = - (2.3.6) 

a(x,t),¥, B,  > t - x  

since there is no liability if the claim is reported by t ime t (i.e. Bz < t - x). Thus, from 

(2.3.8), one finds that  the mgf of W(x,t) is 

E{e "wl*'')} = Fa.(t - x )  + {1 - Fs,(t -z)}Mx{sa(x, t)}  (2.3.7) 

where 3Ix(s)  is the mgf of .¥. The expression (2.3.7) may be subst i tuted into (2.3.4). 

It is instructive to note that (2.3.4) holds regardless of the manner  in which W ( z , t )  is 

dependent  on the amount  of the claim at time z and the ensuing reporting time. Hence, 

while (2.3.6) seems reasonable, there may be other formulations which could be used. 
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2.3.4 F u r t h e r  r e m a r k s  

The model of section 2.1 may be seen to be a special case of the current model. Since 

E(K, )  = .kt, (2.3.1) yields the uniform distr ibution on (0, t). With a(z , t )  = 1 and FB.(y) = 

FB(y), one finds from (2.3.7) that  (2.3.4) becomes 

t 

Mw,(s) = ÷ f { F a ( t  - z)  + [1 - Fs( t  - z ) ] M x ( s ) } d z  
0 

$ 

' [ I  Fa(x ) ]Mx( , ) }dz .  = 7f{Fa(z) + - 
0 

Hence, 
f 

) , t{Mw,(,)  - 1} = ) ~ f { F a ( z ) +  [1 - F a ( z ) ] M x ( s ) } d z  - ),t 
0 
$ 

= A f { Y s ( z )  + [i - Fs(z ) ]Mx(a )  - 1}dx 
0 

= A]{1 - F s ( z ) } { M x ( s )  - 1}dx 
0 

using (2.1.1). Since PK,(s) = exp{•t(s - ].)}, it is clear that (2.3.3) is the mgf of tl,e 

compound Poisson random variable U, of section 2.1. 

The model presented here is quite general, and the main difficulty to overcome in em- 

plo.ving it lies in the evaluation of the distr ibution with mgf (2.3.4) (if it may be obtained.  

r )  tile recursive techniques in L23] often allow for the numerical evaluation of the dis tr ibut ion 

of U,). Generally, (2.3.4) and (2.3.7) yield 
! 

= / { f ' s , ( t  - z )  + [1 - Fs,( t  - z ) ]Mx t;} }d ,H,(z) .  
0 

It can be shown using this result and the properties of conditional expectation that the 

associated df Fw,(y) satisfies 

l 

= i - / { 1  - F B , { t  - , ) } { 1  - Fx[y la(z, t ) ] }d,~Ht(z) .  (2 .3 .91  Fw,(y) 
0 

If .Y a pdf fx ( ' ) ,  then (2.3.9) may' be differentiated to give the pdf 

fw,(y) = ] f x  { y /a ( z , t ) }  {l - FB,(t - z ) }d ,  Hdz ) .  (2.3.10) 
a(z , t )  

0 
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Numerical integration could be used to evaluate (2.3.9) or (2.3.10). In [23] it is de- 

scribed how the pdf of the compound distribution of U, with mgf (2.3.3) may be evaluated 

numerically if {K,; t > 0} is a (nonhomogeneous) Poisson or Polya process. 

The approach described here has other uses as well. It shows how the model is modified if 

more complicated assumptions with respect to phenomena such as inflation are incorporated. 

It also provides insight into the behaviour of the liability. In particular, it is clear that the 

compound Poisson form of the distribution of Ut holds quite generally as long as ~Ii't; t > 0) 

is a (nonhomogeneous) Poisson process. Similarly, if {Kt; t > 0} is assumed to be a Polya 

process, then I(t has a negative binomial distribution and the distribution of Ut remains of 

compound negative binomial form (cf. [2, pp. 323-325]), as is evident from (2.3.3). 
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C h a p t e r  3 - R e p o r t e d  C l a i m s  

3.1 T h e  r epo r t ed  c l a i m s  p r o c e s s  

A second major category of the claim liability is that portion attributable to claims for 

which notification has reached the insurer but for which no payment has been made. As 

wa~ discussed in section 1.1, there may be situations where one may be able to obtain the 

required claim amounts exactly and hence they need not be estimated using a model. If 

the data are not readily available, however, or if one needs to predict future reported claims 

for forecasting profit and loss statements, the use of a model may prove to be worthwhile. 

Furthermore, this portion of the claim liability can be influenced by the insurer through 

modifications to the claims settlement process. A model may often be used to predict the 

effect of these changes without actually implementing them. 

The number of reported claims is of central importance in the analysis of the reported 

claim liability. Recalling from chapter 1 that claims are incurred according to a Poisson 

process with rate ~ (see section 1.4), and that each of these is reported to the insurer 

a random time B with df Fs(z) later, independently of all other claims, it follows from 

[25, p. 39] that the number of reported claims in (0, t] is both Poisson distributed with 
I 

mean A f FB(z)dz and independent of the number of unreported claims Nt in (0, t]. The 
0 

independence of the number of reported and unreported claims at a point in time is a useful 

feature of the model since it implies that the unreported claim liability Uz and the reported 

claim liability Rt are independent. This follows from the fact that Us is assumed to be the 

sum of Nt independent individual claim amounts, whereas R~ is the sum of Al independent 

individual claim amounts, where At is the number of claims reported but unpaid at time t. 

Since .4~ depends on the number of reported claims (which is independent of .V¢) and the 

claim settlement process (which is independent of unreported claims), the independence of 

U¢ and Rt follows. As a result, the unreported and reported claim liabilities may be analyzed 

separately and without regard for each other, clearly a simplifyin~ feature of the model. 
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A second important  property of this approach is the fact that the number  of reported 

claims process is a nonhomogeneous Poisson process with rate AFs(t),  as shown in [25, p. 

48], where it is pointed out that  as t - -  oo the process becomes an ordinary Poisson process. 

This  implies that  the input  process to the claim.~ payment  discipline may be assumed to be 

a Poisson process in equil ibr ium (i.e. for large values of t). This result will be heavily relied 

upon in the remainder of the paper. 

3.2 The basic m o d e l  

The analysis of the reported claim liability is fundamentMly different than the unreported 

liability' due to the interaction of claims. One may normally assume that the time it takes to 

report a claim does not depend on other claims in a similar incurred but unreported state. 

The same cannot be said for the reported claims in general, however, since the presence of 

too many claims waiting for approval at one time can cause a backlog and hence a delay in 

the t ime until  payment  is made. 

This congestion can be incorporated into a stochastic framework through a queueing 

formulation of the problem. One imagines that claims are reported to the insurer, and 

"'queue up" in the claims area waiting to be processed. Once approved, payment is made. 

The process of approving claims for payment  can then be visualized in terms of a particular 

queueing discipline. The number  of reported claims process is the input process to this 

"'queue", and this is a Poisson process once equil ibrium has been reached (see section 3.1 ). 

an assumption which will henceforth be made. Let A represent the number  of claims which 

are reported but unpaid,  i.e. the number  in the queueing system. In keeping with risk 

theoretic methodology, the total liability for reported but  unpaid claims R is given by R = 

.Vz + . ~  + " + . \ ' A  (with R = 0 i f A  = 0). As before, {X1,-¥2 .... } is an independent  and 

identically distr ibuted sequence of claim amounts,  and in this case X, represents the amount  

of the z-th claim in the system. 

Assume, in the simplest case, that claims are approved in the order that  the3' are reported 
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by a single claims evaluator,  and that  once approved they are paid immediately.  Suppose 

tha t  the t ime to approve a claim T is exponent ia l ly  dis t r ibuted with mean E(T) = p/A 

where A is the Poisson claim rate  and pc(0, 1) is a paxameter.  Then one has (e.g.[17, p. 96]) 

P r ( A = n ) = ( l - p ) p " ;  n = 0, 1,2,. . . ,  (3.2.1) 

i.e. A is geometrical ly dis t r ibuted.  Then R has a compound geometric d is t r ibut ion  (e.g. [2, 

p. 319]) with mgf 

1 - p ( 3 . 2 . 2 )  
M R ( s )  = 1 - p M x ( s ) "  

From (1.3.4), one finds that  the mean reported l iabili ty is 

E ( R ) =  p E ( X ) ,  (3.2.3) 
1 - p  

and using (1.3.5) one finds that  the variance is 

V a r ( R ) =  P E ( X ~ ) + {  p E (X)}  ~. (3.2.4) 
1 - p  1 - p  

The dis t r ibut ion of R may be computed reeursively (cf. [23]). For example,  if the single 

claim size dis tr ibut ion is discrete on the positive integers, then one has 

fa(x)  = p ~ f x ( y ) f n ( z  - y), (3.2.5) 
y----I 

which may be used to compute  the dis t r ibut ion of R recursively, beginning with fn(O) = 1 -p .  

In addit ion,  (3.2.1) is of the form (1.3.20), implying that  if there exists x > 0 satisfying 

Mx(,Q = p - i  then (1.3.21) yields 

1 - Fn(x) ~ Ce - '= ,  z ---* o¢ (3.2.6) 

where C = (1 - p) /{p(e"  - 1)M~.(~)} if X is discrete on the positive integers and C = 

( I - p ) / { p , ~ M '  x (,~)} if X is continuous. Thus, under fairly general conditions, the dis t r ibut ion 

of R is asymptot ica l ly  exponential .  Numerical evaluation of ,~ and further discussion of this 

t.vpe of asymptot ic  result may be found in [35]. Numerical investigations indicate that  the 
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right side of (3.2.6) is an extremely good approximation to 1 - Fn(z) in a wide variety of 

situations.  This suggests that  one can obtain a simple approximation to the amount  needed 

to be adequate  to cover the liability R a proport ion a of the time. One may simply set 

F a ( z )  = a in (3.2.6) and solve for z,  yielding 

1 
- log {C/(1 - a)}  (3.2.7) 

as an approximat ion to the required value. The formula (3.2.7) may be used as a simple 

approximat ion to the exact  procedure based on the recursive formula (3.2.5). An example 

is now presented, where the numbers chosen are for illustrative purposes only. 

E x a m p l e  3.2.1 

Consider the life portfolio of example 2.1.1 where ~ = 4.27137 and the single claim 

amount  distr ibution is given by the first column in table 2.1.2. Suppose studies indicate 

that  the t ime from which notification of the claim reaches the insurer until payment  is made 

{denoted by 5)  has an average of 1.5 months. It is known (e.g. [17, p. 202]) that for this 

queueing system S is exponential ly distr ibuted with mean E(S) = p/{A(1 - p)}. Hence 

p = A E(S ) / { I+  hE(S)). In this case E(S) = 1/8 and so p = .348076. One finds from 

(3.2.3t and (3.2.4) that the mean and variance of R are 4.65636 and 76.7905 respectively. 

Table 3.2.1 lists the exact distribution and corresponding df (obtained using (3.2.5)), a.s well 

as the approximate  df (denoted by ~"R(z)) from (3.2.6). In this case pc is easily found from 

Jlx(,¢) = p-~ to be 0.101337. 

It is apparent  from Table 3.2.1 that  F'R(z) is an extremely good approximation to FR(z) 

even for small values of z,  and (3.2.7) should provide a good approximation to the exact 

amount  required to cover the liability a proportion a of the time, even for a as low as .75 
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T a b l e  3 .2 .1  

IR(=) FR(') $'R(z) = .f~(-) FR(=) /'R(t) 

0 0.651924 0.651924 0.000000 36 0.001410 0.987232 0.987238 
1 0.010781 0.662705 0.557139 37 0.001277 0.988509 0.988468 
2 0.018585 0.681290 0.599818 38 0.001152 0.989661 0.989579 
3 0.014797 0.696087 0.638384 39 0.000997 0.990658 0.990584 
4 0.007555 0.703642 0.673234 40 0.000870 0.991528 0.991491 
5 0.003480 0.707122 0.704725 41 0.000787 0.992315 0.992311 
6 0.012999 0720122 0.733181 42 0.000724 0.993039 0.993052 
7 0.024131 0.744253 0.758894 43 0.000665 0.993705 0.993722 
8 0.034669 0.778922 0,782130 44 0.000608 0.994313 0.994327 
9 0,026646 0.805568 0.803126 45 0.000553 0.994866 0.994873 
10 0.024525 0.830093 0.822099 46 0.000499 0.995364 0.995367 
11 0.022514 0.852606 0.839244 47 0.000445 0.995809 0.995814 
12 0.016107 0.868714 0.854736 48 0000408 0.996218 0.996217 
13 0.006612 0.875326 0.868735 49 0.000366 0.996584 0.996582 
14 0.008413 0.883739 0881386 50 0.000331 0996914 0996911 
15 0.009666 0893404 0.892817 51 0.000292 0.997206 0997209 
16 0.009170 0902574 0,903146 52 0000268 0.997474 0997478 
17 0.009339 0911913 0.912480 53 0.000244 0.997717 0997721 
18 0007924 0.919837 0.920914 54 0.000223 0.997940 0997941 
19 0.008072 0.927909 0.928536 55 0.000200 0.998140 0.998139 
20 0.006829 0.934737 0,935423 56 0.000180 0998320 0.998318 
21 0.005687 0.940424 0.941646 57 0.000162 0.998482 0998480 
22 0.006920 0.947344 0.947270 58 0.000146 0.998628 0.998627 
23 0004696 0.952040 0952352 59 0.000132 0.998759 0.998759 
24 0004163 0.956203 0.956944 60 0,000119 0998879 0.998879 
25 0.003226 0959429 0.961093 61 0.000108 0.998987 0998987 
26 0.004735 0.964163 0.964843 62 0000098 0,999084 0.999085 
27 0004008 0.968171 0968231 63 0.000088 0.999173 0 999173 
28 0.003679 0.971850 0.971292 64 0000080 0.999253 0.999252 
29 0002581 0974431 0.974059 65 0000072 0999325 0.999324 
30 0,002407 0.976838 0 976559 66 0000065 0.999390 0999390 
31 0002112 0.978950 0978818 67 0000059 0999449 0 999448 
32 0001893 0.980843 0.980859 68 0.000053 0.999502 0.999502 
33 0.001759 0.982602 0,982704 69 0.000048 0.999550 0.999550 
34 0.001692 0.984295 0.984371 70 0.000043 0,999593 0.999593 
35 0001528 0.985823 0,985877 

3 .3  S e v e r a l  c l a i m s  e v a l u a t o r s  a n d  n e t w o r k  l i a b i l i t y  m o d e l s  

In th i s  s ec t ion  a m o r e  genera l  mode l  for t h e  r epor t ed  c l a im  l iabi l i ty  is p r o p o s e d ,  w h e r e b y  

a m o r e  c o m p l e x  c l a ims  e v a l u a t i o n  p roces s  is cons ide red .  In p r ac t i c e  t he  a s s u m p t i o n  t h a t  

t h e r e  is a s ing le  c l a ims  e v a l u a t o r  who  a p p r o v e s  c la ims  for p a y m e n t  m a y  be  i n a p p r o p r i a t e .  
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For example, there may be several individuals who are involved at various stages in the 

process. Also, it may be of interest to subdivide the reported claim liability for purposes 

of monitor ing the process, or even for financial reporting pu rpose .  Exhibit  11 of the U.S. 

Annual  S ta tement  r equ i r~  reported health claim l iabif i t i~ to be subdivided into ~Due and 

Unpaid" and ~In Course of Sett lement".  See [21, p. 105] for further details. 

To begin, the assumption made in section 3.2 that  there is one claims evaluator is relaxed. 

Hence clairr~, which are reported according to a Poisson proc~s  with rate )~, axe immediately 

evaluated by any one of c evaluators (if not busy) in the order in which they axe reported. 

The time T required for one evaluator to process a claim is assumed to be exponential ly 

distr ibuted with mean E(T) = pc/,~, with pc(0,1) a parameter.  The claim is then paid 

immediately. 

Before proceeding with the analysis of the liability, it is worth noting that this model 

may be used to help monitor the efficiency of the claims evaluation process. A parameter 

of interest in this connection is p, which represents the expected proportion of evaluators 

who are busy at one time (cf.[17, p. 18]). If this number  is too large or too smatl, then 

the amount  of time available to perform other tasks may not be appropriate relative to the 

needs of the claims depar tment .  Assuming that the mean processing time E(T) = pc/.\ is 

constant ,  it follows that p varies inversely with c. The effect of a change in p of the number  

of evaluators c may therefore be ascertained. A second quanti ty of interest is the total time 

S from reporting until payment (i.e. the total system time). Since 5" is the sum of the time 

spent waiting to begin evaluation plus the actual evaluation time, it follows from [30, p. 333] 

and the fact that  pc = ),E(T) that 

E(T){AE(T)}~ { {AE(T)}C ~ {"E(T)}~} -1 E(S)=E(TI+(e-i~lg--f~(Y)}~ ('c-1)!{c-~E(r)} + k! . (3.3.1i 
k----O 

Thus, if A and E(T) are assumed to be fixed, (3.3.1) may be viewed as a function of c, and 

the effect of a change in the number  of evaluators c on the average processing time may be 

studied. A more detailed study of the quanti ty S is found in chapter 4. 
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To analyze the claim liability R, note that  (e.g. [30, p. 332]) 

(pc)" "-' (p¢)~/,-' 
fA(O) = Pr(A = 0) = c ! :  -- 'p) + ~:~ " ; F j  

and 
g I _ _ ~ t l  _ _  _ _ 

h ( n )  = Pr(A = . )  = ~ .~--, 1.(0); 
[ E ~  f,~ (0); 

Thus the reported claim liabili ty R has mg'f 

where 

MR(s) 

n - -  O, 1 ,  . . . , c  - 1 

rl. ----. c , C  + 1 ,  . . .  

= ~ fA(n){Mx(s)}" 
t t ~ O  

= fa(O) n! " c! 

(3.3.2) 

(3.3.3) 

(3.3.4) 

1 - p } {Mx(s)}  ~. (3.3.5) M.(s)- -  1 - ' p~ ' /~  (s) 

Moments of R may be found from (3.3.4). For example,  the mean is, using (1.3.4), 

E(R) = E(X)IA(O) (~ ---1)! + c!~----p) c +  
k r t = l  

where the summat ion is 0 if c = 1. 

To obtain the dis tr ibut ion of R, assume tha t  Pr(X  = 0) = 0 and so fR(0) = fA(0). Sup- 

posing that  {3Ix(s)} ~ and M. ( s )  are the moment  generating functions of the d is t r ibut ions  

f}"(z)  and f . (z) ,  respectively, it follows from (3.3.4) that  for z > 0 one has 

Clearly, f.;r=(z) is the n-fotd convolution of f x ( z )  with itself and may be ob ta ined  using 

techniques described in [_'23, section 2.3], for example.  The dis tr ibut ion f . (z )  may be found 

recursively. In the case when f x ( z )  is discrete on the positive integers (a similar formula 

holds in the continuous case), one has for x = 1,2, 3, ... 

f .(x) = (1 - p)f'xc(z) + p ~., f x ( y ) f . ( x  - y), (3.3.81 
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beginning with f.(0) = 0. To see (3.3.8), note that (3.3.5) implies that M.(~) = (I - 

p){Mx(~)}C+pMx(a)M.(~). One may equate coefficients of e *= on bo~h sides of this equation 

to give (3.3.8). 

Consequently, it is a straightforward problem to obtain JR(z) numerically. The convo- 

lutions f~c~(x) for n = 1,2 .... c may be obtained successively. Then f.(x) may be obtained 

using (3.3.8) and fs(x) from (3.3.7). 

In addition, a simple asymptotic formula holds. From (3.3.3), 

f a (n )  ~ ~.fa(O)p", n .-..* ~ ,  (3.3.9) 

which is of the form (1.3.20). Thus, from (1.3.21), if there exists n > 0 satisfying Mx(,~) = 

p - l ,  then (3.2.6) holds with C = c'fA(O)/ {c!p(e" -- I )M~(n)}  if X is discrete on the positive 

and C = cCfa (0 ) / ( c !p~Mx(n)  ) if X is continuous. Then,  the integers asymptotic exponen- 

t ia l i ty of ,Q holds for this more general model. This implies that the simple approximation 

(3,2.7) to the quantity which is adequate to cover R a proportion o of the time stil l holds, 

but with the above definit ion of C. A numerical example is presented to il lustrate these 

techniques, 

E x a m p l e  3.2.2 

The life portfolio of example 2.1.1 is used, where A = 4.27137 and the single claim amount  

distr ibution is given by the first column in Table 2.1.2. Suppose that there are 3 evaluators 

( c =  3) and the average processing time is 1¼ months (i.e., E(S) = 5/48). Note that (3.3.1:) 

may' be rewritten as 

c'-lP~+~ I~-' (pc)~ + (pcy }-2 + O. 
pc (c -'~r: p)~ I,~o ~ c!(l- p~ 

m 

With AE(S) known, this is an implicit function of p which is easily solved numerically using 

a Newton-Raphson procedure (e.g. [5, section 2.3]) for example. In this case one finds easily 

that p = .1.47681. The mean and variance of R are 3.88030 and 46.3413 respectively. The 

2 9 4  



distribution fa(z) obtained from (3.3.7) is given in Table 3.3.1 below, together with the df 

Fa(z). With ,¢ = 0.162247, the approximate df -~a(z) obtained f,'om (3.2.6) is also given 

with C as above. 

T a b l e  3 . 3 . 1  

: .,'.(:) F.(~) P . ( - )  • / ' . ( : )  e . (z )  ,eR(.) 

0 0,641769 0.641769 0.000000 36 0.000,560 0.997006 0.996981 
I 0.013509 0.655278 0.I16881 37 0.000479 0.997485 0.997433 
2 0.023206 0.678484 0.249145 38 0.000409 0.997894 0.997818 
3 0.018260 0.696744 0.361600 39 0.000317 0.998211 0.998145 
4 0.009002 0.705746 0,457212 40 0000246 0.998467 0.998423 
5 0.003863 0.709609 0.538505 41 0.000209 0.998666 0.998659 
6 0015887 0725496 0607623 42 0.000188 0.998853 0.998860 
7 0029794 0.755290 0,666388 43 0.000167 0.999021 0.999030 
8 0042628 0797918 0,716353 44 0.000145 0.999166 0.999176 
9 0031934 0.829852 0,758835 45 0.000124 0.999290 0,999299 
I0 0.028785 0.858637 0.794954 46 '0.000105 0.999395 0.999404 
II 0 026115 0884752 0.825663 47 0.000087 0.999483 0.999493 
12 0.018057 0902809 0,851773 48 0.000081 0.999563 0.999569 
13 0006068 0908877 0,873973 49 0.000067 0999631 0.999634 
14 0008141 0.917017 0.892848 50 0.000058 0,999689 0,999689 
15 0909480 0.926497 0.908896 51 0000044 0999732 0.999735 
16 0008539 0935036 0.922541 52 0000039 0.999772 0.999775 
17 0008480 0943516 0.934142 53 0.000035 0.999806 0.999809 
18 0006515 0950031 0.944005 54 0000031 0999838 0.999837 
19 0006782 0956814 0.952391 55 0000025 0,999863 0999862 
20 0005515 0962329 0.959522 56 0000021 0.999884 0.999882 
21 0.004402 0966731 0.965584 57 0.000017 0,999901 0,999900 
22 0006116 0972847 0.970739 58 0000015 0.999915 0.999915 
23 0003440 0976286 0.97512] 59 0000012 0999928 0999928 
24 0002872 0979158 0.978847 60 0.000011 0999939 0,999939 
25 0 001756 0.980914 0.982015 61 0000009 0.999948 0999948 
26 000371[ 0984625 0.984709 62 0000008 0.999956 0999956 
27 0.002886 0987511 0.986999 63 0,000007 0.999962 0999962 
28 0.002558 0.990070 0.988946 64 0000~06 0.999968 0.999968 
29 0,001275 0991344 0.990602 65 0,000005 0999973 0999973 
30 0.001172 0992516 0992009 66 0.000004 0.999977 0999977 
31 0000973 0993489 0.993206 67 0,000003 0,999980 0.999980 
32 0.000833 0 994322 0994223 68 0000003 0.999983 0 999983 
33 0000759 0.995081 0.995089 69 0,000002 0.999986 0999986 
34 0.000735 0.995816 0995824 70 0.000002 0999988 0999988 
35 0000630 0996446 0.996450 71 0.000002 0.999990 0999990 

T h e  m o d e l s  of t h i s  and  t he  p r e v i o u s  sec t ion  m a y  be used  in a m o r e  g e n e r a l  s e t t i n g  w i t h  

r e spec t  to  t he  c l a i m s  e v a l u a t i o n  process .  I t  m a y  be  the  case  t h a t  t h i s  p roces s  invo lves  
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several functions such as verification of coverage, claim validation, and actual payment (cf. 

[21, chapter 7]). These functions may be done separately or in conjunction with one another. 

If done separately, models of this sort may often be used independently at each stage of the 

process. 

Suppose, for example, that there are two basic components of the claims evaluation 

process. Claims are reported to the insurer as before and queue up for evaluation and 

approval for payment by any one of c, available evaluators. Once approved, the claims are 

then routed to a second queue to await payment, and any one of c2 individuals process the 

claim for payment. The two stages will be referred to as claims "In Course of Settlement" 

and "Due and Unpaid", and may be represented diagramatically as in Figure 3.3.1. 

F I G U R E  3.3.1 

In course of settlement due and unpaid 

[] [] 

reported claims ~ [ ~  ~ .  [':~ ~ c l a i m s  paid 

If it is assumed that the reported claims follow a Poisson process as before and processing 

time is exponential at each stage, then it can be shown that both the claim liability at each 

stage and the total time spent at each stage are independent of the corresponding quantity 

at the other stage (cf. [17, section 4.$], and [6]). That is, the model described earlier in this 

section for the reported claim liability may be applied to each of the two stages independently 

of the other stage. This provides a natural mechanism for the analysis of separate liabilities 

at each stage, since these are required to be reported separately for health claims in Exhibit 
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11 of the U.S. Annual Statement. It is worth noting that if there is no congestion at either 

stage, then this may be accommodated by setting either q or c2 equal to infinity, and the 

corresponding liability model for that stage becomes the same model as that given in section 

2.1. The independence results of the two stages still holds. It may be the case, for example, 

that the payment stage involves little or no congestion. 

Much more general models may be employed for the reported claims process where claims 

may be routed back and forth between various stages (as may occur if claims are resisted). 

If there is one evaluator at each stage, then the liability attributable to each stage may be 

modelled using the approach of section 3.2, and the liabilities at each stage are independent 

of those at other stages. These network models are described, for example, in [17, section 

4.$]. It should be noted, however, that this independence does not hold in general for the 

total time spent in each stage, except in a few special cases such as that given in Figure 

3.3.1. See [6} for more details. 

3.4 A r b i t r a r y  process ing t ime.  

There may be situations where the assumption of an exponential distribution of process- 

ing time is not reasonable. One may have information indicating that the processing time 

is not exponential, or it may be apparent that the mode of the processing time distribution 

is greater than zero. In this section various tools are seen to be available even when this 

distribution is not exponential. 

As in previous sections, the number of reported claims process is assumed to be a Poisson 

process with rate A, claims are immediately processed by any one of c claims evaluators (if 

free), but the processing time has an arbitrary distribution. As before, let .4 denote the 

number of claims reported but unpaid (the number in the system) and S the total time from 

reporting unti] payment (the total processing time). Then the means of A and S are related 

by Little's formula (e.g. [30, p. 262]), namely E(A) = AE(S). Thus, since the mean reported 

but unpaid claims liabilities E(R) = E(A)E(X) where E(X) is the mean claim size, one 
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has E(R) = AE(S)E(X). Since the expected annual  incurred claims is E(Y~) = AE(X),  it 

follows that  

E(R) = E(Y~)E(S). (3.4.1) 

In words 

expected reported liability = expected annual  claims x expected processing time. 

This is an intuit ive result which is analogous to that for the unreported claims in section 2.1, 

and does not depend on the dis tr ibut ion of processing time. Evidently, the queuing theoretic 

approach provides an aid to intuit ion by generating a distr ibution about  the mean. 

Suppose now that the processing time for one claim is denoted by T with df F-;(z) and 

mean E(T). Define the df 

Fl(z) = i { 1 - F r (0  } ~-f~ dt . (3.4.2) 

See [2, section 12.5] for a discussion of (3.4.2). Define the df's 

F ~ ( z )  = 1 - {1 - FI(z)}  k (3.4.3) 

for k = 1, c, and associated mixed Poisson pgf's 

~---0  0 

Then an approximation to the distr ibution of .4 is given in terms of its pgf as 

c-, pf, a(c-1)s~Q,(s) { 1 - p  } (3.4.5) 
P ~ ( s )  = f , , ( , ~ ) :  = ~ f.~(,~)s" + T'--~ 1 - p c 2 , ( ~ )  

n--~O n:~O 

In (3.4.5), p = ,kE(T)/c and f a (n )  is given by (3.3.3) for n = 0 ,1 ,2  . . . . .  c -  1. This 

approximat ion for the equil ibr ium distr ibution of A is exact when T is exponential  and 

when c = 1 or c = z¢. It is derived in section 4.4.3 of [30]. Also, various reasons for the high 

degree of accuracy are given in [20] in connection with equivalent mathematical  problems 
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where 

and 

The reported claim liability has mgf M/a(s) = PA {Mx(s)} and so from (3.4.5) one obtains 

¢- -1  

MR(s) = ~ /A(n) {Mx(s)}" + pfa(c - 1)M.(s  ) (3.4.6) 
,~=o 1 - p  

l - p  

Mo,(s) -- Qk {Mx(s) } (3.4.8) 

for k = 1,c. The analysis of the moments and distribution of R proceeds in the same 

manner as for the model in section 3.3, since equation (3.3.4) is similar in structure to 

(3.4.6). A complicating factor is the presence of the compound mgf M. , (s )  and the associated 

distribution f.~(s), both of which are often awkward to deal with. An important exception 

to this observation is given in the following example. 

E x a m p l e  3.4.1 

Suppose that c = 1 and the processing time T has a distribution which is a mixture of 

gammas (section 1.3) with integral index parameters, i.e. has pdf 

d ~ ~3- 'x ' - ' e -z l '~  
Fr(z) = ~~ q, [ ~ - -  ~ J (3.49) 

,=l 

where {ql, q~ . . . . .  q~} is itself a probability distribution. The density (3.4.9) is referred to as 

a generalized Erlangian distribution and is frequently used in queuing applications due to its 

flexibility of shape and convenient mathematical properties ([30, pp. 271-2, 397-400]). The 
k 

mean is E(T) = 3 Y~ 'q,. Also, using formula 1.22 of [30, p.18], one finds that the df is 
I - - 1  

¢.  (zl'3) ,-~ e-=l~ 
Fr(z) = 1-y~.q,,:, ~ 7 - - 1 7  

-- J----I 

Interchanging the order of summation, one finds that the density corresponding to (3.4.2) is 

d 1 - F r ( x ) ~ { 3 - J z ~ - ' e  -z/'  } 
"~z F'(z) = E(T) = q; ~ _  "~-~r. (3.4.i0) 

l = l  
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where 

q~ = q, / iq, ; j = 1,2 . . . . .  k. (3.4.11) 
, = j  

k 
Since ~ q~ = I, (3.4.10) is of the same form ~ (3.4.9), but with different weights, i.e. is 

also a mix ture  of g a m m a  distr ibut ions.  Then,  using (3.4.4) with } = I and e = i,  (1.3.15), 

and (1.3.7), one finds tha t  

k 

Q,(~)  = ~ q; {1 -A~3 ( ,  - 1)}- '  , (3.4.12) 
J=:l 

a mix ture  of negative binomial  pgf's.  Thus,  from (3.4.8), 

k 

M.,(s)= ~ q ;  {1 -Ad[,SIx(s)-  1]}-; , (3.4.13) 

a rruxture of compound negative binomials.  Evaluation of the moments  is straightforward 

using (3.4.13), and the dis t r ibut ion f . t ( z )  may be evaluated recursively using the techniques 

in [23]. Analysis  of the dis t r ibut ion and moments  of R follows easily using (3.46),  (3.4.7), 

and (3.4.S) with c =  1. 

While the computa t iona l  difficulties associated with the evaluation of the distr ibution of 

R may be overwhelming for a rb i t ra ry  c and processing t ime dis t r ibut ion F r ( z ) ,  there is some 

asympto t ic  help available. From [30. p.351], if there exists r > I satisfying Q z ( r )  = p - ~ ,  

then 
r~-' f~ (c - I)Q¢(r) 7.-n 

f . a ( n )  ~ Q ' , ( r )  , n - - ,  o c  . (3.4.14) 

This is clearly of the form (1.3.20), and so if there exists ~ > 0 satisfying Mx(~)  = r, then 

one obtains  from (1.3.21) an asymptot ic  approximat ion of the form 

1 -  F R ( x ) ~ C e  - ~ =  , z - - ,  o c  . (3.4.15) 

Thus the tail of the dis t r ibut ion of the reported claim liabili ty is asymptot ica l ly  exponential  

even for this fairly general model. As mentioned previously, this yields a simple approxima- 

tion for the amount  needed to be adequate  a proport ion o of the time, namely 

x- '  log {C/(1 - a)} . (3.4.16) 
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In (3.4.15) and (3.4.16), the constant C is given by r ~ f A ( c  - 1)Qc(r)/{(e ~ - i) Q'l(r).&/~g(~)} 

if X is discrete and r¢fA(c - 1)Q , ( r ) / (~Q ' , ( r )M 'x (~ )}  if X is continuous. The assumption 

that  there exists r > 1 satisfying Q t ( r )  = p-~ is essentially the assumption that  there exists 

an adjustment  coefficient using a ruin theoretic interpretation.  This issue is discussed in 

some detail in [2, section 12.3], where it is pointed out that  there usually does exists such a 

quantity. To see this interpretat ion,  note that  from (3.4.4) and (3.4.2), 

- F r ( t )  • Q,(s)=fe~o-,.._,) {1 (_~ }d~, 
0 

and (I.3.15) together with formula (12.5.4) of [2, p. 360] implies that 

Air {Ac-l(s - 1)} -- 1 
Q~(s) = (3.4.17) 

pIs - 1 )  

where 3 I t ( s )  is the mgf of the processing time T. Thus, Ql(r )  = p- l  is equivalent to 

31r {Ac-l(r  -- 1)} = r. In other words, one needs to find ¢ > 0 satisfying 

Mr(~)  = 1 + p - I E ( T ) ¢  , (3.4.18) 

and then r = 1 + c ¢ / A .  Examinat ion of(3.4.18) and section (12.3) of [2] reveals that o is 

simply the adjustment  coefficient in a ruin theoretic context with "single claim size" random 

variable T and relative security loading (1 - p)/p. 

Thus, in most i n s t anc~  there will exist r > 1 satisfying Ql(r )  = p - i  and so (3.4.14!, 

(3.4.15). and (3.4.16) wilt be applicable in general. In particular, r will always exist if r has 

a gamma distribution, or more generally, the pdf (3.4.9). Occassionally, however, this will 

not be the case. Consider, for example the inverse Gaussian distribution. If Mr(s )  is given 

by (1.3.10), then Mr(s )  <_ e", and since E(T)  = # 3 / 2  in this case, it is evident from (3.4.23) 

that no such r will exist ife" < 1 + #/(2p),  i.e. i fp  < # /{2 (e  ~ - 1)}. In this case and some 

other situations, an al ternative asymptotic formula to (3.4.14) and (3.4.15) is available. This 

is stated as a theorem. 
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T h e o r e m  3.4.1 

Suppose that the processing time df satisfies 

1-Fr(=)  ~ K z %  -~" , z.-.o~, (3.4.19) 

> 0, a < - 1 ,  and B >  O, and Q, { b . ~ . }  < p- i .  Then if c =  1 one where K has 

f A ( n ) - - ( k + ~ ) O { l _ p Q i ( , ~ . g ) } l n °  ~ , n - - . o c ,  (3.4.20) 

whereas if c > 1, 

o 

P r o o f :  T h e  case (3.4.70) w i th  c = 1 is p roved in [35]. Hence assume c > 1 and it is of 

interest to prove (3 4.2I). Note that the density corresponding to (3.4.3) is 

L'Hopitai's rule yields 

io~-~-" OlO-le-dx _ ~iOe -~x 
lira - -  = lira 

: - ~  l - F,(z) : - ~  - { l  - Fr(z)} tE(T)  

In other words 

and so 

Thus, (3.4.4) and 

q.(k) 

= EfT) limoo 1 ---~r(z) K 

K 
1 -  F l ( z )  ~ ~ x ° e  - ° =  x - - ,  o c  

~E(T) 

kd 
dE(T) J , x -- 

1.3. I9) yield 

+ 3c P 3k° (~ + ,3c) ~ n -+ ~ 
3.4.~3'J 
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Define a(s) = ~ j,~s" = (1 - p ) / { 1  - pQ,(a)} .  Then,  since p - '  > Q, {a~a._.....~}, lemma 2 in 
rt----O 

, n ---* oo. In other words, 

• ,. Kc"A(1 - 9) -2 n° n ---* 00 .  (3.4.24) 
J" (A +/3c)O+, {1 - p Q ,  ( ~ - ~  -) } ~ ' 

Now define H(s )  = ~ h,s" = J(s)Q,(a). Since c > 1 and ~ < - 1 ,  it is clear from 
1%----0 

(3.4.23) and (3.4.24) that  [imooq,(c)/j,, = 0. Corollary 6.1 of [19] then yields tha t  h ,  ~ 

Q~ {~-----~} j , ,  n - .  oo. Thus,  using (3.4.24), 

A . ~  (A+~3c) °+IKc°A(1-p)Q~ (~+a¢)~ ~ j ( A ) "  n - . * ~  

But from (3.4.5), fa(n) = p ( 1 -  P)-l f a ( c - 1 ) h , - ~  for n > ¢ and so (a.4.21) resu Its. 

It is worth noting that  theorem 3.4.1 yields an asymptot ic  expression of the form (1.3.221, 

namely' fA(n) ~ h'ln ~' ~ n .--, oc, where Kt varies depending on whether c is 

greater than or equal to 1. As a simple corollary to the theorem; one obtains  from (1.3.21) 

the asymptot ic  expression for the reported liability df 

1 - F R ( z ) ~ C ~ z ° e  - " z ,  z - - . ~ .  (3.4.2~) 

In this expression C: varies both as the claim size dis t r ibut ion is discrete or continuous and 

c is greater than or equal to 1, In an.',' event, 02 is easily obtained from the theorem and the 

discussion immediate ly  following (1.3.21). Also, ~ in (3.4.25) satisfies Mx(,~) = (A + 3c)/A. 

Consider the class of dis tr ibut ions satisfying (3.4.19). Now, MT(a) < oc for s < 3. and 

MT(3) < oc. Thus f r o m ( 3 . 4 . 1 7 ) , Q z ( s ) <  o e f o r s  <_(A+Jc ) /AandQ1  (~+,&)-7 < ~c. There 

will exist r > 1 satisfying Q,(T) = p - '  if Q~ (~-~ a-------A~) > p-~ (i.e. if 317(3) > 1 + p - ' E ( T ) 3 ) .  

But theorem 3.4.1 holds if Q, (,_~s......_~) < p - , ,  and so one of the two asymptot ic  results ,,ill 

hold. namely' (3.4.14) or one of (3.4.20) or 3.4.21). 
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The inverse Gaussian pdf (1.3,9) satisfies 

f ( z ) "  ~ z -~  e - t  , z - - ' o o ,  

and L'Hopital 's  rule yields 

1 - F ( z )  ,-, " - 7  z -~  e - t  , z - -  ~ .  (3.4.26) 

The relation (3.4.26) is clearly of the form (3.4.19) with a = - ~ ,  B replaced by ~-~, and 

K = ;3~e"(3/~)~/ '2. .  Thus,  if T has the inverse Gaussian pdf, (3.4.14) will hold if e" >_ 

1 + , / ( 2 p )  but if e" < I + ~/(2p), theorem 3.4.1 applies, 

While the model of this section is more complex, it nevertheless provides some insight 

into the distr ibutional  behaviour of R in a more general situation. 
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Chapter 4 - The Analysis of Delays 

4.1 Introduction 

A quantity which is of interest to both the insured and the insurer is the length of time 

it takes to process and approve a clam for payment of the claim. We will ignore partial 

payments made prior to final settlement of the claim. The insured normally is interested 

in the total delay between the time of incurral of the claim and the time of receipt of 

payment, whereas the insurer is concerned with the time from receipt of notification of the 

claim until approval or payment. Since the time from incurral to receipt of notification is 

outside the insurer's control, this quantity is not of interest for purposes of the analysis 

of the system's efficiency. In group insurance, this efflciency is one of the more important 

parameters involved in the decision of policyholders to place their business with a particular 

insurer. Hence, the time to process aclaim is clearly a quantity of interest to the insurer. 

While the average processing time is certainly important in this connection, it is not 

sufficient for proper evaluation of the system's efficiency, since it does not allow for variability'. 

For example, it does not account for variations in the time it takes to process a particular 

claim or in the delay due to an increased volume of incurral claims. A queueing approach 

allows for the incorporation of these quantities into the model. It is important to be able to 

assess whether a long delay in payment of a claim is reasonable in light of this variability. 

Clearly, action with respect to improvement of the system's efficiency might be be deemed 

appropriate if delays are too long. 

4.2 E x p o n e n t i a l  process ing  models  

Consider first the time 5' between receipt of notification of the claim bv the insured and 

final approval of the claim for payment. For the single claims evaluator model of section 

3.2, it was pointed out in example 3.2.i that S has an exponential distribution with mean 

p/{A(1 - p ) } .  Hence, since p = AE(T) where T i s  the time required to approve one claim, 
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the distribution of 5' is given explicitly in this case by 

rs(:=) = 1 - ~ - { ~ - ~ } " ,  • > 0 .  (4.2.t)  

It follows at once from this fact that 

Var(S) : {E (S ) } : :  1 - -~"~T)  " (4.2.2) 

Thus, (4.2.1) and (4.2.2) give two simple measures of the variability in S. 

As was pointed out in section 3.3, the model with c claims evaluators may be of more 

interest to the insured because the distribution of S and its moments may be modified by 

a change in c, a parameter which is under the control of the insurer. In this case (in the 

notation of section 3.3) the distribution of S is given by (c.f. [11], p. 91) 

F s ( z ) =  1 - ( 1 - 6 ) e  °x'r~ -Oe  - { ~ r ; - ~ } , ,  z > 0 ,  (4.2.3) 

W h e r e  

and for n = 1 , 2 , . . . , c -  1, 

{AE(T)}" 
fa(n)  = n! 

From (4.2.3), one obtains 

c ° l  

1 -  g f~ (n)  
,.,=o (4.2.4) 

O= l - c +  hE(T) 

(AE(T)}" ¢-' {AE(T)}~') - '  
( c - l ) !  {c -AE(T) }  + ~ k! (4.2.5) 

k~O 

E(T) } 
E(S) = (l - O)E(T) + O c- '"~((T)  

and 

e ( s b  = 2(~ - o / { £ I r ) }  ~ + 2o c - - 2 ~ r /  ' 

with Var(S) = E(S ~) - {E(S)} 2. 

A, 

(4.2,6) 

(4.2.7) 

For purposes of analysis, it is convenient to express (4.2.3) through (4.2.7) in terms of 

E(T), and c. This is because the claims incurral rate A and the mean processing time 
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E(T) would normal ly  be beyond the  control  of the  insurer,  bu t  the  n u m b e r  of evaluators  

c is under  the  control  of the  insurer.  Thus ,  as discussed in sect ion 3.3, the  effect on the  

d i s t r ibu t ion  of .5" of a change  in the  value of c may be ~ c e r t a l n e d .  The  following exarnple  

illustrates this point. 

Example  4.2.1 

Consider  the  s i tua t ion  of example  3.2.2 with c = 3 clairr~ evaluators ,  ~ = 4.27137, and 

p = .147681. Then  the mean  processing t ime  of one claim is E(T) = cp/A = .103724. 

i t  is a s imple  m a t t e r  to evalua te  fA(n) for n = 1 , 2 , . . . , c  - 1 using (4.2.5). Then ,  from 

(4.2.4), one obta ins  6 = - .00700951.  T he  mean  and  variance of S are .104167 ( =  5/48,  see 

example  3.3.2) and .0109797 respectively, ob ta ined  using (4.2.6) and  (4.2.7). The  df Fs(x) 

from (4.2.3) is 

Fs(x) = 1 - 1.00701e -9.sa~7~ + 0.00701e -24"6sis= . 

Thus ,  for example  Fs( .145) ~ .75, implying t ha t  abou t  75% of the  claims could be expected 

to take no more t h a n  .145 of a year to be approved (and 25% would take more than  this  

length of t ime).  

The  effect on S of hiring or releasing claims evaluators  can be evaluated by varying c 

but  keeping .X and E(T) cons tan t .  In this  s i tuat ion,  for example,  the  effect of releasing 

one eva lua tor  can be de te rmined  by reworking the  calculat ion with c = 2. One finds t h a t  

0 = - .144258,  E(S) = .109077, and Vat(S) = .014050. The  fact t ha t  E(S) increases only 

slightly for the  case when c = 3 reflects the  fact t ha t  p is qui te  small,  and  so there  is l i t t le in 

the way of congest ion.  It is in teres t ing to note t ha t  the  variabil i ty has increased relat ively 

more, p robably  reflecting the  fact t h a t  increased congest ion has a greater  effect wi th  fewer 

evaluators .  Finally, one finds t ha t  in this case 

Fs(x) = I - 1.14426e -9'64°9Tz + .14426e -ls'°l°6~ . 

One finds t ha t  Fs( .155) ~ .75, i.e. an increase from .145 to .155 of the  75th percent i le  from 
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the case c = 3, again agreeing with intuition. 

It is worth noting that the processing times in each stage of the two-stage network 

model described in section :1.3 ate independent of each other, and each is distributed as 

described above. The total processing time has distribution which is the convolution of two 

distributions, each with df of the form (4.2.3). This independence does not hold for the more 

general network models (cf. [6]). Similarly, the total delay from the claimant's standpoint is 

simply the convolution of the distribution of S described above with that of B, the time from 

incurral to reporting, a.s described in chapter 2. In these and other models, the distribution of 

interest involves convolutions of exponentials with different means. Rather than enumerate 

all possibilities, it suffices to point out that the sum of k independent exponentials with 

different means has mgf of the form 

and pdf 

where, for Z = 1 , 2 , . . . , k ,  

Jc 

f (~)  = ~ q,~,,~ . . . .  (4.2.9) 

lc 

q , =  I'l { ~ J / ( ~ , - ~ , ) ) .  (4.2.1ol 

It has been assumed that the #,'s ate all distinct in this formula. See [9], p.79, for further 

references. In the situation described here as well as others, this result allows for a simple 

derivation of the distribution of interest and associated moments. 

4 ,3  More  genera l  de lay  models  

For situations not involving exponential processing models, the total delay distributions 

are more complex. However, a common underlying mathematical structure may be exploited 
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to provide a unified treatment of the various delay distributions of interest to the insurer 

and the policyholder. 

To begin, consider the model of section 3.4 with c claims evaluators processing claims, 

with the time required to process one claim given by a generic variable T with distribution 

Fr (z ) .  The notation of section 3.4 will be used. Recall (cf. [2, p. 360]) that  the random 

variable with pdf F~(z) = {1 - F r ( z ) } / E ( T )  has mgf 

M l ( s )  -- M T ( S )  -- 1 
~E(T) (4.3.1) 

Since MT(~)= ~ E_~_, ~! ~ , one finds that the moments of the distribution with df Fl(x) are 
k--O 

given by 

M~k)(O) = E(T~+')] {(k + I )E (T) )  . (4.3.2) 

If we denote the delay random variable of interest to be W, then the distribution of IV is 

most easily characterized by its mgf, which is of the mixture form 

Mw(s) = OMw,(5) + (1 -O)Mw,( s )  (4.3.3) 

¢ - 1  
where 0 = 1 - ~E~ fA(n), 

M w ,  ( s )  = 1 - p 1 - pMl(a/c) Mw,(s) , (4.3.4) 

and the mgf's ),l~,3(s ) and Mw,(s) are selected so that IV represents the desired quantiD'. 

To identify W~ and l,V~, suppose first that W is the time S between receipt of notification 

of the claim and approval for payment. In [33, p.37], it is shown that  the time from receipt 

of notification until the time at which actual processing of the claim begins has mgf of the 

form 1 - ~ + OMw~(s), where Mw~(~) is the mgf Me(s) of the random variable with df 

F~(z) given by (3.4.3). Thus S is obtained by convolving this distribution with that of T, 

the processing time. In other words, S has mgf of the form (4.3.3) with .'*lw;(s) = Mr(s)  

and Mw;(s) = M¢(s)Mr(s). From the policyholder's standpoint,  W = S + B where B is 
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the t ime for incurral  to reporting.  Hence in this case W is still of the form (4.3.3) with 

Mw~(s) = M T ( a ) M s ( s )  and Mw=(s) = M , ( s ) M r ( s ) M a ( s ) .  

The representat ion (4.3.3) allows for evaluation of the moments  of W by differentiation. 

In general,  the moments  M~k)(o) may be difficult to evaluate,  but  it is worth noting that  if 

c = 1, then (4.3.2) may be used so tha t  there is no difficulty, as long as the moments  of T 

(and perhaps B) may be obtained.  

Evaluat ion of the dis t r ibut ion of W is also complicated in generM, pr imari ly  due to the 

presence of the d is t r ibut ion  of Wl with mgf (4.3.4). It may be the case that  the ta~l of the 

dis t r ibut ion is asympto t ica l ly  exponential ,  however. Notice that  (4.3.4) may be expressed as 

Mw, (s) = pM~(s/c)Mw, (s) + (1 - p)Mw~(5) . 

Assuming that  ~I~'3 is continuous,  it follows from the fact tha t  p = AE(T)/c that  one has 

f w , ( z )  = A :  {1 - Fr(mj)} fw,  (z  - ~)d~/ + (1 - p ) f w , ( x )  . (4.3.5) 
O 

This relation is useful because it may sometimes by solved numerically' for F~,,, (z) due to tim 

fact tha t  it is a Volterra integral  equat ion (cf.[28]). Also, it is a defective renewal equation 

(e .g  [10, chapter 8]). To see this, note that  the m g f ) , l t ( s / c ) i s  associated with the pdf 

c {1 - F r (cz )}  (4.36~ / ; ( ~ )  = ~ 

and (4.3.5) is expressible as 

z 

/ f ; ( Y ) f w ,  (z  - y)dy + (i - P)fw,  (z)  . (4.3.7) (z) P 
0 

Thus, if there exists ~ > 0 satisfying 

then (4.3.7) satisfies 

e'z] '~, ' ,(~) = / {pe 'U ' ; (~ )}  
0 

M , ( ~ / c )  = p-' , (4.3.8) 

{ : c ' -~ ) [$v ,  (z - y)} d~ + ¢ 1 - p ) : ' f w ~  (~) . 
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By (4.3.8), this is am ordinary renewal equation,  and by the renewal theorem (cf. [14, p. 

191]), one may conclude that 

lim e~fw, (z) = 
z ~ o o  

(1 -- p) f~o e~fw3 (x)d~ 

0 

In other words, 

f w , ( z )  ~ c ( 1  - p)gw3( ,~)  _ 
pM~( , , / c )  

and since asymptotic  expressions may be integrated, 

1 - Fw, (x) c(1 - p)Mw~(~) 
p~M[(,c/c) 

Finally, if Mw~(,~) < o¢, then e "~ {i - Fw2(x)} --. 0 as x ~ o¢, and so (4.3.3) yields 

1 - F w ( z )  ~ K e  ~ , x - ,  o o ,  (4.3.9) 

where the constant  K is given by 

K = e0(1 - p)Mw,(~) 
p~M[(~/c) (4.3.10) 

Evidently, (4.3.9) demonstrates that the distr ibution of W is asymptotically exponential  

under these conditions, a fact which provides qualitative insight into its behaviour. It is 

worth noting that (4.3.1) and (4.3.8) combine to yield an alternative definition of the decay 

parameter ~ in (4.3.9), namely 

MT(~/c) = I + p-' { E(~Tc ) } , . (4.3.11) 

Equation (4,3.11) reveals, upon examination of section 12.3 of [2], that  ~ is the adjus tment  

coefficient in a ruin theoretic context with 'single claim size' mgf Mr(s/c) and relative secu- 

rity loading (1 - p)/p. This is analogous to the condition for the asymptotic exponential i ty 

of the reported claim liability distr ibution of section 3.4, as is discussed following (3.4.1S). 
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C h a p t e r  5 - Conc lus ions  and  Areas  for F u r t h e r  Research 

This paper presents a cohesive and comprehensive modelling approach to the analysis 

of the claims payment process, relying heavily on risk and queueing theoretic techniques to 

account for the effects of statistical variation in both claims incurral and processing. A unique 

feature of the approach is the attempt to incorporate the effects of increased congestion of 

claims on the reported claims process. 

Chapter 1 is of an introductory nature, describing both the nature of the problem and the 

relevant risk theoretic background. In particular, it is assumed that the number of incurred 

claims process is a Poisson process, and some of its properties are described. 

The unreported claim liability is the topic of chapter 2, and in the first section a compound 

Poisson model is proposecl which requires knowledge only of the average reporting delay a_s 

well as the usual incurred claims information. The mean unreported liability is consistent 

with intuition, higher moments such as the variance are easily obtained, and the entire 

distribution may be calculated recursively with the aid of a computer. This allows one to 

choose the amount needed to cover the liabilities to be adequate with a specified probability, 

an approach suggested in [3 I. The next section discusses a generalization to reflect differences 

~n reporting patterns while retaining the advantages of the compound Poisson form. A 

much more general model is discussed in the final section which allows for a great deal of 

flexibility with respect to realistic phenomena which may be entertained. Particular factors 

discussed include sea.sonedity of incurred claims, business growth, heterogeneity of risk levels 

in the portfolio, inflation, and seasonality of reporting patterns. The added expense of the 

generalizations is more complicated mathematics, but the compound form of the unreported 

liability distribution is retained. This has various desirable ramifications, many' of which are 

discussed 

The reported claim liability is considered in chapter 3, and in the first section it is shown 

quite generally that the reported and unreported claim liabilities are statistically independent 
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of each other, implying that they may be analysed separately and without regard for each 

other. It is also shown that the number of reported claims process is approximately a Poisson 

process, a fact which facilitates the use of queueing techniques. A compound geometric 

model for the unreported liability is proposed in section 3.2 under the assumption that  

one claims evaluator processes claims in the order in which they are reported, and that  

the processing times required for each claim are independent and exponentially distributed. 

The reported claim liability distribution may be evaluated recursively on a computer, and a 

simple exponential approximation for the right tall allows for a simple estimate of the amount 

needed to cover the liability a fixed proportion of the time. A somewhat more complex 

model involving several claims evaluators is described in section 3. While the computational 

details are slightly more onerous, there is little difficulty calculating the moments and the 

distribution (the latter recursively), and an exponential tail approximation for the right tail 

of the reported claim liability distribution is still available. These models may be combined 

to describe more complex evaluation systems through the use of networks, and a two stage 

model representing claims 'In Course of Settlement'  and ' Due and Unpaid' respectively, is 

outlined. In the final section an arbitrary processing time distribution is assumed together 

with several evaluators, and this general model is seen to reproduce an intuitively appealing 

mean reported claim liability. While this model tends to be more difficult to work with 

mathematically, the right tail of the reported claim liability distribution is still approximately 

of exponential form under formerly general conditions. In fact, these conditions are shown 

to be essentially those for the existence of the adjustment coeffcient in ruin theory. An 

alternate asymptotic formula is given for some situations when the exponential form does 

not hold. 

The analysis of the delays in processing clairm for payment are the subject matter  of 

chapter 4, where it is argued that this is an important tool in the analysis of the efficiency 

of the claims evaluation system. The situation involving exponential processing times yields 

relatively simple moments and distributions of the delays, as shown in section 4.2. In the 
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more general formulation of section 4.3, an expression is given for the moment generat- 

ing function of the delay distribution, and it is shown that this formulation may represent 

different time periods of interest to the policyholder and the insurer. An exponential tail 

approximation for the delay is then derived, again under essentially the same conditions as 

those underlying the existence of the adjustment coefficient of ruin theory. 

The paper describes a general approach to the modelling of the claims payment process, 

and provides a basic set of quantitative tools to be used in a variety of situations. While 

the use of network models discussed in chapter 3 provides an important framework within 

which quite complicated claims processing systems can be modelled, there may be certain 

physical characteristics which necessitate the use of more complicated models. 

One such situation involves the possibility of resisted claims. This feature may often by 

dealt with through a redefinition of the single claim size distributioD. Suppose, for example~ 

that one assumes that a proportion p of claims are ultimately not paid. Then the single 

claim amount distribution fx(z) could be replaced by one of the form p+(1 -p)fx(z) where 

fx(.r) is now interpreted as the distribution of the amount payable given that something is 

payable. Even in the more complicated situation with partial payments one may still be 

able to use past experience data to construct a distribution of the amount actua[ly paid (if 

the data available does not already reflect this). A more difficult problem to resolve involves 

s:tuations where the size of the claim cannot be ascertained at the time of incurrai and is 

not independent of the processing time, and it is possible that the approach of this paper is 

unsatisfactory. It is worth noting that these may be the same situations where the standard 

model of risk theory is also unsuitable, however. 

One other feature which one may wish to incorporate involves the queueing mechanism 

assumed in the liability of reported claims. Rather than working on one particular claim 

until it is approved for payment, an evaluator may work on other claims (or even other 

t) pes o[ insurance) while other work is done on the original claim or other information is 

obtained, Thus several claims may simultaneously be processed by a single evaluator. The 
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use of network models may be appropriate here since the claims could be routed to another 

queue and then returned after additional information is obtained. A second possibility is to 

formulate a model where the time of the evaluator is 'shared'  by several claims in the course 

of being approved. A simple method to incorporate this feature would be to assume that  

the evaluator acts like several evaluators, one for each claim. 

There may be other features which one may wish to incorporate into the model for 

the liability of reported claims, and a queueing approach provides a systematic and unified 

methodology which may be utilized in a wide variety of situations. 

As with other models such as that in [13], the model for reported claims assumes equilib- 

rium has been reached, and removal of this assumption may be both desirable and difficult. 

Nevertheless, it is felt and hoped that this approach can provide valuable insight into the 

claims payment process, and in particular to claim liabilities and the delays involved. 
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