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ABSTRACT

The c.d.f. of a random sum can easily be computed iteratively
when the distribution of the number of i.i.d. elements in the sum
is itself defined recursively. Classical estimation procedures for
such recursive parametric families require specific distributional
assumptions ( e.g. Poisson, Negative Binomial)d. The minimum
distance estimation procedure proposed here allows for the
selection of the best fitting family member withaout prior
distributional assumptions. It is shown that the estimator thus
obtained is consistent and that it can be made either robust or
asymptotically efficient. Its asymptotic distribution is also
derived and an illustration with Automobile Insurance data is

included.
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{1.Introduction

Let x » X, be i.i.d. observations from a discrete

PR
parametric family of p.f.’s defined recursively by:

- B
Prag = € " 37

k-1 c1o
where P, denctes R X = ¢ )3 , 0 £ a < k-1 and 6 = Ca , f2°

D Py for = a, a+tf, ... ,

is the parameter vector of interest. The problem is to estimate &
within © (i.e. the set of values for which (1) defines a proper
p.f£.0.

Substituting we find that

T
£ 3 3
= C(a + =0 . . . —_— = + =
Py a l) Ca + a+1) P, . N <o J) P,
J=a+t
and
- 3 £ IE]
p, = {1 + Ca + a+1) + (a + a+1)(a + EIED +
+ca+ L ca+ B!
! a+! T
R i Py -t
={f + ¥ neéa + =01
t=a+! j=a+! J
Clearly maximum likelihood (m.1.) estimation is not tractable
here; even in the case where Ak is finite, it requires the roots

of high degree polynomials. When * is infinite, P, does not
take a closed form, complicating further the wuse of m.l.
estimation.

The study of discrete parametric families defined recursively
as 1n (1) arises naturally in compound distributions. Often the
distribution of the random sum will not have a closed form, but
can be computed recursively if the number of i.i.d. random
variables in the sum follows a p.f. which belongs to (1); see
Panjer(1981> and Panjer and WillmotC1882D.

The use of a recursive definition also allows for the
parametrization of large families of p.f.’'s. For example, for I3
finite, the two parameter family defined in (1) contains the
Truncated Geometric ¢ 3 = O 2 and the Truncated Poisson ( a = 0 2
families as special cases. For kR infinite it contains the Paisson
and Negative Binomial. The problem is to find which member of the
recursive family best fits the observed counts Xprooo . X,

without need tc specify further their p.f.. In a sense, this

resembles the objective of classical procedures testing for
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overdispersion Chere underdispersion could alsoc be tested, but for
the generalized family described below).

Such is the motivation to estimate the parameter € of the
recursive family with no further restrictions on e by an
alternate method based on the minimization of quadratic distances.
We shall show that:

a) For the case where k is finite, i.e. a parametric family

of truncated p.f.'s, the proposed Minimum Quadratic
Distance Estimator C(Q. D.E.D is as efficient as the
difficult-to-compute m.1. estimator.

b) When the range of the parametric family is finite, it is

clear that the m 1. estimator is not robust. The Q. D E.,

on the other hand, provides a mean for tailorized
estimation; by an appropriate choice of the design matrix
the estimator can be made robust, at the cost of full
efficiency, or fully efficient but not robust.

It is simple to check that the estimation procedure described
1in the next section generalizes to the much richer parametric

family of p.f.’'s defined recursively by:

P, = (Gluii tagju, t o + ajuj[)p[—l
YOBy g Y BRYa o e TR 7P
for T = a, a+t, ... , k-2 , where 6 = Ca, (D’ and u is a

vectar of known constants. For notational convenience, however, we
will only discuss in detail the estimation problem for (10.
Finally, it should be mentioned that methods other than
maximum Jlikelihood are given by Brant(1984D, Feuer verger &
McDunnoughC198l1, 19843 and Luong & Thompson(1987D when the
parametric distribution does not have a closed form but some

transform of it has.
2. The Minimum Quadratic Distance Estimator (Q.D. E.D

2.1 Definition of the Q. D.FE.

We first consider the case where 3 is finite and, without

loss of generality, let a = 0. Dencte by P, the fraction of

sample elements x . X taking value T=0, 1, ... , k

PR
We can then write
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- I I ‘
= + = + r = Y

P, Ca i) Py ci for 4

where ECct) = 0 ;, let Vh be a Ak-dimensional positive definite

symmetric matrix of constants. The similarity with the Weighted

Least Squares Estimation problem is clear.

The minimum quadratic distance estimator (Q.D.E.D, 8 = (a,
32', is thus chosen as to minimize
QnCQJ = Zk(QJWAZk(g) = zh(a'ﬁ)whzh(a'ﬁ) (=]
wher e
, o _ - - - B, -
Zk(g) = Zk(a,ﬂ) =7 Py Ca + 3> Po » - P Ca + k) Pr—t ]
OnCQJ is a quadratic form in a and # . Its minimization

reduces to a weighted least squares computation. This should make
the Q. D.E. very attractive from a computational point of view. The

case of interest is when k 1is large in comparison to the number

of parameters in @ . Here no restrictions are applied on © , the
set of admissible values of € . For large samples this should
not cause a problem since it is shown that the Q. D E. is

-

consistent. Substituting & for =] in (1) should still yield a
proper p.f.. In small samples, negative estimated pL values
could be obtained in some cases if restrictions on & are not
imposed in minimizing (2). Standard minimization techniques under
constraints are available and hence will not be discussed here

explicitly.

2.2 Properties of the Q. D .

2.2.1 Constistency

Let €O be the true value of the parameter é . By
definition, as n — o , Zk(eoJ —24 © which 1n turn implies that
On(eo) —24 O . Consistency is therefore guaranteed if we have

once) —2» O at and only at @ = QO
2.8.& Robustness

We show here that the Q. D.E. defined in (2> is robust in the
sense of bounded influence function (see Hampel , 1974, 1886). é
Ean be considered as a statistical functional é(Fn) = [;CFn).
B(Fn)]’ defined implicitly as a root of the following system of

egquations:
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& ZhCa.ﬁ)thkCa.ﬁ) = 0

Sa
& ZiCo, W, Z, Ca, > = 0
63
where the vector Zk in (2> is re-written as
Z,Ca.0 = J th, = Ca + > A JdF_ . ... .
B ,
- < + B> n
[y, a % PpoglaF, 2 3
and ht(XJ = { if x € (1,i+1> and O otherwise. In order to
derive the influence function of e we need to introduce some
more notation. Let Fe be the c.d.f. of the x, values under
the parameter value € C and Fb = Fe be the true c.d.f.>. 1If
o

for a fixed value of x 2 0 and any A € {0,1] we denote by FX
= (f—A)Fe + kéx ., where 6x is a degenerate c.d.f. at x, then
Zk(a,ﬁ) in (3> is a special case of

Z'Ca, B F, 0 = < j th, - Ca+ O hyldF, , ... ,

o A
- 3 .
{ thy, Coa + D> A, JdF, )
where Fn repl aces FA . Finally, let
Hl(a.ﬁ.A) = é_ Z’(a.ﬁ.Fx)VkZ(a.ﬁ.FAJ
Sa
and He(a.ﬁ.k) = é_ p4 Ca.B.FA)VkZ(a,ﬁ.FA)
o
The influence function of é = é(Fn) at a fixed value x 2 O
1s thus given by implicit differentiation to be:
6H1 6H1 -1 6H1
Sa &0 SN
ICCx> = valued at A =0 and 6 = ?O'
6H2 éHZ 6H2
Sa &3 EX
~ -1
AN &H SN
= T | % a (] . .
(=28 A—O.?—QO ~ A=0,8 ?0
If all derivatives are valued at A =0 and 8 = 90 = Cao.ﬁo) ,
we have:
M= sz w ez . M= ezw ez
Sa Sa S & Sa &
o= ez w oz . M- ez w ez .
Sa 611 Sa &f3 &3 53
ana %1 = sz W, 62 . Mo = sz w62 .
EX S &X & &n &X
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where

gg- =-1«f hodFy s I hyydFo 1 = = Lp, Py v Pr—yg?
o
2 h
v = 1 o1
82" = -1 [ har, . [ = dF, . e, 2
&3
P P
1 r—1
[PO.Z—- » = 1 .,
and
gg = { (hI(X)—pl) - (ao+ﬁo)(hofx)-po). N
» f
[
(hRCX)—pk) - Cap* F_)Chk-tCX) ph—l) 7
It is clear that for L3 finite, ICCx> is a linear

combination of h(Cx) values and that, consequently, it remains
bounded. The Q.D.E. is therefore robust in the sense of bounded
influence function.
2.2.3 Asymptotic normality

The Q. D.E., é , minimizes Qn(?) . Using a Taylor's series
expansion we have:

P . - PP
Q8> = @ (8,0 + Q. (8,5(8 - §,> + oyln > c4d

where OnC.) and Qn(.) denote the matrices of first and second

derivatives, respectively, and oy(.J stands for a term
converging to O in probability at the specified rate. Thus,

. - _ ' 172

On(go)(g QO) = Qn(go) + o?(n P
where

OnCG > =26 2 4] )W 2 (8 > =2 1 86,5 + o (1> W 2 (8_D

~0 35 ~0 <0 ~0 P rRTR ~O
S;(so)
with S (go) = El é_ Zk(?o) 1 = [ s ce > ] . Since
8 e =0
.. 2 _.
Qn(go) = 2 2 Ezk go)vkzkceo) + 2 ge zk(eo>wk gezk(eo)

2s’ ceo)wxsce D+ o?(t)

Replacing in (42> gives

- S'C8,0W, In Z,06,0 = 5'C8,> W, S(8,> Yn (@ - 6,0 + (12

Consequently,
Yn Z,C8.0 £, ne o,z 2

k<0 o

where ZO = 2(609 is the variance—-covariance matrix of the vector
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h(x;8.0 = { Ch CX)—Pi) - (qo+ﬂo)(hoCx)—po). e

o {
BO
Chh(x)—pk) - (ao+ R—)Chh—ICX)—pk—l) 1. [§=D)
For notational convenience let SO = SCQo) . We thus have,
Yn ce - e, £~ °o.x >
H 1

sowh IO wkso CSOVhSOJ

where I, ,6 = (Séwkso)
* -1 »
wk

1

=X is optimal, it reduces I to &, =

The choice 0 1 p

S DY
€S E, S,

Clearly W: is a function of go . An initial estimate, §

say, can be used with a two-stage procedure. A quick first

estimate is reached by letting Wﬁ = I'Q Cthe k-dimensional

identity matrix>. The resulting é is then used to compute W=

*
-1 . ~ ¥ > -1 o~
£ "(e> . Provided that Vk — ZO . Vk yields an estimator

asymptotically equivalent to that obtained with W: . It is
-~ ¥
derived by minimizing z;cg)wkzkcg)
Note that the above procedure also Yyields robust and
consistent estimators.

e.2.4 Efftciency

1CX;90)
Let y(x;go) = [:Z(XJQO)] be the score function, where
v, (x;8.2 =6 lnp | _ and w_(x;6 > =6 Ilnp - , and let
1 o Za x 9—?0 =4 2} pve x|e 90
I(go) be Fisher's information matrix.
From the previous section, (sbz;’so) is the variance-
covariance matrix of —Sbi;tb ,» where
DO = [(hICX)_PI) - (ao+ﬁo)(ho(x)—po)]
ﬁo
bk—j = [(hkCX)_Pk) - (ao+ E_)(hk-ICXD—Ph—I)] ,
and h = b(x;go) = { bO' e bk—! ] as in (S>. Let p =
-1
p(x;go) = T ah, 6 where the a_. are known constants, and consider
=0 7~J J
the problem of choosing = LRI to minimize
-1 2 k-1 2
j v, - E ajbj > aF, = _g [y, Ci;8,0 - oC1;6,21" p. .
J=0 t=0
(all functions valued at the true parameter value go). The
»
solution, say g“ = (a;. ey ak_!)' is obtained by solving the
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set of equations,

-1
tggatEfbibo) = E(ijo)
k-1
tEEGiE(DiDh—r) = By b y?
In matrix notation this reduces to
C6bo)
b a’ = - = - ; Sa
o~ S5 ' 6hh-1
- EC——">
. &a
which gives a
k1 "
Defining b atbi » we can view it as the
=0
projection of ¥, onto the subspace spanned by bO' ce e bk—!

Similarly, p' can also be viewed as the projection of " onto
the same subspace. Therefore, if the range of the parametric

family is finite, ¥ must belong to such subspace and y = p,

Consequently the Q. D.E. is asymptotically as efficient as the m.1l.

estimator.

3. The non—-truncated case

If the range of the parametric family is infinite, the above
discussion still applies if we let kR — o© as n — © at an
appropriate rate, that is k = o(¥n> . The Q. D.E. is then obtained
by minimizing the guadratic form,

FR SR

where W: is an estimator of Z_lfgo) , and then taking the limit

as k tend=s to infinity.
The consistency of the resulting estimator is established as
above. Note that

€8> S Z.CB_OW.Z (6 >

AA~
< ¢
O = 2 68MZ2 k207" R R 20

3 I3

and since

2:.ce dWiz,ce_ > - 2.¢8

-1 »
1207 YxZr €0 * 2r (8. 02 (8.0 — O

o (20 e
it suffices to have Z2;(8F '¢8>2,c6> -2+ 0 at and only at 6 =
90 . This is clearly the case here since,

' -1 -
E( Z,C80F "CQ, 02,08, ) = kn
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tends to 0O as n — o , and

-1 2
Var( Z (6 o7 (QO)ZA(BOJ } = 2k/n
also tends to o as n — o . Using Chebyshev's inequality
mompletes the proof, implying that € —Z; go

The asymptotic normality is also established as in the finite

case. Using a Taylor serjes expansion like in (40 we have

YR8 - 9,0 Za N O, s s
where S'Z—IS = lim S b (90)50 , assuming it exists.
le+>0

Finally, the QD.E. also attains full efficiency in the

infinite case, for the score function 17 belongs to the
(infinite dimensicnal) linear space spanned by ¢ bo. bl' 2,
*
and therefore, y = p
Note that if the design matrix V: is truncated to be finite
k—di mensional, the above procedure still yields robust and

consistent Q. D.E.'s, although sub-efficient.

4. A numerical example

The data in Table 1 pertains to an Automobile Insurance
portifolic of a Belgian company, observed for the period between
July 1, 1975 to June 30, 19786, and reported in Lemaire(1985). Here
L3 stands for the number of claims reported in the observation

-

period, ™ and Pl for the observed frequency of L3 and its

corresponding relative frequency, respectively.

Table ! : Distridbution of Number of claims in Portjfolio
Observed Estimated
* " P I 1T III
96, 878 0. 80656 0. 80386 0. 90658 0. 90657
1 9,240 0. 08638 0. 081386 0. 08628 0. 08638
2 704 0. 00658 0. 00462 0. 00662 0. 00895
3 43 0. 00040 0. 00016 0. 00047 0. 00037
4 <] O. 00008 0. 00000 0. 00003 0. 00002
25 e} 0. 00000 Q. 00000 0. 00000 0. 00070
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Lemaire fitted the Poisson Cusing the notation of section 1,
-

he getls 6 = CO , 0.10113’)> and Negative Binomial distributions

(6 = (0.05835 , 0.00841>'> to this data by maximum likelihood
estimation; the resulting fitted relative frequencies are

reported, respectively, in columns I and II of Table 1. Both of
these distributions belong to the family defined in (1>, but
according to Kolmogorov-Smirnov's criteria, the fit could be
improved. Lemaire proceeds by fitting Generalized Geometric (2
parameters) and Mixed Poisson distributions (3 parameters), none
of which belong to this recursive family C(nor to  its
multi-parameter generalizationd, hence the iterative evaluation of

his compound sums is not possible.

With the reported Py values we produced an initial QDE of

6 = Ca 3° in (1> by minimizing Q4 in (&> with V4 equal to

the identity matrix. This initial estimate, & = C0. 05698 0.03830)"°

was then used to compute the optimal V: = Z_I(é) . Only two such

iterations were required to produce a QDE é = (0.0566C ,
O. 03868>° accurate to © decimals (the resulting relative
frequencies are reported in column III of Table 13.

The example illustrates how relatively simple it is to cbtain
a QDE within the family defined in (1). See Garrido & Luong(1989)
for a more detailed analysis of QD estimation in the
mul tiparameter case Cand its applications to acturial inference

problems?.
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