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Bounds on Expected Values of Insurance Payments 
and Option Prices 

Abstract 

This paper presents best upper and lower bounds on the expected value of  a 

reinsurance payment under the terms of  a contract written on a random loss with known 

moments. The bounds are based on results from Kemperman's survey [13] of  moment 

problems. Bounds on the expected exercise value of a financial option are considered also 

because the mathematical model used for valuing options is similar to that used in 

reinsurance net premium calculations. 

I. Introduction 

Actuaries construct stochastic financial models in order to assist insurance company 

managers in determining the future financial impact of insured events. Some areas where 

these models are applied include determination of insurance premiums, calculation of 

benefit reserves and estimation of insurance fund solvency. There are two sources of 

errors in these models: (1) mis-specification of the model's statistical distribution and (2) 

estimation errors in determining the parameters of the distributions involved. As an 

example,  consider a fire insurance policy on a house which is worth ]a. The value X of fire 

damage to the house is to be paid to the policyholder, less a deductible, at the end of the 

policy period. The total loss X is bounded, 0 _< X _< b. The insurance company pays the 

policyholder the excess (if any) of the loss X over the deductible d which is specified in the 

policy. Let h(x) = max{0, x - d}. The benefit to the policyholder is h(X) = 

max { 0, X - d ]. When the policy is written, X is modelled as a random variable. For 

determining premiums, an actuary would be interested in the distribution the discounted 

value of Y = h(X), perhaps for various values of  the deductible d. For this example,  

suppose that the interest rate variation can be ignored; thus the problem reduces to studying 

the distribution of  Y. 

Usually moments of X are known from company or industry experience. In 

determining premiums, reserves, and so on, an actuary would need estimates of  the 

moments of Y = h(X), but would have available estimates of  moments of  X. To be 
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specific, suppose that only two moments are used and estimates of the mean t~ and variance 

a 2 of X are provided. An example of  mis-specification would be to suppose the X is 

normally distributed, even though it is known that X cannot be normal (because 0 -< X < b 

for example). Occasionally this sort of error is acceptable because it is convenient or 

because only crude estimates are required. "l'he second type of error is attributed to error in 

estimating the parameters, la and a 2. Errors arise because of  inflation, changes in the risks 

insured (in the f'tre insurance example, a change in the method of constructing houses is an 

example of  this phenomenon) or changes in coverage (perhaps mandated by regulation or 

law). This paper is concerned only with model mis-specification error. The proposed 

technique of  dealing with it in this example is to determine the extremes of  E[h(X)] as X 

varies over all random variables X bounded by 0 and b, having mean la and variance o 2. 

The bounds which are developed below follow from results surveyed by 

Kemperman [ 13]. Many of these are due to Kemperman. A very special case of  the upper 

bound (two moments and h(x) = max{x - d, 0}), using the same fundamental principles 

(polynomial bounds and contact sets), appears earlier in Scarf [17]. Bowers [2] obtained 

the upper bound independently, but in a slightly different formulation. We introduce the 

following notation in order to describe the solution. ~!. denotes the set of  all cumulative 

distribution functions F concentrated on [a, b]. M(y) is the subset of M having moments y 

= (Yl, Y2 . . . . .  Yn)- By this we mean that 

and 

l b dF(x) = 1 

i b = Yi x i dF(x) 

(F is concentrated on [a, b] ) t 

for each i ---' 1 . . . . .  n (F has the correct moments). 

IThe integral symbol denotes the Riemann-Stieltjes integral. This may be correctly interpreted as 

the usual integral of introductory calculus with integrand x i f(x)dx where F'(x) = f(x) in case the cdf F is 

differentiable. If F is discrete with probability density f. the Riemann-Sdehjes integral reduces to the sum 

of x i f{x) over the countably many values of x for which f(x) is positive. The Riemann-Stieljes integrM 

generalizes these two types of expeetations and handles the mixed distributions corrccdy as well. See 

Apostol [ I ] for a development of Reimann-Stlel0es integration. 
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The best bounds on E{h(X)] are denoted formally by 

b 

L(h I y) = inf[ I h(x) dFIx)  : F ~ M(y )  ] 

and 

i 
b 

U(h y) = sup{ h(x) dF(x) : F c ~l,(y) } 

where  y denotes  the specified vector  of  moments.  In the above example  y = (It, la 2 + 02). 

In the next section, the solution for an insurazlce policy with a deductible is developed.  It 

turns out that the best lower bound corresponding to the function h(x) = min{x, d} is 

given by 

dl.t 2 

0 2 + ta 2 

p.(b- l a ~ +  (d + "_________5 b)°2 

( b -  . ) 2  + 02 

for 

for 

for 

0 2 + i a2 
0 < d < ~  

2p. 

o 2 + i a2 - i a2 - o 2 - - <  d < b2 
21a 2(b - It) 

b 2 _ la 2 - 0 2 
< d _ < b  

2(b - p)  

This bound is a slight generalization of  a result of  Scarf  [17] and Bowers [2], which can be 

obta ined by letting b tend to infinity. The best uigper bound for h(x) = min{x, d} is 

U(h I y) = q 

0-2 
d for O ~ d S k t - b _  ~ 

~t(b + d) - bt 2- o 2 2 
b for la -  b _ ~ < d  < tl + 02 

I1 

p for p.+°2<d<b 
~t 
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Figure 1.I shows the graphs ofL(h  I y) and U(h I y) as functions o f d  for typical values of 

the problem parameters. Figure 1.2 is the graph of the difference W = U(h I y) - L(h I y) 

for the same values of d. The interesting shape of the graph W changes in an interesting 

way when the variance o and limit b are allowed to vary. An example is given in Figure 

1.3 in which o and d vary. 
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Figure 1.1. Graphs ofL(h  I y) and U(h I y) for a mean o f p  = 50, a standard deviation of o 

= 30, and an upper bound of b = 100 as functions of the deductible x, varying from 0 to 

100. 
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Figure  1.2. G r a p h  of  W = U(h  I y) - L (h  I y) for a mean  o f  la = 50, a s tandard devia t ion  of  

o = 30, and an upper  bound of  b = 100 as funct ions  of  the deductible x, vary ing  f rom 0 to 

100. 
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Figure 1.3. Graph of W = U(h I y) - L(h I y) for a mean of  It = 50 and an upper bound of  

b = 100 as functions of the deductible x, varying from 0 to 100, and standard deviation of 

c ,  varying from 10 to 30. 

Analogous bounds are similarly obtainable for closely related functions such as g(x) 

= min[  0, x - d }, which is the benefit paid to the policyholder if a loss of x occurs. The 

lower bound for E[min{X, d}l was obtained by Scarf [17]. Bowers [21 obtained the upper 

bound for E[max{0, X - d}l, which is essentially the same result. Since the 

policyholder 's share, min[d ,  x}, and the insurer's share, max[0,  x - d] ,  add up to the total 

loss x, min{d, x] + max{0, x - d} = x, then l.(h I y) + U(g I y) = It and U(h I y) + L(g l y) 

= I t. t tence the best bounds for g(x) = max[0,  x - d] are determined in terms of  the 

bounds on h(x) = rain[x,  d]:  

and 

U(g I y) = I t -  L(h I y) 

L(g I y) = I t -  U(h I y). 

Scarf and Bowers considered only the case that b = +,,o. Lo [14] used Scarfs  lower bound 

on min{d, X} to obtain the upper bound on max{O, X - d] which he then applied to 

option pricing. We review option pricing applications later. 
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The general approach to bounds on E[h(X)] in terms of given moments of X has 

been investigated also by Brockett and Cox [5], [6], Kaas and Goovaerts [11] and Chang 

[7]. The major difference is that these methods require h to be very smooth. 

Kemperman's approach does not require smoothness; h need not be differentiable at all. 

However, the strong differentiability requirements yield stronger results. In these 

papers the function h does not enter into the determination of the probability distributions at 

which the optimal bounds are obtained. The differentiability requirements can be reduced 

somewhat without changing the results. See Chang [7] or Brockett and Cox [6] for 

examples. We review some interesting actuarial applications of  these results in Section 2. 

In section 3 Kemperman's approach is used to derive the best bounds described 

above in the case of  two known moments of a bounded random variable for the functions 

h(x) = min{x, d} and g(x) = max{0, x - d}. Applying these to insurance and option 

prices is discussed briefly in sections 4 and 5, respectively. 

We briefly review the notion of loss elimination ratio from Hogg and Klugman 

[10]. The LER is the ratio of the expected loss eliminated (from the insurer's viewpoint) to 

the expected loss. The LER is then 

EImin(X,d)] _ Elmin(X,d)] 

E[XI It 

and tight bounds are obtained by dividing L0a I y) and U(h I y) by It. These are described 

in section 4. 

When the policyholder is also an insurance company, the policy is usually called 

reinsurance. Reinsurance contacts are usually more complex because they typically pay a 

portion of the excess of the loss over the deductible, subject to a policy limit. Of course, 

policies sold to individuals can also be more complex and often have policy maximums in 

addition to deductibles. Thus a more practical function h(x) describing the policyholder's 

benefit resulting from a loss of x would be described as follows: 

0 for O<x_< d l  
h(x) = x -d t  for dt ~ x < d2 

d2- dl for d2 <- x <- b 

where 0 < d l  < d2 < b and d2 - dl is the policy limit. An example of this type of  policy is a 

fire insurance policy with a deductible of 5,000 on a dwelling worth 2,000,000, and 
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maximum payment under the policy of 1,000,000. In this case, dl  = 5,000, d2 = 

1,005,000 and b = 2,000,000. Bounds for this type of  policy are obtained at the end of 

section 4. 

Option contracts are reviewed in section 5. The owner of an option contract has the 

right to buy (or sell) an asset at time T and at a price d set in the contract. One purpose of 

option pricing theory is to determine the value of  these rights at the time the option is 

written in terms of  market conditions, contract values and the distribution of  the future price 

X(T). The common financial models specify that X(T) is a stochastic process with 

parameters estimated from past prices. That is, moments of X can be estimated from past 

price changes and appear in the formula for the current value of the option. Merton [15] 

established conditions for which the current value of European call and put options are their 

expected values, discounted for interest. A popular reference for the details is Cox and 

Rubinstein [8]. In section 5, best bounds on European put and call options are given as a 

final application. 

2. Best Bounds  for  E[h(X)] based  on K e m p e r m a n ' s  A p p r o a c h  

The following is a special case of  the development of Kemperman [13]. As 

described earlier, M denotes the set of all cumulative distribution functions on [a, b] and 

M(y)  is the subset of M having moments y = (Yl, Y2 .. . . .  Yn)- It is useful to use the more 

general notion of  moments that Kemperman describes. The polynomials x, x 2 . . . . .  x n axe 

replaced by general functions gi and integrable over [a, b] for i = 1 .. . . .  n. The usual 

situation is that gi(x) = x i for each i = 1 .... .  n. Some other interesting examples are given 

by Kemperman; others appropriate to insurance calculations are discussed below. In 

general, 

l 
ip 

M ( y ) =  { F e M :  gi(x) dF(x) = yi for all i = 1 . . . . .  n}. 

We will develop formulas for 

/ .  

y) = inf{ I_ h(x) dF(x) : F e M(y )  } L(h I 

and 
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i 
b 

U(h I y) = sup{ h(x) dF(x) • F E Pl,(y) } 

for real-valued functions h defined on [a, b] which satisfy mild continuity conditions. The 

methods yield distributions FU and FL in 1%(y) for which the bounds are obtained. That is, 

there are very special distributions, FL and F U, which X might have for which the largest 

and smallest values of  E[h(X)] are actually attained: 

b 

L(h I y) = I h(x) dFL(x) and 

b 

U(h I y) = I ,  h(x) dFu(x) 

In general, the distributions FL and FU depend on the vector of specified moments y, the 

values of  a, b, and the function h. However, if strong geometric conditions are required of 

h, the distributions do not depend on h. Here is an illustrative example. 

Let X be a random variable on [a, b] with mean la and h a continuous real valued 

function defined on [a, b]. Suppose that h is convex. By convex we mean that, for each x 

and y in [a, b], 

h(~.x + (1 - k)y) < kh(x) + (1 - k)h(y) 

for all ~. in 10, 1 ]. The geometric interpretation is that the chord joining the two points (x, 

h(x)) and (y, h(y)) is entirely above the graph of  h. For example, if h is twice 

differentiable and h"(x) > 0, then the graph of h is convex. We will use Kemperman's  

approach to show that in this case 

h(l~) < E[h(X)] _< h(a)p + hCo)(1 - p) 

(b- la) 
where p - --. If X is the random variable which is always equal to l.t (i.e. a 

(b - a) 

degenerate or constant random variable), then E[h(X)] = h(Jl) and the lower bound is 

obtained. That is, in this case FL is the discrete distribution with all of  its probability at It. 

I f X  is the random variable which takes the value a with probability p and the value b with 
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(b - la) probability 1 - p, then its distribution function FU is in M(y)  because p - and the 
(b - a) 

upper bound is E[h(X)] = h(a)p + h(b)(1 - p). Note that neither L(h I y) nor U(h I y) 

depend on h, only on its convexity. This contrasts with the example given earlier, h(x) = 

min{d, x}, for which L(h I y) and U(h I y) depend on d. Note also that the fas t  inequality 

is Jensen's inequality. Usually Jensen's inequality is stated with the hypothesis that h is 

twice differentiable and h(2)(x) _> 0 on [a, b]. See Bowers et al ([3], page 9) for example. 

Kemperman's  approach does not require that h be differentiable. 

Before establishing the bounds corresponding to a convex function with one known 

moment,  we continue with the description of Kemperman's  method. Suppose there is a 

polynomial of  degree n, q(x) = ~ dj xJ , for which h(x) > q(x) for all x in [a, b]. Let Z 
j=l 

denote the contact set of  q, which is defined by 

Z =  {x e [a, b] : h(x) = q(x)}. 

Assume that there is a cumulative distribution F in M(y) with its support entirely within the 

contact set Z, that is, 

I dF(x) = 1. 

In other words, if X has the distribution specified by F, then Prob[ X e Z] = 1. Then, for 

every cumulative distribution G in M(y), 

l I h(x) dF(x) = h(x) dF(x) (because F is concentrated on Z) 

= l q(x) dF(x) (because h = q on Z) 
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= ~ d j f x i d F ( x )  
j=l a z  

(because q(x) = dlx + d2x 2 + ... + dnx n) 

l 
b 

= ~ __ d i x i dF(x) 
j=i 

(because F is concentrated on Z) 

n 
=~-'~ d j y j  

j=l 
(because F is in M(y) ) 

l b  
= ~.__ d j x i dG(x) 

j=l 
(because G is in M(y) ) 

b 

= I q(x) dG(x) (because q(x) = dtx + d2x 2 + ... + dnx n) 

i 
b 

< h(x) dG(x) (because q(x) "~ h(x) on [a, hi) 

This establishes that E[h I F] is equal to th, e greatest lower bound, i.e., E[h I F] = 

L(h I y). Kemperman shows (I13], page 36) that in the circumstances considered here (h 

and gl .... gn continuous functions), such a polynomial q with contact set Z and 

distribution F concentrated on Z always exist. "lY, is means that to determine the best lower 

bound on EIh(X)] for a given h we need only (if we can) determine q, Z and F. Similarly, 

to determine U(h I y) we need only study polynomials q(x) of degree n for which q(x) > 

h(x) on [a, b] and distributions with support contained in the contact set {x e [a, b] : h(x) = 

q(x)}. We note that this is essentially the method used by Scarf and Bowers, although they 

considered only very special cases. 
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As an illustration, we return to the earlier example  concerning a convex function h. 

Proposi t ion 2.1: Let  X is a random var iable  on [a, b] with known mean It. I f  h is a 

cont inuous  function which is convex over  [a, b], then 

h(it) < E[h(X)] < h(a)p + h(b)(1 - p) where p = - -  
b - I t  

b-a" 

proof ;  In this case,  there is one moment :  n = 1 and g l (x)  = x. By Kemperman ' s  results,  

the lower  bound is obtained by a distr ibution F with mean p. concentrated on the contact  set 

Z o f  a po lynomia l  q(x) of  degree n = 1,. That  is, we may  assume L(h I y) = E[h I F]. The 

graph o f q  is a styaight line, lying below the graph of  h, which touches the graph o f  h at the 

poin ts  of  Z. If  the graph of  h is strictly convex,  Z consists  o f  single point, c. Then F is a 

degenera te  distribution concentrated at c and so c = It and L(h I y) = E[h I F] = h(it). In 

general ,  the convexi ty  of  h and linearity of  g, imply  that Z is at most  a sub-interval  of  

[a, b]. Moreover ,  since q = h on Z, h is a l inear function when restricted to Z. Hence ,  

E[h I F] = h(E[X]) by the linearity of  h and the fact that F is concentrated on Z. In ei ther 

case ,  L(h I y) = h(it).  

For  the upper bound, q is above  h over  the interval [a, b]. We  can suppose  h is 

not linear. Since  h is convex,  the contact  set is at most  Z = [a, b}. Because F is 

concent ra ted  on Z, its probabi l i ty  densi ty  f satisfies f(a) = p and f(b) = 1 - p where  

b - 11 Hence a p + b ( l - p )  = It. This  impl ies  p =  ~ - _ a .  

U(h I y) = E[h I FI = h(a)p + h(b)(1 - p) 

which completes  the proof. 

The proposi t ion applies to functions h which are twice differentiable and h(2)(x) > 0 

on [a, b]. This  was developed by Brocket t  aud Cox [5] using results from Kar l in  and 

Studden [12]. Here are several actuarial applications. Let T = T(x) be the comple te  lifetime 

o f  a person age (x). Suppose that the expected l ifetime It = E[T] is known. In this case, a 

= 0 and b = co - x. Cons ider  the function h(t) = (1 + i) -t = v t for 0 < t < co - x where  i is the 

annual interest rate. Then A~, = E[h(T)] is the net single p remium for a life insurance o f  1 

pa id  at the moment  of  death. Since h(2)(t) is positive, we can apply the inequali t ies just  

developed:  
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vix < -A-x '~ c o -  x - I x  ~ v ~  x I.t 
~ - x  C O - x  

I - V t 
A similar application with h(t) - where 5 = log(1 + i) gives bounds on 

8 

E[h(K)] = ax, the life annuity of I per year paid continuously. In this example, the function 

-h is convex so the inequalities are reversed: 

~- x'la + l-vOJ'~ x IL_._< ax < l-vla 

m-x 5 m-x 8 

The next example is the expected value of  the benefit payment o f  an insurance 

policy with a deductible d. Suppose the policy covers a random loss X with 0 < X < b and 

mean 11 and that the policy has a deductible d, 0 < d < b. In this case h(x) = max{0, x - d} 

is convex. Hence, we can write that 

max{0, IX - d} < E[max{0, X - d}| < Co - d) 
- -  g b ,  

The loss not covered by the policy, the retention, is min{d, X}. Bounds on the expected 

retention are obtained by the relation min{d, X} = X - max{0, X - d} and the bounds on 

E[h(X)]. In the next section, we consider these functions and two given moments. 

The last example gives crude bounds on the price of  an option. Suppose that the 

option valuation model assumptions are such that option prices are discounted expected 

exercise values (discussed in greater detail later). Consider a call option which conveys the 

right to buy at time T a stock at a price of K, when the market price is S(T). The current 

stock price is S and the risk free force of  interest is r, under the assumptions o f  such 

valuation models. The exercise value is h(S(T)) wh~re h(s) = max{0, s - K}. The price, 

which we denote by C(S,T, K), is equal to is e-rYE[h(S(T))], where r is the force o f  

interest, since we are assuming prices are discounted expected values. And for the same 

reason E[S(T)] = Se fT. By Proposition 2.1, we have 

e'rTmax{0. Se rT- K) < C(S, T, K) ~ c-rT(b - K)Sb  rT 
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max[0 ,  S - Ke -rT} < C(S, "r, K) - < - - ~ S  

Simple bounds such as these can also be derived from economic considerations. 

For  the case b = +o., these bounds are derived on an economic basis by Cox and 

Rubinstein ([81, page 154). 

We derive bounds based on two moments in section 5. 

3. Bes t  b o u n d s  fo r  E [min{d ,  X}], g iven I l a n d  o z 

"l'he function h(x) = min [x, d} describes the loss retained by the pol icyholder  who 

buys a policy with a deductible d to cover a random loss X, conditional on X = x. The 

exercise value of  a put option is closely related to h: The exercise value of  a put option on 

an asset with price X and having exercise price d is d - X if  X is less than d; it is 0 if X is 

greater than d. Hence the exercise value is d - h(X). 

In this section we develop best bounds on E[h(X)] for a random variable X on 

[a, b] with two known moments,  It = EIX] and 02 + la 2 = E[X2]. For  most applicat ions a 

= 0. The results are easier to state when a = 0 and the general case is obtainable from the 

case a = 0 by a change of  variables, l lence,  we assume that a = 0. 

Prooosit ion 3,1: Let  h(x) = min[x,  d l  for 0 -< x < b, where 0 < d < b are given constants. 

Let X be a random variable with mean IA variance 0 2 > 0 for which Pr[0 < X < b] = 1. 

Then the best lower bound on E[h(X)] is 

dp 2 

o2 + It2 f o r  

L(h, y) - -  + d-  for 

p ( b -  p)2 + (d + I t -  b)o  2 for 

(h- ~)2 + (j2 

o 2 + 1.12 
0 _ < d _ < - -  

2~  

o2 + it2 _ p2 _ o2 _ _ < d ~  b2 

211 2(b - it) 

b 2 _ i a2 _ 0 2 
< d _ < b  

2(b - it) 

The best upper bound on E[h(X)] is 
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~I 2 
d for  0 _ < d < l a - b _  ~ 

U(h I y)  p (b  + d) - p2 _ 02 ~ + o2 
= b for  la - b - I I  < d <l.t i1 

2 
p for  p. +if-7-< d < b 

£t 

where  y = (It, I a2 + 02). 

Proof;  F r o m  K e m p e r m a n ' s  survey ([ 13], Condit ion 4.7 on page 36 for  example) ,  we 

know that L(h I y) = E[h I F] where F is a distr ibution concentra ted on 10, b] with support  

c o n l a i n e d  in a contact  set 

Z =  {x E [O, b l : q ( x )  = h(x)} 

for  a po lynomia l  q(x) of  degree two or less for which q(x) < h(x) for all x 1~ S. If ~ ~ Z is 

an interior  point  and h is different iable  at ~, then q'(~) = h'(~) since q(x) touches but does  

not cross h(x) at ~. Since the var iance is positive, it is only polynomials  which touch h(x) 

at least twice that are worth considering.  Suppose ~ < r I both lie in Z. Cons ider  t'u-st the 

case  that both axe interior points. It is not possible that "q > ~ > d because this would 

require  q'(~) = h'(~) = 0 and q'(rl) = h'(rl) = 0. But q'(x) is a one- to-one  funct ion so this 

cannot  happen.  I f  d > 1] > ~, the q'(~) = h'(~) = 1 and q'(rl)  = h'(~'l) "= 1, which  is 

s imi lar ly  ruled out. Hence,  we must  have 0 < ~ < d < rl < b. W e  can expand q(x)  in a 

p o w e r  series at  r I and apply  the condi t ions  q(E~) = ~, q'(~) = I ,  q(rl) = d, and q'(rl) = O: 

q(x) = h(rl)  + h '(rl)(x - 1"1) + ~.(x - rl) 2 

q(x)  = d + ~.(x - 1"1) 2 and hence ~ :: d + ~.(~ - 11) 2. 

Thus  q ( x ) = d -  
(d - g ) ( x -  rl)  2 

(~- 'n)2 

In order  that q'(~) = 1 we must  have ~ + r i = 2d. So Z = {~, rl} is the contact  set for q(x) 
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provided 0 < ~ < d and d < 2d - ~ < b. To  discover the probabili ty distr ibution having 

mean  tl and variance 02 which is supported by Z we let p be the probability o f  X = ~. 

Solving the moment  equations 

~p + rl(l - p)= tt 

~2p +1.19.(1 _p) = i.i.2+ 02 

after substituting 2d - r I for ~ yields a quadratic equation for ~1: 

rl 2 - 2drl + 2dl.t - ~t 2 - o 2 = 0 

and hence 

and 

r I =d +~/(d - p.)2+ 0.2 

=d- ~/(d- It) 2+ 0 2 

N ow we can calculate 

L(h I y) = h(~)p + h(rl)(l  - p) 

L(h I y) = ~p + d(l - p) 

L(h I y) = d - p (d -  ~) 

L(h I y) = 21(~, - It) 

L(hly)=21[d +tt-~ (d-lt) 2+ 0 2 ] 

The condition that 2d - ~ < b is equivalent to the condit ion d < 
b 2 _ 02 _ la 2 

2(b- la) 
and the 

condi t ion  that ~ > 0 is equivalent to d > - -  
0 2 +  i.t 2 

• This  determines L(h I y) in the range 
21a 

o 2 + i a2 b 2 _ o ~ .  ix 2 
~ < d <  

2~  2 ( b -  p)  
• For other values o f d  we must  consider contact sets which 
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inc lude  an end point  o f  [0, b]. The  remain ing  possibi l i t ies  are sets of  the form Z = {0, ~} 

wi th  d < rl < b and Z = {~, b} with 0 < ~ < d. In the first  case,  s ince 11 is an inter ior  

point ,  the po lynom ia l  must  have the form q(x) = d + ~.(x - "1"1) 2. Then,  s ince q (0)  = 0, we 

mus t  have q(x) = d - d (x - T1)2 . In o rder  that q(x) does  not  cross  h(x) it is necessa ry  that 
rl 2 

the s lope  o f  q(x)  at x = 0 be less than that of  h(x). Hence  q'(0) _< 1 insures that  Z = {0, rl} 

is the contact  set o f  q(x).  The condi t ion  q'(0) < 1 is equiva lent  to 2d < 11. To  de te rmine  

the dis t r ibut ion with suppor t  in {0, "q}, let p be the probabi l i ty  of  0. Then the moment  

= a 2 
equa t ions  (1 - p)rl  = It, (1 - p)rl 2 = p 2 +  02 can be so lved  for  p t12 + 02 and 

02 + 1.12 dt 12 
- -  . Th i s  leads  to L(h I y) = h(0)p + h('q)(1 - p) = d(1 - p) = - -  The 

rl = ~ 112 + 02 • 

condi t ion  that 2d < r I is equivalent  to d < - -  
o 2 + i~ 2 

21a 
• The  remain ing  poss ib le  contact  set is 

Z = {~, b} gives  r ise  to the po lynomia l  q(x)  = x - (b - d)(x  - ~)2 subject  to the condit ion 
(b- ~)2 

that  q ' (b)  > 0 so that  q(x)  does  not  cross  h(x). q '(b) > 0 is equ iva len t  to ~ < 2d - b. Let  p 

be the probabi l i ty  o f  ~,. Solving the moment  equations gives p = 
(b - I1) 2 

0 2. + (b - 1.02 
and 

~ 2  
= I1- . Then  

b - l a  

(d + I 1 - b ) 0 2 +  I1 (b  - la) 2 
L(h I y) = h(~)p  + h(b)(1 - p) = ~p + d ( l  - p) = 0 2 +  ( b -  It) 2 

b 2_ p2_ o 2  
The  condi t ion that ~ < 2d - b is equivalent  to - 2 ( b -  la) 

der iva t ion  of  the best  lower  bound. 

< d .  This  comple t e s  the 
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The best upper bound for h(x) = min{x,  d} is obtained by considering polynomials  

q(x) of degree two or less for which q(x) > h(x) on [0, b] and their corresponding contact 

sets. The possible contact sets are 

Z = {0, d, b} corresponding to q(x) = d - (x - b)(x - d) 
b 

Z = [0, d] corresponding to q(x) = x and 

Z = [d, b] corresponding to q(x) = d. 

The  case of Z = {0, d , b }  r e q u i r e s i t - - ~ < d <  + ff-~ and leads in a straightforward 
b - i t  It It 

B(b + d) - a 2- It2 
• For  d > 11 + ~-~ the contact set must  be a subset of way to U(h I y) = b B 

[0, d] because of the two remaining possibilities this is the one with mean It less than d. In 

order that a probabili ty distribution with support Z contained in [0, d] have moments  y = 

(It, 112 + a2) it is necessary and sufficient that y be in the convex hull Y of  the set [(x, x 2) : 

0 < x -< d }. This is equivalent to the inequalit ies B 2 < B 2 + o 2 < lad because Y is the set of  

points between the graphs of y = x 2 and y = dx, 0 -< x < d. Thus we see that the condit ion 

d > I.t + ~ is precisely what is needed to insure that there is a probability distribution F 
B 

with support in [0, d] and moments  y. Then  

l' l' 
U(h I y) = E[h I FJ = = h(x) dF(x) = x dF(x) = It. Similarly the condit ion 

d < It___oZ_ b - p. is exactly what is needed for the existence of  a probability distribution G on 

I 1 [d,b] with moments  y. Such a measure gives U(h I y) --- h(x) dG(x) -- d dG(x) = d. 

This  finishes the derivation of the best upper bound and completes the proof of  the 

proposit ion.  
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Prooosition 3.2: Let g(x) = max{0, x - d } for 0 < x < b, where 0 < d < b are given 

constants. Let X be a random ,,,affable with mean 11 variance 0 2 > 0 for which Pr[0 < X _< 

b] = 1. Then the best lower bound on E[g(X)] is 

L(g I y) = 

O 2 
P-~I for O_<d a i t -  b_it 

02 < d < p + o  2 I12 + 02  - lad for P" b - It 
b It 

0 for p + ° 2 < d < b  
P 

The best upper bound on EIgfX)] is 

p(o 2 + p2 _ dit) 

0 2  + 112 

U ( g l y ) : .  21[, - d + V ( I t - d  e + O  2 ] 

(b- d)@ 
(b- It)2 + ~2 

for 

for 

for 

O < d < O 2 + i t  2 
2p 

0 2  + p2 b 2 _ It2 _ 02  
<d_< 

211 2(b - It) 

b 2_ It2_ 0 2  
< d < b  

2(b - It) 

where y = (I I, It2 + 02). 

Proof:  Consider the lower bound L(g I y). Since g(x) + h(x) = x, then for all F e M(y),  

EIg I F] + E[h I F] = It. tlence, L(g I y) = inf{E[g I F] : F ~: M(y)  } = inf{it - E[h I F] : F E 

M ( y )  } = 12. - sup{E[h I FI : F e M(y) } = It - U(h I y). The best lower bounds are obtained 

by subtracting the best upper bounds of  Proposition 3.1 from the mean. Similarly 

U(g  I y) = 11 - L(h I y). This completes the proof. 
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Both of  these results could be extended to the case of  three given moments. This is 

important for insurance applications for which the third moment may measure the skewness 

o f  the distribution. The calculations are conceptually straightforward, but rather 

challenging. The analogous results for unimodal distributions would also be useful. 

Evidently the same method used in Brockett and Cox [5] to transfer (via Khinechin's 

characterization of  unimodality) from the unimodal setting can be applied here. 

40 

/.-g 

20 

I I I I 
20 x 40 60 80 

Figure 3.1. Graphs o f U ( g  I y) ~md L(g I y) for a mean o f p  = 50, a standard deviation ofo" 

= 30, and an upper bound of b --: 100 as functions of  the deductible x, varying from 0 to 

100. In this example, g(s) = max[0,  s - d }. 
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Figure 3.2. Graph of  Wg = U(g I y) - L(g I y) for a mean of  ~t = 50, a standard deviation of  

o = 30, and an upper bound of  b = 100 as functions of  the deductible x, varying from 0 to 

100. Here g(t) = max{0, t - d}. Note that this is the same graph as that given in Figure 

1.2. This is because of the relations U(g I y) = I.t - L(h I y) and L(g I y) = t.t - U(h I y), 

which imply that U(g I y) - L(g I y) = U(h I y) - L(h I y). 

4. Bounds  on I n s u r a n c e  Pol icy  Values  

In this section we consider applications to insurance in greater detail. Consider the 

problem of determining premiums after a change in deductible. The concepts are discussed 

in detail by Hogg and Klugman [I0], which is summarized briefly as follows. The 

expected value o f  benefits paid under a policy is often referred to as the pure premium. Let 

p be the frequency of  loss for the policy period. This means that the probability of  an 

insured loss (of some size) occurring is p. The random loss is X. We assume that its 

mean t.t and variance 02 are known, and that 0 < X < b with probability 1 where b is a 

given upper bound. The pure premium for a full coverage policy then is pE[X]. When the 

policy deductible of  d > 0 is introduced, then the benefit to the policyholder changes from 

X to g(X) where g(x) = max(0, x - d) .  The new pure premium is pE[g(X)], the 
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frequency t imes the new expected benefit  2 . The loss elimination ratio is EIX;dJ _ E[h(X) 1 
g - EIX] 

where  h(x) = min{d,x}. The excess pure premium ratio is the ratio o f  the pure premium 

with deductible d to the pure premium without the deductible. It is equal t o ~  and, 
~LAJ 

since g(x) = x - h(x), this reduces to 1 - E[X;d]. Proposit ions 3.1 and 3.2 above  apply to 
la 

give  bounds on loss elimination ratios and excess pure premiums. Graphs of  the resulting 

o f  upper and lower  bounds on the loss elimination ratios are given in Figure 4.1. 

0.8 

0.6 

0.4 

U 

0.2 

/ / J  

I I I I 
20 a" 40 60 80 

2The frequency of (non-zero) payments, but not loss occurrences, would change to pPr[X > d]. 

Best upper and lower bounds on Pr[X > d) subject to the moment constraints can be obtained by applying 

the method recommended by Kemperman to the function h(x) -- ! for x > d and h(x) = 0 for 0 < x < d. 
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E[X;d] 
Figure 4. I: Graphs of the upper and lower bounds on for a mean of IX = 50, a 

IX 

standard deviation of a = 30, and an upper bound of b = 100 as functions of the deductible 

d, varying from 0 to 100. 

0.25 
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20 x 40 60 80 

Figure 4.2. Graph of the difference of the upper and lower bounds of E[X;d] for a mean 
Ix 

of IX = 50, a standard deviation of o = 30, and an upper bound of b = I00 as functions of 

the deductible d, varying from 0 to 100. 

The methods used here can be applied also to determine bounds applicable to 

franchise deductibles and polices subject to a deductible and a maximum payment. The 

franchise deductible is described by Hogg and Klugman [10] as follows. A policy which 

specifies a franchise deductihle of d pays nothing for losses X = x if x < d but pay the full 

loss X = x if x > d. In this case, we define h(x) = 0 if 0 < x < d and h(x) = x if d < x < b. 

The Kemperman approach to bounding E[h(X)] applies; it does not require that h be 

continuous. 
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Reinsurance contracts are the insurance policies which one company buys from 

another. The model we are using applies to these as well of  course. However, these 

contracts (as well as some contracts sold to individuals) usually require a more complex 

definition of  the function h than the simple deductible policy (to which Propositions 3.1 

and 3.2) apply. The next level of complexity is a policy which specifies a maximum 

benefit. Propositions. 4.1 plovides the bounds for such policies. 

Prooosition 4.1: Let 
x for O < x < d l  

h(x) = di  for dl  < x <: d2 
x - d24- dt for d2 < x < b 

where 0 < dl ~ d2 < b are given constants. Let X be a random variable with mean I1 and 

variance 02 > 0 for which Pr[0 <: X < b] = 1. Then L(h I y), the best lower bound on 

E[h(X)], is a function of  the two variables, defined on the triangle I(dl ,  d2) I 

0 < d ! < d2 <-- b}, and is described as follows: 

_ ~I  2 
For values of d2 satisfying 0 ~ d2 -< la b - ~t ' 

L(h I y) = kt- d 2 + d l  

2 
For values of  d2 satisfying I~ - b - ~  < d2 < g + ~-~p, 

L(h I y) = bdl(b~/' - p.2 _ 02) + d2(b- d2 + dl)(J-t 2 + 02 - d2P.) 

bd2(b - d2) 

For values of  d2 satisfying g + 02 < d2 < b, 
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dip2 for  
0.2 + It2 

L(h I y) = 2 ~ t  + d i -  ~,/(it - dr) 2 + 0.2] f o r  

It(d2 - 12) 2 + (dl + It - d2) 0.2 for  

(d2 - It) 2 + 0.2 

. 0  < dt < - ~  + ~-~ 

.~ + =~_2_ < d,  < d2-  I t2- 0.2 

2it 2(d2 - It) 

d ] -  It 2-  0.2 
< dl  ~ d2 

2(d2 - It) 

S imi lar ly ,  U(h I y), the best upper bound on E[h(X)],  is descr ibed as fol lows:  

~, .. bit - It 2- o 2 
Fo r  values  of  d I sat isfying 0 < ul  -- ~ _  ~- , 

U(h I y) = 

(it - d2 + d l ) ( i t  - dr)  2 + I to  2 
for d I <~ d 2 < 

0.2 + I t2 .  d~ 

2(it - dD Q.t - d l )  2 + 0 .2 

dl  + 2~it" d2 + ~/(d2 " It) 2 + 0 "2] 

- It 2 d l (b  - It) 2 + (b - d2 + dl)0. 2 for  b2 - 0.2 < d2 < b 

(b - It)2 + 02 2(b - It') 

o 2 It 2 _ 2 b 2 . 0 2  _ It2 
for + d < d2 < 

2(it  - d l )  2(b - It) 

Fo r  values  of  d l  sat isfying 

have 

bi t  - It2_ 02 It2+ 02 
< d l < ~  

b - i t  It 
, and values o f  d l  < d2 < b, we 

b (b i t  - 0 . 2 .  It2) + (b - d2 + d l ) ( i t  2 + 0.2 _ d l i t )  
U(h I y)  = b (b  - d r )  
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For values of dl and d2 satisfying dt > - -  

U(h I y) = 0.. 

0.2 + o2 

I1 
and d I < d2 < b, we have 

Proof: The argument i's similar to that given for Proposition 3.1. We only give the main 

points. The contact sets which come into play, the corresponding contact polynomials, 

probability distributions and resulting lower bounds arise as one of the following five 

cases: 

I. Z = [d2, b] q(x) = x - d2 + di 

b0. - $I 2 - 0 2 
L(hly)=0.-d2+dl forO <d2< b - St andO<dl<-d2 

For Case I any distribution concentrated on Z will do for FL; the distribution for which the 

lower bound is assumed is not unique. 

II. Z = {0, d2, b} 
dlx(b  - x) (b - d2 + d l ) x ( x  - d2) 

q(x) = d2(b - d2) + b(b - d2) 

bdi(bla  - a 2 - 0.2) + (b - d2 + dl)d2(0.  2 + o 2 - d2Pa) for 
L(h I y) - bd2(b - d2) 

b0 . -  N 2 - o  2 0 . 2 + o 2  
<d2 < - -  andO ~d! <'d2 

b-0. St 

For Case II the distribution for which the lower bound is attained is unique. It is discrete 

and has the probability density function fL where 

b d 2 -  ( b + d 2 ) 0 .  + 0. 2 + o  2 
fL (0) = bd2 

fL(d2) - bit " 0.2 _ 02 

f L ( b ) -  0 . 2 + 0 2 _ d 2 0 .  
(b - dz)b 
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III .  

< b .  

Z {¢.d2} where ~ d2~2112_02  . . . .  -~t- a n d O < ~ < d l  

q(x) = x -  X(x- ~)2 where ~.= d2 - d l  
(d 2 _ ~)2 

02(d2 - d l )  d22 _ 112_ 02  112 + 02 
L(h I y) = la (d2 - 11)2 + 02 for 2(d2 - I t) < dl < d2 and ~ < d2 

For Case HI the distribution for which'the lower bound is attained is unique. It is discrete 

and has the probability densir./function fL where 

= ° 2  
(d 2 _ . ) 2  and fL(d2) = 

fL(~) ( d 2 -  11)2 + tl'2 ( d 2 - . ) 2  + u2 

IV. 

< d2. 

Z = {~, 13} where ~ = d !  - ~ ( d !  - . ) 2  + o2 and 13 = 2dl - ~ and 0 < ~ < dl < "q 

q(x) = d l  - ~.(x - rl)2 where ~. - l 
2(13 - ~,) 

L(hly)=21-(11+ d l - ~ J ( d l - , ) 2 + 0 2 )  

~ b .  

.2 +U2 d22_ .2 .02  . 2+02  
for 2"----g---'- ~ dl <: 2(d2 - , )  and ~ <d2 

For Case IV the distribution for which the lower bound is attained is unique. It is discrete 

and has the probability density function ft. where 

+ - . )2  + o2)  

V. 
.2 + G2 

Z= {0.13} where 13 = i1 anddl <13<d2 
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q(x) = dl - ~.(x - rl) 2 where k =dl 
1"I 2 

la 2 + 02 la2 + o 2 
= dip'2 f o r 0 < d l ~ - - ~  a n d - - < d 2 < b .  

L ( h l y )  i 1 2 + o  2 21~ ~t 

For Case V the distribution for which the lower bound is attained is unique. It is discrete 

and has the probability density function fL where 

o 2 la2 
fL(O) - - -  and fLO'l) = 

H 2 + 02 la 2 + o 2 

The development of  the upper bound U(h I y) is similar. Again we present only an outline. 

I. Z = [0, dl] q(x) = x 

i.t 2 + 02 
U ( h l y ) = l  a for 11 < d l < b  and dl < d 2 < b  

For Case I any distribution concentrated on Z will do for FU;, the distribution for which the 

lower bound is assumed is not unique. 

dlX(bd~ (b- d2 + dl)x(x- d l) 
II. Z = {0, dl, b} q(x) - d-~- + ' b(b -dl) 

b(bla - 02 - I.t 2) + (b - d2 + di)(112 + o 2 - dlla) for 
U(h I y ) -  b ( b - d l )  

b ~  - t l  2 - 0 2 + 0 2 
b - I ~  -< dl ~ t 2 k t  and dl -< d2-< b" 

For Case II the distribution fi~r which the lower bound is attained is unique. It is discrete 

and has the probability densi~:y funcdon fu where 

bdl  - ( b + d l ) l a + ! l  2 + o  2 
fu(0)  - bdl 
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fu(dl) bit- i t2_ o2 
- (b d-ll)-dl 

it2 + a2. d l i t  
fo (b )  - (b 7 d - l ) b  

III .  Z = { d l ,  1"1] where 11 - 
It2 + 0 2 _  d l i t  

I.t - d l  and d2 < r l  < b 

q(x) = x - d2 + d l  + ~.(x - rl) 2 where ~, = d 2  " d l  
(q  - d l ) 2  

U(h t y) = I t -  
( I t  - d l ) 2 ( d 2  - d l )  

( i t  - d l )  2 + 0-2 

It2 + 02_ dl 2 bit- it2_ o2 
fordz Sd2~ andOSdl 

2(~-dl) b - It 

For  Case HI the distribution for which the lower bound is attained is unique. It is discrete 

and has the probabili ty density function fu  where 

02 (d I - p.)2 
fo(dl) - and fu(rl) = 

(dl - It)2 + o2 (dl - It)2 + o2 

IV. Z = {~,~1} where ~ = d2 - ~ ( d 2  - It)2 + 02 and rl = 2d2 - ~ and  

d t <  ~ < d 2  < r l  < b 

q(x) = dl  + ~,(x - ~)2 where ~. - - -  
2(q -~) 

l.t 2 + o2  _ d l  2 b 2 _ 1 1 2 . 0 2  bi t  - it2 _ 02  
for 2( i t  - d l )  < d2 < 2(b  - I t ) and 0 < dl  < b - It 

For  Case IV the distribution for which the lower bound is attained is unique. It is discrete 
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and has the probability density function fu where 

I l r  d 2 -  p '~ 
fo(~) = ~ + 2-[ ; 2 ) and 

~ , ~ ( d 2 -  11) + (I 2 L q ( d 2  - 1.1)2 + 02 

V. Z = { ~ . b }  w h e r e , -  
b ~ -  ~ 2 .  o 2 

b-lt and dl < ~ < d2 

b - d2 q(x) = dl  + ~.(x - ~)2 where ~ = 
(b - ~)2 

U(hl y) - 
d l ( b  - It) 2 + (b - d2 + d l ) o  2 

(b - I~) 2 + 0 2  

fol 
b 2_ 112_ o2  bl t _ p 2 . 0 2  

2 ( b - I t )  < d 2 < b a n d O < d l <  b - I1 

For Case V the distribution for which the upper bound is attained is unique. It is discrete 

and has the probability density function fro where 

(b - 1.02 (b - I002 
fu(~) - and fL(b)= 1 - 

b 2 _ 112_ o 2 b 2 -  i.t 2 -  0 2  

For the function g(x) = x - h(xil, best upper and lower bounds are obtained directly from 

Proposition 4.1. L(g I y) = I 1 - U(h I y) and U(g I y) = I.t - L(h I y). This completes the 

proof  of  Proposition 4.1. 

The bounds for both h(x) and g(x) are quite a bit simpler in the limit as b tends to infinity. 

We restate this special case as a corollary. 

Corollary 4.1 : Let 
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h(x) = 

x for 0 <:x <:dr 

dl for d i < x < d 2  

x - d2 + dl for d2 ~; x < ** 

where 0 < dl < d2 are given constants. Let X be a random variable with mean p. and 

variance 02 > 0 for which Pr[X > 0] = 1. Then L(h I y), the best lower bound on 

E[h(X)], is a function of  the two variables, defined on the triangle {(dl, d2) I 0 _< dl < d2 

< ,,*}, and is described as follows: 

For values of  d2 satisfying 0 < d2 < It, 

L ( h l y ) = ~ t -  d 2 + d t  

a2 
For values of  d2 satisfying p < d2 < p + ~--, 

L(ht y) = lint 
d2 

0 2 
For values of  d2 satisfying d2 2 It + "-~-, 

d # 2  for 
o2 + g2 

L(h ' y) = 2111.1. + dI- ~/(I-t- dl) 2 + 02 ] for 

~t(d2 - ~t) 2 + (dl + il - d2)o 2 for 

(d2 - p)2 + 02 

O<d1<~+ 02 
2 2/~ 

2 2H 2(d2 -I~) 

d22_ p2_ 02 
<dr <d2 

2(d2 - It) 

Similarly, U(h I y), the best upper bound on E[h(X)], is described as follows: 

For values of  dl satisfying 0 _< d I < H-, 
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U(h I y) = 

(It - d2 + dl)(It - dr) 2 + t102 

- d~) 2 + o 2 

dl + 21[. - d2 + ~/(d2- It)2 + 02-] for °2 + It2_ d~l < d2 
2(it - dD 

for dl '~ d2 < °2  + t12 - d2 
2(la - dl) 

For values of  dl satisfying dl > I t, 

u 0 a  ~ y)  = ~t. 

Figure 4.2 shows the gr,'lph of  Wh = U(h I y) - L(h I y) where L(h I y) and U(h I y) 

given by Proposition 4.1 for a loss random variable having mean I1 = 50 and variance o 2 = 

900. The values of  dl and d2 satisfy 0 _< dl -< d2 -< b = 100. dl is on the x axis and d2 is 

on the y axis. 
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Figure 4.2. Graphs of the upper and lower bounds on E[h(X)] given by 

Proposition 4.1 when X has mean p. = 50, variance o 2 = 900 and is bounded by 0 and 

I00.  

The analog of  Proposition 4.1 for the function g(x) = x - h(x) is established by 

subtracting the bounds of  4.1 from the expected value of  X. If h describes the losses 

which the policyholder, then g describes the benefits. The bounds on expected values 

found by the relations U(g I y) = !1 - L(h I y) and L(g I y) = I1 - U(h I y) and Proposition 

4.1.  

5. Bounds on Option Prices 

An option is a contract between two people that conveys the right to buy or sell 

specified property at a specified price for a specified period of lime. The person offers the 

contract for sale is called the writer or seller. The other party is called the owner or buyer. 

When the contract is made the buyer pays for the right to buy or sell at a known price, 

which removes some risk in a fiuture transaction. The seller is paid up front to accept the 

risk of  having to buy the asset l~Lter at a price which is below the market value. The owner 
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of  the option contract has the right to buy or sell the underlying asset but has no obligation 

to do so. 

In modem financial and commodity markets, exchanges arrange all of  the contracts. 

Traders deal only with the e~:change (perhaps through brokers, but we are ignoring them). 

The exchange assures that the terms of  the contract will be reel  For example, consider an 

option owner with the'right t,:~ buy 100 shares of  stock at a contract value of 20 dollars per 

share, at a time that the stock market price is 25 dollars per share. If the option is 

exercised, the exchange credits the owner's account with 100(25 - 20) = 500 dollars (less 

commissions), and collects that amount from the other party's account. The exchange 

stands behind the contract for the full exercise value even if the seller's account is short of 

the required $500. In order to avoid Imving to coveting a trader's loss, the exchange re- 

quires cash margins, in this case of the seller. 

For contracts which are settled in cash, the "assets or property" on which the 

options are written need not be concrete (i.e., the American Stock Exchange offers options 

on the Major Market Index). However, it is necessary that all parties agree as to what the 

market price of  the asset is. For example, the "asset" could be the value of a stock index, a 

futures price or foreign currency. These are values which are published widely and which 

can not be controlled by any of the market participants. 

By valuing a contract we mean calculating the market value C(S, T, K) in terms of 

parameters of the contract, market price statistics of the asset on which the contract is 

written and interest rates. Two widely used models are the binomial option pricing model 

and the Black/Scholes option pricing model. 

Each of  the models applies to options on tangible assets as well as intangibles such 

as stock indices, futures contracts and other option contracts. The distinguishing feature of 

the models is the asset price distribution. The asset price movement in the binomial option 

pricing model is assumed to be binomial. On the other hand, for the Black/Scholes model 

the asset price is lognormally distributed. Although each model can be generalized to fit 

more realistic conditions, in their usual context the most important feature is constant 

interest rates. In this form they are applicable only to short term contracts written on assets 

whose prices change even though interest rates do not. For  example, the models are not 

applicable to pricing options on bonds. 

There are five elements which describe an option contract: 

a) the type of  option -- Put or Call. 

b) the underlying asset -- the particular common stock, tract of  land, or contract 

rights etc.,  which the owner of the option contract buys or sells if the contract is exercised. 
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We say the option is written on the underlying asset or contract. Some times this it is called 

the spot asset. 

c) the expiration date of the option. 

d) the exercise (or striking) price. 

e) the rule describing exercise - American or European. 

A call option is a contract which permits the holder to buy an asset during a 

specified time interval and for a specified price, and requires the seller of  the option to sell. 

Sometimes the seller is called the writer, and selling an option is called writing an option. 

At the time the contract is written both parties agree as to the price at which the purchase 

can be made and the time period within which the option can be exercised. A put option 

differs from a call option in that it allows the holder to sell an asset rather purchase it. 

Option contracts are also described by the type of restriction placed on the time the 

contract may be exercised. A European option contract can be exercised only at the 

termination of the contract, i.e., on its expiration date, whereas an American option can be 

exercised at any time up to and including the exercise date. The American option obviously 

offers the holder greater flexibility which, apparently, makes its valuation more difficult. 

The American style option is by far the more common throughout the world, but there are a 

few exchanges in which European options traded. An example, is the Philadelphia 

exchange which offers both American and European style currency options. 

The underlying asset's market price is denoted by S. In option pricing models, S is 

a random variable, usually with a specified distribution. In all cases, S > 0. In some 

cases, such as the binomial cption pricing model, S is bounded above as well. In general, 

the asset could be stock, a bond, a stock index, a bond index, a foreign currency or a 

commodity such as frozen pork bellies or gold. The contract price at which the owner has 

the fight to exercise the conuact is denoted by K. When S exceeds K, the owner of  a call 

option can buy the asset for K under the terms of the contract and then sell it in the market 

for S, making a gain of  S - K. The fight to do this should such an opportunity occur is 

what the owner purchased when the contract was written. The seller suffers a loss of 

S - K when the contract is exercised in this way. Thus, the exercise value of  a call option 

is g(S) where g(s) = max{0, s - K}. 

The Black/Scholes model [41,181 results in the following formula for European call 

options• We present the version applicable to a European call option on a stock which pays 

no dividends during the term of the option. The risk-free annual, continuously 

compounded interest rate is denoted by r. In this model the stock price S is satisfies a 

stochastic differential equation dS = I.tSdt + 5Sdw where la and 5 are constants and w(t) is 
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a standard Brownian motion. Thus in this model option market value is calculated as if the 

asset price is lognormally distributed with known mean and variance. The resulting market 

value of  a European call option which matures in T years is e-rTE[max{0,SC[ ") - K}]. See 

Merton [15] for a derivation based on lto's formula. 

Black,/Scholes Call Option Formula: 

C(S, T, K) = S(l,(z) - Ke-rTC,(z - o ' ~ )  

where z = log(S) + rT - log(x)  +fi'~_2T, S is the current price, r is the risk free 
oVT 

force of interest, T is the maturity of the option, K is the exercise price and 02 is the 

volatility of the log-return (this means o2T = Var[Iog{S(T)/S }]). 

The binomial option pricing model also yields a formula for the option price of 

European call option of the form e-rTE[g(SfI'))]. In this model log(S(T)) is binomially 

distributed with known mean and variance. Such formulas (discounted expected values) 

for European options follow in very general circumstances. FoUmer and Schweizer [9] 

discuss this in detail. In all of these models, only one parameter, rather than both mean and 

variance, is needed because the valuation distribution specifies that the mean price at time T 

is the current price accumulated T years at the risk free rate. The second moment of S(T) 

about Se rT is a parameter of  the valuation distribution. That is, the model assumptions 

allow us to assume that E[SfT)] = Se rT and hence we need only determine 

E{ { S(T) - Se rT }21 in order to apply Proposition 3.2. 

When S is less than K, the owner of a put option can buy the assets in the market 

for S and sell it to the option writer for K, making a gain of  K - S. Thus the exercise value 

is f(S) where f(s) = max{0, K - s}. Note that f[s) + s - d is equal 0 i f 0  < s < K and is 

equal to s - K if  s :~ K. That is f(s) + s - K = g(s). As a result, European put option prices 

can be determined from European call option prices: Se'rTE[f(S(T))] = Se-rTE[g(S(T))] + 

S - e-rTK. This carries over to bounds on European prices as well. Thus whenever the 

model assumptions are sufficient to imply that the market value of an option, either put or 

call, is the discounted value the expected payoff to the owner, Proposition 3.2 can be 

applied to determine optimal bounds on the option's price. 

proposition ~5. I. Suppose that the European call option is given by the formula: 
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C(S, T, K) = e'rTE[maxl0,S(T) - K}I 

where S is the current asset price, S(T) is the asset price when the option matures, K is the 
V = E[IS(T) - SerTj2J. 

exercise price, r the risk-free annual interest rate. Let $2 Then the 

best lower bound on C.(S, T, K) is C(S,T, K) given by 

C(S,T,K) = 

S - Ke -rT 0 < K < Se rT V 
b - Se fT 

S2e 'T + V - SK Se ~T - Y < K < Se rT + 
b b - Se rT 

0 SalT+ V < K < b  
Serf 

V 
Se,'r 

The best upper bound on C(S ,T, K) is C(S,T, K) where 

C(S,T, K) = VS + S(: zrT - K¢ rT when 0 < K < VS + Se 7JT 
V + e 2rT 2e d" 

e~s.~,  i<~ -- ~ s -  K e "  + ~/(S- Ke,T~ + S2Ve 2,T] whe, VS + So:'T < K ~ b2-S:e2,T- S2" 
2C rT 2(b - Se 'T) 

(b - K)S2V 
C(S,T, K) = 

(b- Serr~ + S2V 
when b2" $2e2rT" S2V < K ~ b 

2(b - Se TT) 

The lower bound on the corresponding put option is equal to C(S,T, K) - S + Ke -rT and the 

upper bound is equal to C(S,T, K) - S + Ke -fT. 

Many of the popular option pricing formulas are discounted expected value 

formulas. As such they must all give values between the bounds described above. This 

includes the Black/Scholes formula, the binomial formula and the formula Merton [16] 

developed using a mixed diffusion-jump process. Just as Lo did, we are using V for the 
sfI') 

variance of--if-- rather than 02 . The reason is that in working with options the symbol 02 

is often reserved for the volatility, which is defined to be the variance per unit time (e.g., 

the variance per year) of the log-return on the underlying asset. That is, o2"1 . = 
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Var[Iog(r-~z)]. For a given model, we can determine the relation between o 2 and V 

explicitly. For example, in the Black/Schole~ setting, the asset price S(T) is log-normal. 

Hence, the random variable X = l o g ( ~ )  is normal, and its variance is o2Ti let laT denote 

its mean. Then the moment generating function of X is Mx(s) = exp(sp.T + s2o2T/2) and 

hence E[SfI')] = SE[exp(log(~s-~))] = SE[e x] = SMx(I)  = Sexp(p.T + o2T/2) and 

similarly E[S(T) 2] = S2Mx(2) = S2exp(2laT + 2o2T). Since the valuation distribution has 

the same mean as a risk free investment, E[S(I')] = Se rT. This finally gives V = exp(21aT + 

2o2T) - exp(21.tT + o2T) = exp(2[laT + o2T/2])[exp(o2T) - 1 } = e2rT{exp(o2T) - 1 }. 

The relationship between o2T and V must be considered when calculating the bounds (for 

which V is a parameter) and the data a~,ailable includes price volatilitles. 

As an illustration, we present the graphs of  Black/Scholes option prices and the 

corresponding bounds. Similar comparisons can be made of the other popular models 

which yield discounted expected value formulas such as the binomial and jump-diffusion 

models (see [8] for the formulas and discussions of  these models). 

35 ~" 40 45 

I0 

C 

5 

I 
50 

Figure 5.1. The heavy lines are the graphs of  C(S,T, x) and C(S,T, x) for r = 

0.06, S = 40, o = 0.20(and the corresponding V calculated as described above),  T = 12 
12 

weeks = ~ years and exercise price x varying from 0 to 60. The lighter line is the graph 

of  C(S,T, x) given by the Black/Scboles formula: 

C(S, T, x) = StD(z) - xe-rT~(z - O~/'-~ 
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where z = 

C o n c l u s i o n  

log(S) + rT - log(x) +~cr2T 

a4 - 

The upper and lower bounds for expected values of insurance benefits and 

European option prices have been derived here using methods presented by Kemperman 

[13]. The option price bounds generalize results of Lo [14]. There are several other areas 

in which these techniques might be used, but the details have not been worked out. One 

interesting situation arises when the insurance contract is a function of two (or more) loss 

random variables. For example, a homeowners policy covers both property losses and 

liability losses. The moment problem would yield bounds on the expected value of h(X,Y) 

where X is the property loss and Y is liability loss during a given policy period, and h(x,y) 

is the policyholders benefit; the bound would be functions of the moments of the joint 

distribution of X and Y. The same sort of problem arises for health insurance policies 

which cover hospitalization per day costs as well as costs of treatment. 
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