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This paper is partly based on a talk given at the 26th Actuarial Research Conference, 

which was held in August 1991 at the University of Illinois (Urbana-Champaigu). 

1. The  problem 

When reinvestment rates are known in advance, there is no problem in discounting 

future cash flows. Suppose $1 invested at time t -  1 is worth $ (l+Rt) at time t .  

R t is then the rate of return in year (t- 1 ,  t), with corresponding discount factor 

V s = 1 / ( I+R t) , t = 1 , 2  ..... 

The discounted values of cash flows C 1 , C 2 .... occurring at times 1, 2 .... is then 

Z = C a V l + C 2 V 1 1 , ' 2 +  .... 

In this paper, the cash flows and discount factors are random variables with given 

distributions. The problem is then to try to determine the distribution of the discounted 

value Z. This problem has received some attention in the actuarial literature over the past 

twenty years, mostly with respect to the calculation of  the moments of  Z. However, it is 

sometimes possible to calculate the distribution of Z explicitly. Some general results 

wiU be given, as well as three examples. For a more detailed treatment of the subject, the 

reader is referred to Dufresne (1991a and 1991b) and Frees (1991). 

The following assumptions are made in Sections 2, 3 and 4: 

A. Cash flows are independent of discount factors, i.e. the sequences (Ck) and (Vk) 

are independent one from the other. 

B. The variables V k , k = 1, 2 . . . .  are independent and identically distribued (i.i.d.). 
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C. The variables Ck , k -- 1, 2 . . . .  are i.i.d.. 

(These assumptions are relaxed in Section 5.) 

Stated mathematically, the problem is the following: given distributions for (Vk) and 

(Ct),  what is the distribution of 

Z = ~ V 1 . . . V  kC k ? 
k=l 

Section 2 discusses the convergence of the above sum. Section 3 applies a technique 

known as "time reversal" to the calculation of the moments and distribution of Z. Section 

4 gives three examples of explicit distribution for Z. One of these examples is explained in 

great detail, since it has a long history and also has two other interpretations: one in 

physics, the other in risk theory. Finally, Section 5 looks at what happens when discount 

factors are no longer assumed to be independent. 

2. Conditions for convergence 

In the deterministic case ( V  k -~ v, C k - c) ,  Z boils down to a geometric series 

with value c v / ( l  - v )  (if v < 1). Observe that the condition v < 1 is equivalent to 

g = - l o g v > 0 .  

It turns out that sufficient conditions for convergence of  Z, when discount factors and 

cash flows are random variables satisfying assumptions A, B and C, are simple extensions 

of  the condition g > 0. 

T h e o r e m  1. (Vervaat, 1979). 

If E log V1 < 0 ,  E log I C I I  < "* , then Z c o n v e r g e s  abso lu te ly  with 

probability one. 
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Proof. Let G k = - log V k . Then 

I VI ... VnC~, I l/~ = e×p - Gk+ hi-log IC~I 

If E log V l exists, then 

l n ~.~ Gk.-)ElogV1 as n--~** 
k ~ l  

by the strong law of large numbers. Similarly 

n -k ~ l o g l C , ~ l ~ E l o g l C [  
,~=1 

which implies 

log I Cn I --~ 0 .  

Thus the nth root of the absolute value of the nth term of the series converges to 

e x p ( E l o g  V 1)<1 .  

On the basis of the nth root test for convergence of series, we conclude that Z 

converges absolutely, fq 

The first condition given in the theorem is equivalent to E G k > 0 ,  i.e. that the 

geometr ic  rate of return is positive an average. It is interesting to note that Z may  

converge even though P(G k < 0) > 0 .  For instance, the first condit ion is verified if 

G k~  N ( g ,  o2) with p . > 0 .  

The second condition limits the "dispersion" of the distribution of  the cash flows. The 

condit ion Elog  ICl l  < ** is weaker than EIC 11 a < ** for any a > 0 (this follows 

from Jensen 's  inequality). Hence all distributions such that E ICI = < ,,0 for some 

ct > 0 satisfy the second condition. This includes Pareto and Cauchy distributions, for 

instance. 
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Brandt  (1986) has shown that  the same result  holds when  the independence 

assumptions axe replaced with ergodicity (i.e. that the law of large numbers applies to the 

sequences (V 0 and (CO). 

3. Time reversal 

L e t  

Z n = V I C I + V I V 2 C 2 + . . . + V I . . . V n C n .  

There are two ways of obtaining Z,, recursively: 

(1) the natural or "forward" way: 

Z 1 = V 1 C I ,  Z 2 = Z 1 + V  1 V 2C z . . . .  

or, in general, 

Z k  = Zk-1 + V1 ... Vk Ck; 

(2) the "backward" way: 

BI .  n = v n Cn  , B2.n = Bn.  1 (Bl .n  + Cn . l )  . . . .  

or, in general, 

B k ,  n = Vn_k,  1 (Bk. l .n + Cn.k+ 1) . 

The second technique is not  used often in actuarial work,  but turns out to be 

very  fruitful in the present context .  Its use will be restated as follows. The vector 

h, = ( V  I . . . . .  V n , C l . . . . .  C n )  has the same distr ibution as / ~ =  ( V  n . . . . .  V 1, 

C . . . . . .  CI) , because of the independence assumptions. Consider  the mapping from 

~72~ to 
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X" = (X 1 . . . . .  X 2 n  ) , ~ X 1 X n +  1 + X 1 X 2 X n ÷  2 + . . .  + X 1 . . .  X n X 2 n  = m ( x ' )  . 

We have Z~ = m(,~) .  Since ,~ =~ /~, we therefore also have 

Zn = m(A) ~ m(/~) = B ,  

where 

Bn = V~ C~ + V,, Vn.1 C~.1 + -.. + Vn ... V t C1 • 

The foregoing is a rigorous proof of the fact Z n and B n have the same probabil i ty  

distribution (all we need to add is that m (,) is B ( ~ 2 n ) / B ( ~ )  measurable!). A more 

intuitive just i f icat ion is simply that the V's and C's are independent, and we can 

therefore take them in any pre-established order without changing the resulting distribution. 

The sequence (B,,, n _> 1) satisfies the recursive equation 

B~ = V .  (Bn.I + C,,)  , B o = 0 .  (1) 

In relation to (Z  n , n > -  1) this means that iterating (1) from n = 1 to n = t  

yields a random variable whose distribution is the same as that of Z t .Observe that this 

recursive equation is very different from the one obtained for (Z  n , n ~ 1). The sequence 

(B n , n > 1) satisfies the same type of equation that a c c u m u l a t e d  cash flows satisfy : if 

St is the accumulated value, at time t , of C O . . . . .  Cr. 1 , then 

S t = ( 1  +Rr ) (S t . I+Ct . I )  , S 0 = 0 .  

This shows that there is a kind of "duality" between accumulating and discounting, at least 

when the processes describing cash flows and discount factors can be taken in reverse 

order without affecting their distribution (such processes are called "reversible"). When 

cash flows are equal  to c ,  and discount factors equal to v = 1/(1 + i ) ,  this duality is 

simply expressed as 

15 



c o w i =  c g w .  a , d = i / ( l  + i) . 

Eq. (1) yields (i) a way of recursively calculating all the moments of Zn, and (ii) a 

functional equation satisfied by the distribution of Z = lira Z,,, provided the limit exists. 
I t  

First, Eq. (1) immediately yields a recnrsive equation for E B ,  , upon taking 

expected values on both sides of the equation (since V n is independent of B,,. 1 and 

C,,). Squaring Eq. (1) similarly yields a recursive equation for the second moments of  

B t, and so on. Since Bt, and Z,t have the same distribution, the same recursive 

equations can be used to compute a l l  t h e  moments of  (Z,~. n _> 1). The reader is referred 

to Dufresne (199 la) for more details on this subject. 

Second, Eq. (1) has an important consequence when looked upon as a relationship 

between the distributions of B n , V n , B n .  1 a n d  C n. Observe that on the right hand 

side the random variables are independent. Furthermore, the distribution of  V,, is the 

same for all n ; same thing for C,,. Letting n go to infinity we obtain the following 

theorem. 

T h e o r e m  2 .  I f  t i m  Z n = Z exists, then 

Z= ~ V z (Z + Cl) (2) 

where V] , Z and C 1 are independent on the right hand side. 

Formula (2) is not an ordinary equation: it relates not numbers but probability 

distributions. In the case at hand the known distributions are those of  V 1 and C t , and 

the unknown is the distribution of Z. Formula (2) is equivalent to a certain integral 

equation, but the latter has not been solved in general. This far all known explicit solutions 

of (2) have been found by ad hoc methods. 
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4. Examples  

I will give three examples. The first one has its origin in physics, and its derivation is 

relatively simple. The second one is in a way a generalization of the truest one, and is taken 

from Dufresne (1991a). The third one is particularly interesting, because (i) the cash flows 

are constant, and (ii) the distribution of  Z is of the same type as the distribution of the 

discount factors. 

E x a m p l e  1. (Takacs, 1954, 1955; Vervaat, 1979; see also Karlin and Taylor, 1975, 

Section 4.3). Takacs considered the following problem. Signals (electronic pulses) arrive 

according to a Poisson process. The signals are recorded, and each leaves an impression 

(on the recording apparatus) which decreases exponentially over time. Suppose the 

recording is started at time 0, and define the following variables: S t is the total 

impression at time t ; N t is the number of  arrivals in [0, t] ; X i is the amplitude of the 

ith signal; ct is the rate at which impressions decrease; and T i is the time at which the 

ith arrival occurs. Then 

Nr 
St = X X i  e-a(t-Ti) ' t >_ O .  (3) 

i=l 

One way of dealing with Eq. (3) is to look at what happens in an interval [ t, t+dt] 

and then derive an integral equation for (say) the distribution function of S t ; this approach 

is often used in risk theory, and is the one chosen by Takacs in his 1954 paper. In his 1955 

paper a slightly different approach is taken. Let 

Un = ,~rr. S, . 

U~ is the total amplitude just before the nth arrival. Then 

U,,+ 1 = eaW,~l  (U,, + X,,) 

= Y~+t (U~ + X n) 
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where W~+ i = Tn+ 1 - T n . Thus the process ((U n, n -> 1) has the same evolution as 

the sequence of accumulated values of  (X n) if growth factors are (Y,0. St in Eq. (3) 

can also be interpreted as the accumulated value, at rate - a ,  of  amounts (Xi) invested at 

times (Ti). 

Vervaat  (1979) refines this point  of view. Let Ql the t ime elapsed since the last 

arrival, Ql + Q2 the time elapsed since the previous arrival, etc. Similarly relabel the 

impulses C 1 , C 2 .... starting with the latest one. Then 

S t = e-at2~ C 1 +e-Or(Q1 + Qz) C2+  ... 

= V l C l + V I V 2 C 2  + .... 

(These sums terminate with the first recorded impulse.) 

Now suppose the counter has been in operation for a "long time", i.e. consider the 

steady-state distribution of S. F rom the properties of Poisson processes, the variables 

(V,,) are independent with common density 

f v (X)=axa- I  , 0 < X < I ,  

where a = Mo~, 2 the intensity of  the Poisson process. 

From Theorem 2, 

By condi t ioning on the values of  

shown that 

S ~= V 1 (S+ C 1) 

v 1 and C 1 (on the r ight  hand side), it can be 

% (t)= exp [a ] ¢c(u)lu du] 
0 

(4) 

where q~s and q~c are the characteristic functions of S and C , respectively. For 

example, if C k ~ exp(m) ,  then S - l"(a, m). 
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Reinterpreting this example in terms of  discounted values, we have the following: if the 

geometric rates of  return (GD are independent and exponentially distributed with mean 

1/a , then the characteristic funct ion of  the discounted value of  payments  

C 1 , C 2 . . . .  (i.i.d. and independent o f  (Gk)) is given by (4). In particular if C k ~ 

exp (m),  then the discounted value has distribution r'(a, m). 

This example also has a risk theoretic interpretation. Consider the classical compound 

Poisson process with claims (C~ occurring at times (T k) . The discounted value, at rate 

g ,  of  claims up to time t is 

N, 
D t= ~,~ e g T i c  i 

i=l 

N, 
= Z . . .  v ,  

i~l 

where V i = exp[-g(T i - Ti_l) ] . Willmot (1989) has studied the determination of the 

distribution of  D t (a difficult task). It is easily seen that, by suitably redefining the 

parameters, the limit of D t as t goes to infinity is identical to Z. 

Example  2. (Dufresne, 1991a). As an extension of  the first example, suppose the 

discount factors are the product of two independent random variables each of which has a 

beta distribution of the first kind: 

t~(l) n(l) V k=W,~.~ * Wk. 2 , Wk.1 ~ ~-'a.l , Wk,2 ~ ~'b.l 

(i.e. the density of W~, 1 is a x a'l l(0A) (x)) . This is equivalent to assuming geometric 

rates of return to be the sum of two independent exponential distributions. 
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If, furthermore, the cash flows have an exponential distribution with mean m, then it 

can be shown that 

... ® r ( a ,  m) Z = V 1 V~ C t ~ nO)pb,l+a 
k = l  

i.e. that Z is distributed as the product of two independent random variables, one with a 

beta distribution and the other a gamma distribution. 

Once again this example is related to the discounted value, at a constant  rate g, of 

claims (CD occurring at times (Tk). Since the Vs now have a distribution which is 

the product of the two beta distributions, the intcrarrival times are distributed as the sum 

of two independent exponential distributions. 

Example 3.(Chamayou and Letac, 1991). The  beta distribution of the second kind is 

defined as follows: if a > 0, b > 0 and 

f,(x) = (constant) x a-1 (I +x) -ab 1(0.  ) (x) 

then we say that V has a beta distribution of  the second kind with parameters a and b. 

This is also written V ~ fla~2b ) . This family of  distributions is also known as "generalized 

F" or "generalized Pareto". 

Chamayou and Letac have derived the following remarkable fact: 

ta(2) ~ ,,(2) if Vk~ ~a,b,a<b, then z =  V ~ . . . V  k~ P,i.b-a - 
k = l  

5. When discount factors  are not independent  

The dependence or independence of  the discount factors has a significant effect on the 

distribution of discounted values. This has been noted by Dufresne (1990 and 1991b) and 

Frees (1991). This section contains some further comments on this topic. 
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Three cases will be compared: (i) independence, (ii) perfect positive correlation, i.e. 

p = Corr (I:,,  Vt÷l) = 1 , and (iii) perfect negadve correlation, i.e. p = -I . The basis 

of comparison will be the expectadon of the value of  one unit discounted frome time t to 

time 0 ,  that is to say the mean value of 

w,= vl  ... v , .  

When discount factors are independent and identically distributed, 

E W, = (E V I ) t .  

Next, suppose the (V k) are still identically distr ibuted but that p = Corr(V t, V,+t) 

= 1 for all t. Then (see the remark at the end of this section) 

This means 

By Jensen's inequality 

P(V l ..... Vt) = I, t >- l . 

E w, =  vO. 

e(v ) > <E vt)' 

unless Var V l = 0 (let us disregard this possibility). Hence discounted values are larger 

on average when there is perfect positive correlation than when discount factors are 

independent. 

Now turn to the last case, p = Corr (V t , V,+I) = -I  for all r. Then (see the remark 

at the end of this secdon) 

P(V,+Vt+ l = 2 E V  t ) = l ,  t -> l .  

In other words V 2 = 2 E V  I - V  l , V  3 = V  I , V  4 = V  2 , e t c .  (N.B. We need to assume 

that P(V r e [0, 2EV 1] ) = 1 in this case.) Consequently 
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E W ~  -- E[Vi  (2E V~- Vt)q 

E W2~+l = E[V~ *l  (2E V 1 - Vl) ~] 

for  t = 0, l ,  2, .... The  func t ions  x ~ - - - o  x t (2E V 1 - x )  z and x*------* 

x t+l (2E I/1 - x )  r are both concave,  and 

E W t < ( E V I )  t , t >  1 

(unless  Var V 1 = 0). Finally, d i scounted  values are smal l e r  on average when there is 

perfect  negative cor~lat ion than when there is independence.  

Among  the three cases considered,  we see that 19 = -1 produces  the lowest average 

d i s c o u n t e d  values,  and p = +1 the highest  (g iven  that  the (V k) have the same 

distribution in all three cases). 

In order  to give a concrete  meaning  to what has just  been said, define an e q u i v a l e n t  

d i s c o u n t  f a c t o r  

v = lirn (E Wt) lit 

This constant discount factor produces discounted values approximately equal to expected 

d iscounted  values obtained using V I , V I . . . . .  Similarly, 

r = v  "1 - 1 

is an e q u i v a l e n t  a r i t hme t i c  r a t e  o f  re turn .  

We have the fol lowing conclus ion:  given d iscount  factors which  are identical ly 

distr ibuted,  the equivalent ari thmetic rate o f  return is h ighes t  when p = - 1 and lowest  

when  p = + 1 , the independent  case  being in be tween .  Thus  the choice  of  a s ingle 

valuation rate of  interest such as r should depend on the distribution o f  discount factors 

a n d  on the dependence be tween them. On the basis o f  the  (admit tedly simple) example  

given,  it would appear that r should decrease as p increases from - 1 to + 1.  
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Remark. The following result was used: if 

a X + b ~ = X ,  

then 

(i) X = b/(1 - a) with probability one, 

(ii) a = + l  and b = 0 , o r  

(iii) a = -  1. 

Proof. Of course the result is immediate if Var X exists. The proof given here does 

not assume the existence of any moment. 

Suppose lal ;~ 1. If  l a l  > 1 , then (5) implies 

X =  X -  

l al-I < 1. Wecan  therefore supl~se  l a l >  I .  where 

Iterating Eq. (5), we find 

a ~ X + b ( l  + a + . . .  + a ~ l ) ~  X ,  n _ ~ l .  

Since l a l  < 1 , the left hand side converges in distribution to the constant b/(l- a ) ,  

and X is degenerate. 

ff a = + 1,  then b has to be zero, since we would otherwise have 

P ( X ~ x ) = P ( X < _ x - b )  , V x ~  ~ .  [] 
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