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ABSTRACT

The paper is concerned with the graduation of mortality data and considers
models that are functions of age and duration since selection. The methods are
illustrated by applying them to the graduation of a data set relating to female

assured lives in the United Kingdom.
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1. Introduction

The Continuous Mortality Investigation Bureau (CMIB) is a research organisation
established by the Faculty of Actuaries and the Institute of Actuaries in the UK.
One of the main roles of the CMIB is to collect mortality data from UK insurance
companies, to analyse these data, to issue regular reports on the analyses and, when
required, to prepare new standard mortality tables. The most recent report of the
CMIB, CMIR 9 [1988], discusses the analysis and graduation of several sets of data
relating to the years 1979-82 inclusive.

The mortality of an ‘assured life’, i.e. an individual who has purchased a whole
life assurance or endowment atsurance policy, depends on, among other factors, the
sex of the individual, his/her age and the duration since (s)he purchased the policy
(‘duration since selection’ in the usual actuarial jargon). The traditional approach
by the CMIB to the graduation of such data sets has been:

i) to graduate separately data from different sexes,

ii) to graduate separately, at least initially, data relating to durations 0-1 year,
1-2 years,..., 4-5 years and 5 or more years since selection, and then possibly
combine some of the data for the higher durations so that standard tables
with relatively short select periods can be produced.

The purpose of this paper, which is not part of the work of the CMIB, is to describe
the graduation of one of the CMIB’s data sets, modelling simultaneously age and
duration since selection. The particular data set chosen related to the experience
of female assured lives in the UK in the years 1979-82 inclusive. A full description
of this data set and of the CMIB’s graduations of it can be found in CMIR 9 [1988,

§6].
The advantages of modelling simultaneously age and duration since selection are:

i) it uses data more efficiently by allowing us to infer information about ages/-
durations where we have little data, from other ages/durations where we
have more data,

ii) it makes it easier to prevent inconsistencies arising in the graduations; for
example, if data for each year of duration since selection are graduated sep-
arately it is possible that at some ages, particularly at the ends of the age
range being considered, graduated mortality rates may decrease with increas-
ing duration since selection. Examples of this can be found in CMIR 9 [1988,
Table 6.2]. This is a result of having little data at extreme ages rather than
a real effect.

iii) it ought to give greater understanding of the nature and effect of selection.

Our approach to this problem is very much a statistical one; in other words, we have
tried to find (and we hope succeeded in finding!) & function of age and duration
since selection for the force of mortality which fits the data reasonably well, and
also is consistent with our preconceived ideas (in particular that for a given attained
age, the force of mortality should be a non-decreasing function of duration since
selection). We have not attempted to develop a general ‘law of mortality’ as a
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function of age and duration since selection, and for this reason the present paper
is different in its approach from the paper by Tenenbein and Vanderhoof [1980].

In the following section we describe briefly the data available to us for this project.
In §3 we discuss the problems arising from duplicate policies, i.e. individuals having
more than one policy in the data. In §4 we describe the models of both the CMIB
and ourselves and in §5 we describe the fitting of our models to the data. Finally,
in §6 we give the results of our fits. This project has not yet been fully completed,
and this paper could be regarded as a preliminary report. A fuller report on the
project will be prepared and submitted for publication in the near future.

The authors are grateful to the CMIB for permission to use some of their data,
and also grateful for the help given by their colleague, Professor John McCutcheon.

2. The Data

In this section we give some information about the data we have used for our
graduations. A fuller description of these data and details of how they were collected

can be found in CMIR 9 [1988], and earlier reports by the CMIB.

Our data relates to female assured lives (i.e. female policyholders with whole
life or endowment assurance policies) in the years 1979-1982 inclusive. The data
include lives who have not been medically examined as well as those who have, but
only include lives accepted at normal premium rates.

The form of the data available to us is indicated in Table 1. For convenience,
we have summed the data into 5-year age groups; the data supplied by the CMIB,
and used by the authors, were in single years of age. For these data, ‘age’ means
‘attained age nearest birthday’ (not ‘age when the policy was purchased’); ‘duration’
means ‘duration in years since the policy was purchased’. Duration increases in
one-year intervals up to 5 years; data for durations in excess of 5 years have been
grouped. This feature caused us some problems which we will come back to later
in this section. For each ege (group) x duration cell we have two observed values:
the number of deaths in the 4 year observation period (abbreviated Dths), and
the central exposure during the observation period (abbreviated Exp). Data were
available for ages above 90 but were ignored as they were considered by the CMIB
to be somewhat unreliable.

Since our purpose was to model duration, it was inconvenient to have the data
grouped for durations in excess of § years, especially as a large proportion of the
total data was for durationsin excess of 5 years.' A preliminary task was to estimate,
for each individual age, the average duration for policies where the duration was in
excess of 5 years. The details of this estimation procedure will be given in the fuller
report on this project to be prepared and submitted for publication in the near
future. Table 2 shiows, for selected individual ages, the estimated average duration
for policies where the duration was in excess of 5 years.
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3. Duplicate Policies

One of the problems with our data set is the presence of duplicate policies, i.e.
two or more policies on the same life. Briefly, duplicates arc a problem because their
presence means it is not possible to assume that policies behave independently of
each other. The CMIB conducted an investigation into the numbers of duplicate
policies in this dala set. This investigation was conducted by looking at the death
certificates for a large proportion (56%) of the recorded deaths. If key informa-
tion on two or more death certificates was identical, then it was assumed that the
certificates related to the same life. This provided an estimate of the distribution
of the number of policies per each individual life at each integer age among those
individuals who died during the investigation period. It was then assumed that the
distribution of the number of policies per each individual life at each age for all
policyholders was the same as the distribution at the corresponding age among the
deaths. The results of this investigation were made available to us by the CMIB
and showed that there was little evidence of duplicate policies for durations up to
5 years, but some evidence of duplicates in the data for durations in excess of 5
years. In accordance with these findings we have made allowance for the presence
of duplicate policies only in the data for durations in excess of 5 years.

Table 3 shows the estimates of the average number of policies per life for selected
integer ages, and also the so-called ‘variance inflation factor’. The variance inflation

factor is defined to be
o0

Z 1'271,'/ Z in; 3

i=1 i=1
where n; is the number of individuals (for this particular age) who have exactly
t policies. The role of the variance inflation factor is explained fully in Forfar,
McCutcheon and Wilkie [1988] and will be mentioned briefly in the next section.
(Strictly, the figures in Table 3 relate to durations in excess of 2 years, even though
we applied them to the data for durations in excess of § years. This is because the
corresponding data for durations in excess of 5 years were not available to us until
recently.)

4. The Graduations

A full description of the methods of graduation used by the CMIB is given in
Forfar, McCutcheon and Wilkie [1988| and their results are reported in CMIR 9
[1988]. In their graduations, the CMIB considered two closely related classes of
functions for smoothing the raw death rates. We mention one of these classes, a
generalisation of the Gompertz-Makeham mortality law, defined by

pz = p1(z) + exp(p2(z))

where g, is the force of mortality at age z and p,(z) and p;(z) are polynomials in
z of orders r and s respectively (the order of a polynomial equals 1 plus its degree).
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The CMIB refer to this as the Gompertz-Makeham formula of type (r,s), and write
it as GM(r, s). For example, the GM(2,2) formula gives

He = ap + ayT + exp(bo + by ).

The function GM(r, s) is used to describe the underlying systematic relationship be-
tween the force of mortality, u,, and age, z. The observed variation about GM(r, s)
is accounted for by a Poisson model which we describe next.

Let A, denote the number of deaths between exact ages  and z + 1, and let
R, denote the central exposed to risk at age . Then, assuming that the force of
mortality is constant over each interval {z,z 4 1), we can suppose that A, follows a
Poisson distribution with mean R u.; we write A, ~ P(R, u,). We can suimmarise
the approach of the CMIB in the following way:

A, ~ P(R,p.), where g, = GM(r, ) (4.1)

for some values of r and s.

With this model, the CMIB used three different fitting criteria to estimate the
parameters in the functions GM(r, s)

(1) maximum likelihood,

(2) normal approximation to maximum likelihood,

(3) minimum x?.
It should be noted that (1) is not available if there are duplicates in the data, when
only (2) and (3) can be used. CMIR 9 [1988] contains a very full description of the
results of fitting the above models. In particular, there is much discussion of the
values of r and s to be used. It should be recalled that the CMIB investigated each
duration separately; thus, separate graduations were performed for each of the six
durations 0-1,1-2,...,4-5,54. Some durations were combined when it was decided
that the mortality experiences of these durations were not significantly different.
Generally, but not in all cases, the CMIB found that a GM(2,2) function gave
satisfactory fits to the data. The full report is in §6 of CMIR 9 {1988].

The approach of the present paper is an extension of (4.1). The reasons for
modelling age and duration simultaneously have already been discussed in §1 above.
We experimented with a number of different models, and will report more fully on
some of these other models at a later date. In the present paper we give details of
the mode! that we finally settled on.

We shall denote by p, 4 the force of mortality at exact attained age z and exact
duration since selection d, both measured in years. We wanted our model for . 4
to be of the following form: '

Hed = fl(x) X f2(z)d) X f3(d)

where the functions f1, f2 and f; satisfied the following conditions:
(1) the age term, f;(z), was of the form GM(0, s)
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(2) the interaction term, f;(x,d), was of a simple form,
(3) the duration term f3;(d) was monotonic increasing and tended to a limit as
d — oo.

The model that was finally selected was a modification of:

(1) fi{z) = exp(ag + a1z + a2z + a3z® + aqz*), i.e. GM(0,5)

(2) ja2(z,d) = exp(aszd) (4.2)

(3) f;(d) =1- exp(bn + b,d -+ bzdz).
The quadratic term in fy was used since it described (a) the large increase in mortal-
ity that is observed in moving from durations 0-1 to 1-2 and (b) the slow increase in
mortality that is observed thereafter. A modification was required since at high du-
rations the graduated mortality had a turning point corresponding, approximately,
to the turning point of the quadratic function. We took the view that the turning
point could be interpreted as the duration at which the effect of selection finally
wore off. We adopted the simple expedient of flattening the graduated mortality
rates. It should be noted that this flattening process was age dependent, i.e. we
assumed that the effect of duration at fixed age z wore off at the turning value of

f2(z,d) f3(d). We make the following definition.

Definition For fixed z, dmax(z) is that value of d that maximises
exp(aszd) x (1 — exp(by + b1d + bd?}).

The function g(x) = dax(x} is of interest in its own right since it gives an indication
of the length of the select period. A graph of g(z) is provided in Figure 1 and an
approximation to g(z) is given by

9(x) = dimax(z) = 12:77 — 0-562z + 0-0107=>.

We see clearly that the effect of duration wears off more quickly at lower ages. For
example, at age 20 the selection effect has lasted for about six years, rising steadily
to about ten years at age 60. Above age 60 the effect of selection becomes much
more dramatic. For example, the force of mortality at age 70 is estimated as 0-0068
at duration zero, and 0-0164 at duration 20.

6. Fitting the Models

There are two difficulties to be coped with in fitting the models. The first difficulty
is that the models of the CMIB and ourselves are non-linear. This is a computational
problem only. The second difficulty is the problem of dealing with duplicate policies.
The CMIB offered two solutions to the latter problem: the first solution was to use
the normal approximation to the Poisson distribution for the number of deaths;
their second solution was to use minimum x2. We took a third option and used a
weighted Poisson. In the ordinary Poisson case, if X ~ P(X) then f(z) = e=* A%/z!.
The log likelihood is then

£A)=zlogA — X +¢
= z0 —exp(f) + ¢, where 8§ = log A.
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The weighted Poisson is a random variable with log likelihood
£()) = w(z@ — exp(8)).

Clearly, if w = 1 we have an ordinary Poisson variable, while if w # 1 we have a
variable with mean ) and variance A/w. The appropriate weighting factor is 1/r,
where r, is the variance inflation factor. If A;, R, and r, are the number of claims,
the number of policy years and the variance inflation factor respectively, then the
contribution to the log likelihood at age z is

l(p.,) =(A. l'og Mz — R:l‘t)/";-

This gives ji. = A,/R. and estimated variance r,4,/R2. Asymptotically, this
is the same solution as obtained using a normal approximation or & minimum x?
approach; il w = 1 the exact log likelihood is used.

The computations were carried out using the statistical programming language
Genstat 5 |[Genstat 5 Committee, 1987]. Genstat 5 is a Fortran based statistical
command language which is particularly suitable for fitting models of the forms
described in §4; a high quality graphicsinterface allows the production of the graphs
presented in the next section.

6. Results

The model (4.2) with a weighted Poisson likelihood was fitted to the data with
ages 20 through 90 and durations 0-1,1-2,2-3,3-4,4-5,5+; duration 5+ used estimated
mean durations for each age. The fitted parameter values, together with standard
errors and {-values are given in Table 4.

The fitted model gives a deviance (-2xlog likelihood ratio) of 503 with about
420 degrees of freedom and thus a mean deviance of 1-2 (the exact number of
degrees of freedom are unknown because of the flattened quadratic). At first sight,
this figure may seem rather high (if the model is exactly true the mean deviance
should be about 1). However, examination of the residuals does not reveal any
obvious departure from the model; it is more that the residuals are generally rather
large. A possible explanation is that there were rather more duplicates in the data
than were allowed for; this would certainly have the effect of inflating the residual
variance.

Figure 2 shows p, 4 as a function of z for three values of d. In other words it
shows the force of mortality as a function of attained age for durations 0, 4 and 10
years. It can be seen from Figure 2 that for fixed = we have

Hzpo < f24 < fz,10

and that the relative difference between u, 4 and p, ¢ is greater than that between
fiz,10 and g, 4. These features are not surprising since we would expect the eflect
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of duration since selection to decrease with increasing duration (and have chosen
our graduating function for p, 4 accordingly!). This feature is shown clearly again
in Figure 3, which gives the graphs of u, 4 8s a function of duration d for various
attained ages z. Our ‘flattening’ of the duration effect can be seen in Figure 3 for
attained ages 30, 50 and 60. For attained age 70 the effect of selection has lasted for
about 30 years (see also Figure 1) and so the graph of u7g 4 in Figure 3 is increasing
for 0 < d < 25.

Figure 4 is also a graph of the force of mortality as a function of duration but
differs from Figure 3 in that it shows a graph of p.,+4.4 as a function of d, where z,
can be regarded as the age at which the policy was effected. Hence Figure 4 shows,
for an individual who purchased her policy at age 30 (or age 45 or age 60), the
development of the individual’s force of mortality as her age and duration increase
simultaneously.

This paper has given a very brief description of a project which is nearing com-
pletion. As we have mentioned several times in this paper, we intend to prepare
for publication a fuller report on this project in the near future. The fuller report
will not only explain in more detail points which have been mentioned in this paper
{e.g. the estimation of the average duration of a policy whose duration is in excess
of 5 years) but will also:

a) give details of the other methods tried by us for modelling age and duration
simultaneously,

b) consider the actuarial implications of the graduations (e.g. the implications
for premium rates},

c) compare our graduations with those of the CMIB, and, possibly,

d) give details of the application of the techniques of this paper to other data
sets.

References

CMIR 9 [1988] Report Number 9 of the Continuous Mortality Investigation Bureau.
Faculty of Actuaries, Edinburgh, and Institute of Actuaries, London.

Forfar, D.0., McCutcheon, J.J. and Wilkie, A.D. (1988] On graduation by mathe-
matical formula. J.Inst.Act. 115, part I, 1-149.

Genstat 5 Committee. [1987] Genstat 5: Reference Manual. Clarendon Press,
Oxford.

Tenenbein, A. and Vanderhoof, 1.T. [1980] New mathematical laws of select and
ultimate mortality. Trans.Soc.Act. XXXII, 119-158.

93



Table 1 The data summed into 5-year age groups

Duration
Age 0-1 1-2 2-3
Exp Dths Exp pths Exp Dths
20-24 120276 18 105301 30 82547 17
25-29 116589 29 109487 28 96635 31
30-34 120652 28 114904 34 102733 31
35-39 96696 39 93893 56 86006 45
40-44 73863 37 71023 53 65275 46
45-49 59871 49 57706 75 53902 79
50-54 43419 88 44167 99 42961 102
55-59 21001 47 22126 90 23070 108
60-64 9640 27 8938 46 8764 57
65-69 4190 20 3877 39 3583 34
70-74 1812 22 1495 27 1269 11
75-79 4180 1 558 13 499 5
80-84 71 1 84 1 91 1
85-90 6 0 9 0 11 1
Total 668563 406 633565 591 567345 568
3-4 4-5 5+
Exp Dths Exp Dths Exp Dths
20-24 64394 13 44759 10 54323 16
25-29 84640 28 71021 24 187983 68
30-34 89745 28 76367 25 295413 128
35-39 76613 33 65334 39 290985 189
40-44 58937 50 50937 41 240867 266
45-49 48857 73 42825 73 228286 404
50-54 40297 95 35948 92 223775 756
55-59 23258 93 22653 103 194852 951
60-64 8860 59 9137 47 93376 653
65-69 3334 38 3057 25 27005 271
70-74 1150 6 1166 19 12111 258
75-79 448 6 390 10 6135 205
80-84 90 1 96 4 3250 226
85-90 15 0 15 1 1718 210
Total 500636 523 424602 513 1860077 4607
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Table 2

Estimated average duration for policies where
the duration is in excess of 5 years.

Age Est. Dur. Age Est. Dur.
20 6-27 60 10-00
25 6-53 65 9.78
30 7.36 70 9.89
35 - 7-88 75 13-99
40 8-68 80 18-89
45 865 85 19-55
50 9-63 90 22-39
55 9.96
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Table 3

Estimates of the average number of policies per life
and of the variance inflation factor.

Age Average number Variance inflation
of policies per life factor
20 1-000 1-00
25 1118 1-21
30 1-083 1-15
35 1-139 1-39
40 1-032 1-06
45 1-088 1-16
50 1.085 1-16
55 1-092 1-21
60 1-094 1-23
65 1074 1-14
70 1-057 1-16
75 1.045 1-09
80 1-087 1-16
85 1-333 3-25
90 1-000 1-00
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Table 4 Estimated coefficients, standard errors and ¢-values

Coefl. Standard error {-value
ap -3-980 0-027 -145-1
ay 3.-942 0-168 235
az 0-022 0-398 0-1
as 4.287 1-136 3-8
aq 4.512 0-894 50
as 0-045 0-010 _ 4.6
be -0-449‘ 0-041 -10-9
b, -0-199 0-028 -7-2
b, 0-004 0-003 1-3

Note: The above coefficients are to be applied to (4.2) using the transformed age
z* = (z — 70)/50.
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