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ABSTRACT

Improved treatment for AIDS, possible wvaccines for HIV,
changing behaviour on the one hand, the increasing proportion
of females and 1V drug users and thus the evolving interface
between the at risk and the not at risk population on the other
hand suggests that transition intensities are not constant
over time but experience gradual drifts and sudden jumps. The
paper considers these features in a model for prevalence and

gsurvivorship.
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1. Ruin problem for geometric Brownian motion

In this section we lay down the necessary mathematical
background. Recall that a Brownian motion, also known as a
Wiener process, is a stochastic process { Wy = t € [0,0) )}
with the following properties:

(i) Wg = o’
(ii) W, is normal with mean 0 and variance t

iii 1% — W and 7
(i) ) ty

— Wy _ are independent
3

tq
(iv) wt+s — Wg distributes like Wt

Considers the following stochastic differential equation

dY,
Yo o= e+ o dWy (1)
with solution
2
t
‘.lt‘, + th — %—
Yy = Y0 e (2)
which is known as the geometric Brownian motion. See for

example, Malliaris (1983, pp. 485-486) or Karlin and Taylor
(1975, p.357) for further discussion. The extra term - 5~ in

the exponent arises from an application of the
Ito’s lemma: [ Malliaris (1983, p. 484) or Karlin and Taylor

(1981, pp.347-348) ]

1f

104



dX¢ = p(Xg,t) dt + o(Xg,t) dWy
Yy = f (Xg,t)
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Proof:

Start with the Taylor series for dYt to the second derivative

2 2 2
_ of af a=f 1 9°f 2 1 9f N2
dYe = gx dXe + Gg At + pgg X At + 5 L5 (X7 + 5 Us (dOT

Observe that (dwt)2:dt, and that all other double

differentials lead to dt of power 1.5 or higher. q.e.d.

The behavior of the geometric Brownian motion is well

known. For example, Karliao and Taylor (1975, p.357) tell us

that

E(Vy) = Y, e,

t 2
V(Y )= Y2 et 1] = (BYv)2 [t - 1]
To find the probability of Y, ever going down to a portion of
the current value, to be used in section 3 to indicate the

diseased population shrinking down to a small enough portion so

that the epidemic is considered cured, write (2) as
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t
Yo =Yy e (3)
with
2¢
Xy = #t + oWy — Z5t (4)
and study whether X would go down a distance u from the
starting level. Thus we have transformed the Yy problem to a

previously solved Xg problem, the ruin problem for Brownian

motion with a drift. For such a process,
2 drift

: u
P {maximum drop > u } = e Variance (5)

[ Karlin and Taylor (1975, p.361) ].

To see that (5) is a reasonable result without going to
the proof, let us consider what this say in the context of
classical risk theory. In the context of classical ruin

process, the quantity

20Ap 20
: 1 p
_ 2 drift - 5 U _ 1,
e variance - e P - e ) < e Ru
is known to be a first spproximation of e~ Ru [Bowers et al
(1986, Exercise 12.4)] and is on the same side of e MU 4 the
probability of ruin
e—Ru
v(u) =P { L >u} = T < e Ru
E [ e r ] T < oo }
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2. Geometric Brownian motion as model for HIV infections

When we use the geometric Brownian motion to model HIV
infections, the parameters are estgmated by published growth
rate of reported AID cases with the knowlcdge that exponcential
rate of HIV infections lead to exponential rate of AID
occurances which leads’to exponential rate of AID reportings.
Consistent with various published data of AIDS doubling in one
to seven years in different studies, times, and places, values
of w and ¢ in (1) are chosen to be .16 and .4 as simple numbers

for illustration purposes.

dy,

v = (16 dt + .4 dWg (6)
.08 t + .4 Wi

Yo = Y5 e (7)

3. Ruin problem for geometric Brownian motion with jumps

When we use (5) and (7), we found that

v < e "} = P {maximum drop in Xy > u }

_ 2 _drift 2 (.08) | A
— ¢ Vvariance ~_ .16 = e U,
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which says the probability of the diseased population { Yg

t<s<oo } ever go down to p times the current diseased
population Y, ie p. [ p = e™™ ] The simplicity of the
statement comes from our choice of parameters .16 and .4. For
general values of the parameters, the probablity of the disease

winding down by p is constant times p.

Form the above discussion, we found that the epidemic is
not likely to go away by itself. Suppose now there is a new
process describing the epidemic

dY,

v, = p dt + o dWg + jumps (8)

where the jumps occurs as a Poisson process with the values of

Yy after the jumps are p times that of before the jumps with
pe(0,1). Incidentally, this model has be used extensicely to
descripe investment returns. [ Merton (1976) ] In agreement
with the convention in classical risk theory and in cadlag

semimartingales [ Metivier (1982) ], the diffusion with jumps

is consider to be right continuous.

Y
t

P = g (9

o )

By (3), we can study the process Yy by applying what we know

about X¢ -
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Xg = Xg_ — 1n § (10)

The equivalence of (9) and (10) tells us that Y, drops to a
porportion of p is equivalent to X drops by a value of In %

Furthermore, p distributes uniformly on [0,1] is equivalent to

the drops in Xty ie distributed exponentially with parameter 1;
B

p~ distributes uniformly on [0,1] is equivalent to the drops in

X4 is distributed exponentially with parameter §.

Geometric Brownian motion with jumps, Yo has been studied
extensively for stock returns since Merton (1976) and the
surplus process with Brownian premium receipts has be recently

be studied in Dufresne (1989).
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