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ABSTRACT

Insurance professionals have long recognized the value of time series techniques in ana-
lyzing sequential business and economic data. However, the usual class of Boz-Jenkins
(1976) models are sometimes not flezible enough to adequately describe many practically-
arising time series, By way of contrast, the state space model offers a solution to
multivariate modeling, forecasting, and smoothing of time series, but the computations
associated with this model have been too heavy in the past to justify their usage. Recently,
however, Carlin, Polson and Stoffer (1992) have showed how state space models of this
type may be more easily fit using Monte Carlo integration techniques. In this paper we
give a brief review of these technigues, and subsequently illustrate their usefulness in set-
tings of interest to practicing actuaries. The models employed allow for the possibilities
of nonnormal errors and nonlinear functionals in the state equation, the observational
equation, or both. Missing data problems (including the k-step ahead prediction problem)
are also easily incorporated into this framework. We illustrate the broad applicability of
our approach with several ezamples and data comptled by the National Center for Health

Statistics.
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1. INTRODUCTION

Over the past several years, time series analysis has become one of the practicing actuary’s
standard tools for studying and understanding sequential data. These techniques have proved
especially valuable for analyzing economic indicator series, such as stock prices and interest rates
over time, and also mortality and morbidity series, such as monthly death or disability rates from
various diseases by age and sex. In both of the above examples, the ability to react quickly to
changes in conditions, as well as to reliably forecast future trends, is critical to the well-being of a
financial institution.

Unfortunately, because the appearance of time series methods on the actuarial syllabus has
been fairly recent, many actuaries are unaware of the power afforded by these techniques. Further,
most of those who have studied time series analvsis have only seen the most basic linear, Gaussian
(normal) models developed and Box and Jenkins (1976), as covered on the exam syllabus in the
textbook by Miller and Wichern (1977). This is unfortunate, as many of the time series encountered
in practice cannot be described by such simple models. For example, a standard model might take
the form

v=hlpal+e, t=1,....n

where h(y;—1) = ¢y:-1, a linear function, and the ¢’s are assumed to be a “white noise™ process,
i.e. independent Gaussian errors with mean 0. However, a more realistic assumption for many
datasets might be to let h(y,—;) be a nonlinear function of ¥, or to adopt a non-Gaussian error
distribution for the ¢’s. The above assumptions enable simple updating of estimates via the usual
Kalman filter, but are frequently found in practice to be too restrictive for realistic data analysis.

As an example, consider the ischemic heart disease mortality data in Figure 1{a}. These are the

final National Center for Health Statistics (NCHS) estimates of the monthly death rates for men
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aged 25 to 34 over the period January 1979 — December 1986. As the trend is clearly nonstation-
ary, a standard Box-Jenkins autoregressive integrated moving average (ARIMA) model analysis
would proceed by differencing the series to achieve stationarity; a histogram of these differenced
death rates is given in Figure 1(b). Notice that this distribution does not appear to be normally
distributed; a more sharply peaked distribution with much heavier tails, such as the double expo-
nential distribution, seems to be called for. Section 4 below offers further examples from the realm
of mortality rate time series that illustrate such advanced modeling conditions.

In the remainder of this paper, we first review the applicable statistical methodology for the
analysis of morbidity, mortality and other health related data that are known to exhibit nonlin-
ear and non-Gaussian behavior. In particular, an adaptive Monte Carlo computational technique
known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and
computationally simple solution in such situations. This method will help implement our second
goal: the solution of several difficult modeling problems that have heretofore been intractable using
traditional computational methods. Examples of such problems include explicit incorparation of
covariates (such as age and sex), heteroscedasticity of errors over time, multivariate analysis (in-
cluding simultaneous modeling of both preliminary and final mortality estimates), the modeling of
asymmetric densities on the positive real line (as might be appropriate for death rates), and model
choice criteria for selecting the best model from many. Finally, we offer specific numerical exam-
ples which illustrate the relevance of the methodology, giving details concerning our FORTRAN
implementation. We suggest that the availability and easy programmability of advanced time se-
ries modeling techniques will lead to higher quality estimation and prediction of time-dependent

quantities relevant to financial institutions managing risk.
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2. MODEL SPECIFICATION AND THE GIBBS SAMPLER

2.1 Model Specification

The state space model has become a powerful tool for modeling and forecasting dynamic sys-
tems. These models, in conjunction with the Kalman filter, have been used in a wide range of
applications from many disciplines including biology, economics, and engineering, and consequently
have become of increasing interest to statisticians. These models are particularly amenable to a
Bayesian approach, since the time-ordered arrival of the data means that the notion of updating
prior knowledge in the presence of new data arises quite naturally. Good summaries of the work in
this area appear in West, Harrison and Migon (1985) and West and Harrison (1989).

We will consider the state space model:

2= Fizgoq + uy, and

ye=Ha +v, t=1,..,n

where z; is the p x 1 state vector, y, is the ¢ x 1 observation vector, F; is a p X p matrix of
constants, and Hy is a ¢ x p matrix of constants. Let y = (y1,...,yn) denote the observed data,
x = (£1,...,2,) the (unknown) elements of the state, and z¢ the initial state. Typically, », and
v, are taken as independent and identically distributed, with 4, ~ Np(0,Z) and v, ~ N,(0.7),
where N, denotes the p-dimensional normal distribution. Also, the matrices Fi, H,,L, and T are
generally assumed to be known.

In a recent paper, Carlin, Polson and Stoffer (1992) developed methodology for modeling the
nonnormality of the u,, the v, or both. A further departure from the model specification (1) was
to allow for asymmetric densities on ®* (e.g. gamma or Weibull), unknown and possibly unequal

variances in the state or observational equation, and unknown parameters in the transition matrices
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F, and H,. In general, we may allow for nonlinear functional forms by writing

ze = filTe1) + te, and

(2)
v = h(ze)+v, t=1,...,n,
where f;(-) and A(-) are given, but perhaps depend on some unknown parameters. Finally, the
experimenter may wish to entertain a variety of possible nonlinear functional forms or choices of
error distributions, resulting in a model choice problem.
In general, the likelihood specification for our model, suppressing the conditioning on (uo, Lo,

Fy, Hy), is given by

n

P(Y1s- -2 Ynr T0, 21, - - - 20l 4 T) = g1(Zoltto, o) ]| ga(zel2e-1,T) [T ga(welze. 1) (3)

t=1 t=1

for some densities g1(-) and ga(-). Specifically, we model ¢; and g; by letting

Si(zel2e-1,8) = f,\ P(I:,It—h/\tyz)Pl(f\:)d/\t, and (4)

gZ(yl'xh ‘r) = fn P(y:l«'l:nwh T)pz(“)l)d“’h t=1,...,n,

where we depart from the usual Gaussian assumption by assuming that, conditional on the nuisance
parameters A and w,
zolzim1, A, £~ N(fi(ze21), A D), and
(5)
y(llg,wg,-rNN(hg(It),wg'r), t= 1,....,7!.
Of course if h(zy) = Hyz: and fi(24-1) = Fizs_3, we have the linear model (1). Note that, by
varying p1(A:) and pa{wy), the distributions ¢; and g; are scale mixtures of multivariate normals

for each ¢, thus enabling a wide variety of nonnormal error densities to emerge in (3). For example,
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in the univariate case (where we denote £ and T by o and 7, respectively) the distributions
z4]z(-1,0 and y|z(, 7 can be double exponential, logistic, exponential power, or ! densities (see
Andrews and Mallows, 1974, West, 1987, and Carlin and Polson, 1991). In the multivariate case a
rich class of densities emerges including the r-dimensional hyperbolic distribution {see Barndorff-
Neilsen and Halgreen, 1977). Note that we are assuming p(A,w) = []7; p1(A¢)p2{w:), so that the
densities z,jz,.1, 5 and y,|z;, T are possibly different scale mixtures of normals. A further easily
incorporated extension is to allow for different densities as t varies, 1 = 1,....n.

While we plan to investigate methodology for error densities on the positive real line, for the
purpose of illustration the rest of this proposal will focus on modeling in the symmetric errors case
using 2 nonlinear, multivariate scale mixture state space model. The key to the approach is the
introduction of the (generally high dimensional) nuisance parameters A and w and the structure

(5) which, as we shall now see, lends itself naturally 1o the Gibbs sampler, our computational tool.

2.2 Implementation of the Gibbs sampler

The Gibbs sampler is a Monte Carlo integration method which proceeds by a Markovian up-
dating scheme. It is essentially a modification of the Metropolis algorithm (Metropolis et. al.,
1953), developed formally by Geman and Geman (1984) in the context of image restoration.
In the statistical framework, Tanner and Wong (1987) used essentially this algorithm in their
substitution sampling approach. Most recently, Gelfand and Smith (1990) developed the Gibbs
sampler for general settings; the reader is referred to that paper for a discussion of the method
and its properties. To summarize the method briefly, suppose we have a collection of k (pos-
sibly vector-valued) random variables U;,...,Us whose complete conditional distributions. de-
noted generically by f(U,|U,.7 # s),s = 1,...,k, are available for sampling. Here, “available”

means that samples may be generated by some methed, given values of the appropriate condi-
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tioning random variables. Under mild conditions (see Besag, 1974), these complete conditional
distributions uniquely determine the full joint distribution, f(U;,...,Us), and hence all marginal
distributions f(U,),s = 1,...,k. The Gibbs sampler generates samples from these marginal dis-
tributions as follows: Given an arbitrary starting set of values Uy, . . ., Uy(o), we draw Uy(y) from
f(U1|Uzys - -+ Ukey)s then Uz from f(UaUy(1y, Usgo)s - - -» U(oy)s 2nd so on up to Uy from
F(UklUiq1)s - - -+ Uk—1(1)) to complete one iteration of the scheme. After I such iterations we obtain
(Ur(tys -+ +» Ukqpy)- Geman and Geman (1984) show under mild conditions that this k-tuple converges
in distribution to a random observation from f(Uy,...,Us) as | — oco. For this reason, in the se-
quel we suppress the (!) subscript, assuming that ! is sufficiently large for the generated sample to
be thought of as a realization from the joint distribution. Now, replicating the entire process in

parallel G times provides i.i.d. k-tuples (Ul(

LU, g=1,...,G from the joint distribution.
These observations can then be used for estimation of any of the marginal densities. In particular,

if f(Us|Uy, 7 # 5) is available in closed form, then

G
fU) =2 Y SUIUE,r #5). (©
g=1

In the context of our state space models, in order to implement the Gibbs sampler we require

samples from the following complete conditional distributions:

*

ztl‘rj¢h)‘$w727‘r1y7 t= 07" R

o wilwyze, A2, T, ¥, x, 20 ~ | T,y 7, t=1,...,1m

At'Aj¢lvw)£1Tyy’xsz ~ A!'Eaztazt—ls t=1,...,n

2w, Ty, x, 20~ Z|A,¥,X,To

T[Aw By, %, 50 ~ Tjw,y,x
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We now consider the first two distributions above. The third follows in a similar manner to the
second. The last two, under conjugate priors, follow from standard normal and Wishart distribution
theory, due to the conditioning on A and w.

First, under model (1), we prove a lemma which determines the set of conditionals, z,iz;x,. A,
w,Z,T,y,t =1,...,n The nonlinear case (2) will be illustrated in Example 2.2 b’e]ow.
LemMa. The complete conditional distribution z¢|z;4, A w,E, T,y is No(Bib,, B;), where

2-‘+HZT-‘H.+F,£,E-‘FM and o = I‘T_IF,TE“+y?T"H,+zLIE"F,“
At we A1 ’ ' Ae wy A4 '

Bl =

(M)

Proor. By Bayes theorem, the required exponent is a sum of three terms, that is, modulo a

normalizing constant, —2log f(zelT e, A w, E,T,¥)is

(Zp1= Frnz) TS 2041~ Frgnze)

1 1 _
(2~ Fizeo1 T T (2= Fizec1 )+ — (e~ Hiz)T T (g~ Bz )+
A wy Aed1

which on manipulation gives the desired result. O

Note that adjustments will need to be made to formula (7) for the cases t = 0 and t = n due to
slight modifications and deletions in the likelibood jor these “endpoint™ cases. We illustrate these
modifications in Example 2.1.

Now consider the determination of wejwjpu, A Z,T,y,x ~ w|T, g2, £ = 1,...,n. By Bayves
theorem, we|Y, v, e o f(¥)ze,we, T)pa(esr). But by (4) the normalization constant is known. and is
given by g2(ys)z:, T). Hence the complete conditional for wy is of known functional form. Generation
of the required samples may be done directly if this form is a standard density; otherwise, a carefully
selected rejection method may be emplc;yed.

‘We pow turn to two examples.

Example 2.1: Univariate linear model. For the purpose of illustration, consider mode! (1)
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withp=g=1and g = 03,5 =0% T =r% H = H and F; = F. Using the above lemma and

taking cave with the endpoint cases, we have ;|23 A, w, 0,7,y ~ N(B;b, B;) where

B!l = ;1,(11_‘“\%)“;%, t=1,...,n~1
and
%-{»—;F;%ll-, t=0
b= {,’.(iﬁl+§:—ﬁ)+;}’,—&,t=1,...,n—l

The complete conditionals for 6% and 72 are obtained as follows. Assuming the independent a
priori specifications 62 ~ IG(ag, bo) and 7% ~ IG(co,dp), where IG denotes the inverse (reciprocal)

gamma distribution, then

-1
UQIAvyyxaIONIG (GO+%){E%+ %E;‘:] (11 _Fxt—l)z/Ai} ) ) and

e,y x~ 16 (o + 3. {& + § iy (0 - Bz} ).

For the w complete conditionals, suppose we wish to model y|x, r as a product of double exponen-
tials. The necessary a priori specification for w, is then w; ~ Ezpo(2), the exponential distribution

having mean 2. Since |z, we, 7 ~ N(Hz,,w,r’). the complete conditional for wy is then

w:lr,y,xaw:'éexp(—% (wt+M)), (9)

wyr?

2
that is, we|7,y,x ~ GIG (%, 1, (ﬂ#) ), where GIG denotes the generalized inverse Gaussian

distribution (see Devroye, 1986, p. 478). In order to sample from this density, we note that it is
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the reciprocal of an Inverse Gaussian(lm , 1), a density from which we may easily sample.

A similar approach to the one just described could be used to model nonnormality in the state
equation via the A complete conditionals. Finally, if F or H are thought of as unknown parameters
(as is often the case in practice), then their complete conditional distributions will also be required
in order to implement the Gibbs sampler (see Example 4.1 below). O

Example 2.2: Nonlinear model. We now determine the distributions z,|z,4, A.w, 5. T,y
for model (2), the nonlinearity presenting no further complications in the remaining complete
conditional distributions. We consider separately the three cases where nonlinearity occurs in the
state equation, the observation equation, or both.

First, suppose that hy(z;) = H,z,, but the stateequation is nonlinear. Then r,|z,2,, A w.Z. T,y

o« wi(z¢) Np(Bi:bye, B1y) where

-1 Ty-1 Ty-1 Tvy-1
Bl_tl — §__ + H; H, , bth = fe(z11)'E + yi T 'H,

A we A wi

(10)

and wi(zr) = exp (-~ g (ze1 = fe(@3) 2o = fulz))). But clearly 0 < wi(z() < 1 for
all z,, and so the distribution from which we want to sample is dominated by the N{Byb;;. Byy)
density. Hence, we may use rejection sampling (see for example Devroye, 1986, section 11.3} in
order to obtain a random observation from the required complete conditional. That is. we sample
an observation z, from a N (By.by;, By,) density, and subsequently accept it with probability wy(z,).

Of course, this algorithm may be rather inefficient if the w;(z,) are close to 0; in such cases,
more sophisticated envelope functions may be needed (see for example Gilks and Wild, 1991. or
Carlin and Gelfand, 1992). Such envelope functions are often normal or t densities chosen to be
as similar to the desired complete conditional as possible, thus enabling more efficient rejection

sampling. However, the experimenter needs to take care that such an envelope function does in
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fact “blanket” the complete conditional distribution for all z;. Uncertainty about this condition,
along with the need to recompute the envelope at each iteration and each replication of the Gibbs
sampler (since the values we condition on change as the algorithm progesses) make such approaches
unattractive unless the naive method described above is prohibitively slow.

Secondly, suppose that fi(z;-;) = Fiz;_1, but that now the observational equation is nonlinear.
Then zefz 8, A, w, 2, T,y « wa(z,)Np(Bacbas, Bzr) where

FIL 27 Fin

2 FE! + 2 E P
Aty1

M Ate1

- -1 T
BZ!‘ A—' + S bZt =
and ws(z,) = exp (—2—‘1‘(% = h(z))TT V(g - h,(z‘))), and again rejection may be employed. Fi-

nally, when both components are nonlinear, z(|zjx, A, w, L, T,y & wi(z¢)wz(z, )Np( felze-1). A E).

Thus we sample a Ny( fi(2(-1), A:L) random variable and accept it with probability wy(z,)ws(z;). O
3. ESTIMATED MARGINAL POSTERIOR DENSITIES

With all the complete conditionals available for sampling, it now remains to show how to esti-
mate the marginal posterior densities of the quantities of interest using the generated Gibbs samples.
If we denote this collection by {(zfg),t =0,..., n),(Agg),t =1,...,n), (w,(g),t =1,...,n), ¥ 1),

¢ =1,...,G}, then we may use (6) to obtain

A 1&
plzdy) = 5 3 plzdzi2) 20 W NG w29, T, ), (1)
9=1

Note that this of course assumes that the z; complete conditional distribution is available in closed
form. If this is not the case {as in Example 2.2 above), an alternative would be to simply compute
a kernel density estimate using the {zsg)} samples themselves. Another approach would be to

obtain the G standardizing constants necessary in equation (11) by univariate numerical integration,
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perhaps a simple trapezoidal rule. While a bit more work, this latter approach would almost
certainly produce a better density estimate as it does not discard the functional form used to
obtain the {z!*'} iterates.

We note that equation (11) could be used to obtain a marginal posterior density estimate for
In41 provided yn41 was available, offering a solution to the so-called filtering problem. If y,41 is
not yet available, the problem becomes one of one-step ahead prediction, and can be solved by a

slight modification of the Gibbs algorithm. In fact, the k-step ahead prediction problem can be eas-

ily handled as follows: Suppose we desire an estimate of p(zn4k|y) where againy = (y1...., yn) and
Yn+1s - - 5 Ynsk have not yet been observed. We simply add {Zns1,- -y Tndks Yndtls - s Yndke Andloe -
An4ks@Wn4ls- .-, wWnek to the Gibbs sampler as 4k additional unknown parameters. The complete

conditional distributions for the new z’s are again obtained using the lemma in section 2 above.
where now of course the upper “endpoint™ condition pertains to .4 instead of z,,. Similarly, the
complete conditionals for the new A’s and w's arise in 2 manner exactly analogous to that described
in section 2. Finally, the complete conditional distributions for the new y variables come directly

from the model specification, namely
yn+¢|{z.'./\.',w‘}?:k,ro, . T,¥ ~ ynatlTnstewnse, T ~ N(hn+t(1‘n+t)-un+tT) , t=1,...k.

We now simply run the Gibbs sampler as usual, obtaining for any ¢ € {1,...,k} the slightly modified

version of (11),
1 & () 0] (9) (s} ()
ij(zﬂ+lly) = 5 Zp(zﬂ+i'xn+t—l‘1n+'+l‘ ’\n9+.‘<‘~’nin E(g)‘ -r(g]‘ yni.)v (12)
g=1
(s)

the primary difference being the dependence on the generated “data” values {y,%,,9 = 1,....G}

rather than an observed value y,4,. Of course. as these future y,,; values become available. we
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simply use these values in lieu of sampled values y,(fz, and rerun the algorithm - a computationally

simple solution to the filtering problem. Examples 4.2 and 4.3 offer an illustration of this process.
4. NUMERICAL EXAMPLES

Example 4.1: Univariate linear model. Consider again the model presented in Example
2.1. We apply this model to the aforementioned data displayed in Figure 1(a). Recall that these
data are final NCHS estimates of the numbers of deaths due to ischemic heart disease per 100.000
men aged 25-34. The counts are given monthly over the period from January 1979 to December
1986. As this series appears nonstationary, a standard time series analysis would likely fit an
ARIMA model using normal errors to the differenced series, which is plotted as asterisks versus
time in Figure 2. Fitting a standard AR{1) model using the statistical package MINITAB (1989). we
obtained an autoregressive parameter estimate of —0.58, with a standard error of 0.09. NMINITAB
also produces predicted values for the time series, which are plotted as a solid line in Figure 2.
While this one parameter model is quite simple, the predicted values it produces can be rather
poor (see those in the vicinity of month 60, for example). We shall compare the fit of this model
with that of our state space model.

We assume that the estimates y, in the data are unbiased for the true monthly death rates z,, and
thus set ¥ = 1. The plot of the differenced data suggest that the simple exponential model given
by F; = F is not unreasonable; however, we wish to treat F as an unknown parameter. This can
be easily incorporated into the framework developed in section 2 by assuming that F ~ N(up, a})

and noting that the complete conditional is given by F|A\,w,0,7,x,y ~ N(Bpbr, Br), where

1 &1 1 1 X220y pF
1__ { - d br = & tTe-1 | HE
agf\ ok and oF 07?___:1 At +a}

Looking again at Figure 2, note that a change in the variance (heteroscedasticity of errors) seems
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to take place near month 25, and again around month 65. While this might suggest including a
separate o2 or 72 parameter for each time point t, such overparametrization seems excessive for
these data. Thus, as in section 2, we assume o7 = ¢® and 12 = 2 for all ¢t. Placing independent
inverse gamma priors with parameters (ag, bo) and (cg.dp) on o2 and 72, respectively, their complete
conditional distributions are again given by (8). Similarly, the complete conditionals for z,.t =
0,...,n are the same as those in Example 2.1 above (recall we employ a N(up,02) prior on o).
The densities p(z;/y) may be estimated using equation (11) with the argument F{9) added to the
list of conditioning arguments, since F is no longer known but instead a component of the sampler.

In order to demonstrate the approach to nonnormal error distributions, consider the two models

M and A, given by
My ug~N(0,06%) , 0.~ N(©,7"), and My : u, ~ DE(0,0),v ~ DE(D, 7).

For M,, we take A, = w; = 1 with probability one for all ¢t = 1,...,n, leading to complete
conditional distributions for A; and w; which are also degenerate at the value 1. For AM,, we take
both the A; and wy to be independently distributed @ priori as Ezpo(2) random variables, leading

to the complete conditionals

— 2 _ 2
A~ GIG (h,(fi‘;l) ) . and w ~GIG (1,1,("" I‘) ) ,
2 4 2 T

in a manner similar to that surrounding equation (9). We complete the specification of the prior

on zy by setting uo = 0.0 and ag = 0.2 (the differenced series should be centered close to 0),
and ur = -0.5 and of = 0.25 (past experience with data of this type suggests that F should be
negative with high probability). We take a rather vague prior on o2, having both prior mean and

prior standard deviation equal to (10)? (i.e., ap = 3, bp = 0.005). Finally, we take an informative
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prior on r2, having mean and standard deviation equal to (0.1)% (i.e., cg = 3, do = 50). The
resulting low variability in the observational equation will make our results more comparable to
those obtained from a standard AR(1) model.

For our analysis, we ran the Gibbs sampler for I = 50 iterations on each model separately,
obtaining the two model-specific density estimates p(F|y, M;) shown in Figure 1(c}. In each case,
our algorithm used G = 500 parallel replications per iteration, and convergence was judged both
by monitoring sample moments of the Gibbs values themselves and by plotting successive density
estimates for the inflation constant F. We see that the normal errors assumption produces a
posterior distribution for F which is slightly more variable, and generally suggests slightly smaller
values for F. The mode of the DE errors model posterior distribution, —0.425, provides a point
estimate of F; the point estimate for the normal errors model is slightly more negative, in line with
the AR(1) estimate of —0.58. Notice that there is a reasonable amount of uncertainty associated
with our F estimate: Figure 1(c) shows that values between —1 and 0 remain plausible in light of
the data. This of course is consistent with the large amount of noise evident in the data (Figure
2). A fully Bayesian approach would involve obtaining estimates of the posterior probabilities
p(Mily), i = 1,2, leading to a Bayes factor between the normal and DE models; a Gibbs sampling
approach useful in choosing amongst competing error distributions is discussed by Carlin and Polson
(1991). Overall, the preliminary results obtained here indicate that the assumption of normal errors
is not a grossly misleading one.

Calculations similar to those undertaken for F could also be performed for all of the z, states.
In particular, since in this case the 2, complete conditionals are available in closed form, equation
(11) could be used to obtain point estimates and credible sets for each z,. However, rough point
and interval estimates for any parameter # may be obtained by simply taking appropriate functions

or quantiles of the {§(9),g = 1,...,G} iterates themselves. For example, a point estimate of z, is
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given by me z{9/G. and the .025 and 975 empirical percentiles of the z!?) distribution provide a
95% interval estimate for z,. These estimates are plotted as dashed lines in Figure 2. The posterior
means are extremely close to the observed y; values; the sum of the squared discrepancies (residuals)
between the two is only 0.002, as compared with 0.330 for the AR(1) model fit above. Of course, this
is not really a “fair” comparison since the state space model has many more parameters — our main
point here is to illustrate that predicted values and confidence limits are produced automatically
as a by-product of the algorithm. In fact, since all the random generation is “one-for-one™ (no
rejection algorithms are needed), the algorithm is surprisingly fast, a typical run taking no more
than 10 minutes using FORTRAN on a DECStation 3100.

Example 4.2: Bivariate linear model. In monitoring numbers of deaths by sex and cause

over time, the NCHS actually first assembles preliminary rate estimates y,(P), and later revises them

into final estimates y,U). The final estimates are based on a much larger sample of individuals, and
as such are much more precise than the preliminary ones as well as being less variable across ¢. But
of course the preliminary estimates are not devoid of information about the true underlving rate
states z,, and so we might seek methodology for combining these two sources of information. The
general linear framework outbned in Section 2 above offers such a methodology: we simply take
p=1and ¢ = 2 in model (1), defining the vector y, = (3, ¥{")T and taking H, = (1.1)T (i.e.,
we assume that both the preliminary and final estimates are unbiased for z;). The true state 1, is

2. Mathematically we would like to assume

still univariate, so we again have Ly = Ug and ¥ = o
the y; covariance matrix, Y, to be diagonal, but this is perhaps unjustified in that the preliminary
data is included when compiling the final estimates, leading to dependence between y,(”) and y,U ),

As an concrete illustration, consider the septicemia mortality rate data for mean aged 75-84

which is plotted versus time in Figure 3. A steadily increasing pattern in apparent. again meaning

that a standard ARIMA analysis would require differencing to produce stationarity before modeling
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could begin. However, our state space approach enables direct modeling of the mean structure on
the original scale, rather than removing all such structure by differencing. In this way we can
preserve the interpretability of our results. Again the simple linear growth model F;, = F seems
justified, and for simplicity we adopt the normal errors model (A = w = 0).

We now list the complete conditional distributions necessary for implementation of the Gibbs
sampler in this case. First for z,, using the results of the Lemma in Section 2 and taking care with

the endpoint cases we have that z;|z 4, y7, 0% 72 ~ N(Byb,, B,), where

Bl =05+ F20~2, b, = poog? + Fo~2z,, t=20
B =021+ F) +1TT-11, b= Fo 2 zemy+ ziq1) + 97T, t=1,...,n—1 » (13)

B'=o¢24 17111, = Fo %z, +¢TT11, t=n

i

where 1 denotes a 2 x 1 vector of 1’s. Next, for ¢? and T we assume the independent a priori
specifications 02 ~ 1G(ao, bp) and T~1 ~ W((pR)™1, p), where W denotes the Wishart distribution,
the usual conjugate prior distribution for covariance matrices (see Box and Tiao, 1973. p. 427).

Standard calculations again lead to the complete conditionals

o?|x,z0 ~ IG (‘10"'12'3{&‘*'%2?:1 (e ~ FI:-]V}-‘) , and

-1
Ty x e W { [Elatu - ) - 2) 4 58] 7wk o)

Generation from the Wishart distribution may be accomplished via an algorithm due to Odell and
Fieveson (1966); this algorithm is outlined in the 2 x 2 case by Gelfand et al. (1990). Finally, we
again wish to treat F as an unknown parameter, assigning it the N(up, o) prior distribution. The
complete conditional for F is thus of the same form as given in Example 4.1 above.

For the values of the model hyperparameters, we simply chose pp = 4 and o2 = 1, corresponding
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very roughly to the observed level of the y, series at t = 0. We also took ap = 3 and ¢ = 2, implying
a prior mean and standard deviation of (0.5)? for ¢2. Since the matrix R~! is the prior expected
value of T-1, and the preliminary estimates y{*' are clearly more variable than the final ones !’ we
chose R = Diag(22,(0.5)?) (roughly the prior mean of T). While this implies the oversimplification
that the two elements of y, are uncorrelated, we shall adopt the small prior precision value of p = 2,
resulting in a vague prior which will allow the data to suggest the correct value of Corr()’,(”).}’,m).
Finally, we chose uF = 1.01 and 0% = 0.05, indicating a very vague belief in a one percent monthly
upward drift for our series.

Rurning G = 500 parallel replications of the Gibbs sampler for ! = 50 iterations each, we
obtained Gibbs iterates {z;;,7 = 1,....G}. Asin the previous example, we obtained simple point
estimates of the T, posterior means as averages of these iterates, and a 95% posterior credible set
for z, via the .025 and .975 empirical percentiles of the z,; distributions. These point and interval
estimates are plotted in Figure 3. Notice that our model has had the desired smoothing effect
throughout the series. The estimated posterior mean of T is given by

. 13.25 2.73
ETly] = ,

2.73 2.86
implying a modest posterior correlation between the preliminary and final estimates of 0.44.
In order to illustrate the solution to the one-step-ahead prediction problem (i.e.. find the
marginal posterior density of .4 given y), suppose that up until now we have observed only
the first 83 y, values in Figure 3,50 thaty = (y;,...,ys3 )T. Now notice that the nonappearance of

vs4 2nd zgs in the likelihood (3) means that a Monte Carlo mixture density estimate is available as

1 G
B(zsaly) = _G-EN (F/I(&?.j) ’ ‘712’) :
=1
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This estimate is plotted as the solid line in Figure 4(b). Now suppose that ys4 has become available
(in our dataset, yss = (8.994,8.443)7T), and so we may wish to solve the filtering problem (i.e.,
find the marginal posterior density of zg4 given y and yg4). This is easily done in our context by
including rg4 as an additional parameter in the sampling order and rerunning the algorithm. With
Gibbs samples for this parameter now available, we can obtain a mixture density estimate simply

by mixing the appropriate complete conditional distributions from equation (13), namely

G
Plzsaly, v84) = Z (B(m biss) > Bisen) »

where B(—B:,j) = a_,-‘2 + ITT;II and b, ;) = F‘ja;?:(m'j) + y{N‘J)T;ll. This estimate is plotted
as the dashed line in Figure 4(b). Notice that the filtering posterior is less variable (due to the
addition of the new information) and centered at a slightly higher value (closer to the observed
values of y,(’) and yfn).

In a simliar vein, Figure 4(a) plots two estimated marginal posteriors for F, one conditional
on y (“prediction”) and the other conditional on y and ys, (“filtering”). Unlike the plots for zgq4.
since all the y;’s have a direct impact on the posterior for F, we would expect it to be only slightly
less diffuse for filtering than for prediction. This is indeed what we see in Figure 4(a).

Example 4.3: Univariate nonstationary growth model. The y and z values displaved as
solid lines in Figure 5 were generated according to the model

Ty = azeoy + BT (1 + 22 ,) + yeos (1.2(1 - 1)) + uy, and (14)
14

yt = z2/20 + v, t=1,...,100

where zq = 0, the u, are independent random variables having a t-distribution with v = 10 degrees

of freedom, mean zero, and variance 10, and the v, are distributed as N (0,1) random variables
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independent of the u,, ¢ = 1,...,100. In the rejoinder to his paper, Kitagawa (1987) fit a non-
Gaussian filter and smoother to data generated from this model where the u, and v, were both
Gaussian white noise sequences with these same means and variances, and the values & = .5, 8 = 25,
and v = 8 assumed known. We shall use these values for a,3 and 4 in our study but assume they
are unknown to the experimenter, and obtain marginal posterior densities for all three. In addition,
we shall obtain an estimate of p(z1011y ), the density of the one-step ahead predicted state.

To implement the Gibbs sampler we follow the model outlined in Example 2.2, where p =
g = 1. We again assume 02 ~ IG(ag,bp) and 72 ~ IG(co, do)), which again leads to inverse
gamma complete conditionals of a form similar to that given in equation (8). Next, by letting
v/A¢ ~ x2, we get that marginally, u¢|e ~ t(0, 0, ) as required, leading to the complete conditional

Ao, a, B,7,¥,X, 3o being distributed as

2 o2

G (u+ 1 ,2{[:,3 — @z ~ Breoy /(1 + 22)) — ycos{1.2(t - 1))]2 +u}‘l) Ct=1,...101.

Since we are assuming the observation noise to be Gaussian, we may takew, =1, t = 1,....101.
Turning to the z, complete conditionals and again making the prior assumption zo ~ N(ug.02),
we note that the nonlinear structure in both the state and observational equations precludes closed
form complete conditionals, but we may use the rejection algorithm discussed in Example 2.2 to
generate the necessary samples. That is, we generate z, from a N(az,; + Az—1/(1 + z7_;) +
ycos(1.2(t — 1)), A0?) distribution and accept it with probability w;(z,)wa(z,), where wy(z) =
exp {ﬁ.—:_l;’(z'“ —azy + Bz/(1 + 22) + ¥ cos| 1.2t))2} and wy(z:) = exp {—d—;-;(y, - 13/20)7} for

t=1,...,100. Fort = 0, we generate z; ~ N(uo,0?) and accept with probability wy(z,); for

.

= 101 we generate r, as usual but accept with probability w;(z,). Note that this last complete

conditional depends on y01, 2 “data” value which is not observed but instead generated according
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to its complete conditional distribution, which of course is N(z%g,/20, w,T?).
Finally, for the prior on the state equation model parameters we suppose that (e, g, N7
Na((lar 8, Ba)T, V) where V = Diag(ag,ag,d?y). This enables complete conditionals of the form

N(Bb, B), where for a,

1 1 & g2 b 13, Ti—
-1 t—1 o {1 t—1
B~ = — 4+ = an =52 4 = == - 1.2(t -1 ,
Ug 02 ; At * d b ag 02 tz; A! zt 1+z;l_1 7COS( ( ))

whilst for 8,
1 1 o z? " 1 101 T

B_l=—+— ——t=b__ and b=—G+—- —_— |2, - ax —vycos{(1.2(t -1
) 022,\‘(14,:‘2_’)2 3 azgf\z(l-%r, 5 [z 1-1 — 7 cos( N

and finally for v,

101 & cos?(1.201 - 1) 197 cos(1.2(1 - 1)) Teoy
B !'= 3= —_—— ———-—— _ = P} .
U:‘:+0'2§ A‘ y and b ‘v 22 azp- 61+:l2_1

For this example we took po = 0 and 62 = 10, ao = 3 and by = .05 (s0 that the prior on ¢ has
mean and standard deviation equal to 10), and ¢o = 3 and dy = .5 (so that the prior on 77 has mean
and standard deviation equal to 1). We also chose u, = .5, ug = 25, 4y = 8,0, = .25,03 = 10, and

. = 4. We then ran the Gibbs sampler for / = 50 iterations, using G = 500 parallel replications
per iteration. The generation cycle in this case involves updating 3(101) + 7 = 310 parameters
per iteration, 102 of which (the z’s) must be sampled via rejection, thus substantially adding to
the computational burden; however, programming effort is still quite minimal. Figures 6 (a) - (¢}
show the resulting marginal posterior density estimates of the form given in (6) for a, 3, and 7.
Note that this estimation is quite unambiguous, the posteriors being centered nearly at the true

parameter values and fairly tightly concentrated. To compute the marginal posterior density of
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Z301, We could use equation {12) with n = 100 and i = 1, but the nonappearance of 3101 and 30z
in the likelihood implies that we may take advantage of the simplified conditional density given in

(5), obtaining the estimated density as
1.8 (s) ) () y2
Hrly) = & 2N (0‘(’)11?)0 + 892150/ (1 + (2150)?) + 7% cos(120) /\101(0(5))2) (z101) . (15)
=1

This estimate is given in Figure 7(a). Nervous about the validity of the bimodal shape of this
posterior, we constructed a histogram of the actual Gibbs values {x(l%]l,g =1,...,G}, shown in
Figure 7(b), which also supports a bimodal shape. Looking again at the pattern of the true z
values in Figure 5(b), the reason for the bimodality becomes apparent: the system is currently
near the zero point, and is likely to drop back down into the negative realm, as it has done most
recently. However, there is a substantial probability that the system will now return to the positive
realm, explaining the second “bump.”

Curious about the effect knowledge of y101 would have on the posterior for z1p;, we repeated the
above analysis using the observed value y10; = 4.55. In computing the marginal posterior for z101,
we are now solving the filtering problem. The addition of yig; to the likelihood means obtaining
this marginal posterior by simple mixing as in equation (15) is no longer available, and we must
resort to mixing the full posteriors as in equation (12). The normalization constants needed for
each term of this sum were computed using a trapezoidal approximation. Figures 8(a} and (b)
show the resulting estimated posterior and actual Gibbs samples, respectively, from running ! = 50
iterations of G = 2500 replications each (the larger G being required to obtain the same level of
accuracy with the more complicated density estimation procedure). We see that the bimodal shape
observed in Figure 7 has become more exaggerated, the additional information provided by y1o1

leading to a tighter distribution for both modes. The peaks have also shifted to the left by roughly
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5 units; interestingly, the true value z19; = —9.05 is very close to the iocation of the first mode
(z = —8.86). The ability to effectively handle bimodalities is one of the features of Monte Carlo
integration methods like the Gibbs sampler; analytic approximations such as Laplace’s method (see
Tierney and Kadane, 1986) are generally not recommended for use in such situations.

While calculations similar to those undertaken for z;p; could also be performed for all of the
remaining z. states, to save time we simply calculate the rough z, point estimates }:f:, zﬁg)/G
mentioned earlier, and plot them as dashed lines in Figure 5(b). They perform surprisingly well, and
on the whole seem quite competitive with those obtained by Kitagawa (1987, p. 1062), especially
given our assumption of nonnormal errors in the state space and that a,8,v,0 and 7 were all

unknown.
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Figure 1. Ischemic heart disease data, men aged 25-34
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Figure 2. Differenced ischemic heart disease data, men aged 25-34
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Figure 3. Septicemia data and estimates, men aged 75-84
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Figure 4. Estimated posteriors, septicemia data
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Figure 5. Data and estimates, Example 4.3
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Figure 6. Estimated marginal posteriors, Example 4.3
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Figure 7. One-step ahead prediction, Example 4.3
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Figure 8. Filtering, Example 4.3
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