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ABSTI~.ACT 

Insurance professionals have long recognized the value o] time series techniques in ana- 

lyzing sequential business and economic data. However, the usual class of Boz-Jenkins 

(1976.) models are sometimes not flexible enough to adequately describe many practically- 

arising time series. By way of contrast, the state space model offers a solution to 

multivariate modeling, forecasting, and smoothing of time series, but the computations 

associated with this model have been too heavy in the past to justify their usage. Recently, 

however, Carlin, Poison and Stuffer (1995) have showed how state space models of this 

type may be more easily fit using Monte Carlo integration techniques. In this paper we 

give a brief nemew of these techniques, and subsequently illustrate t h e i r  usefulness in set- 

tings of interest to practicing actuaries. The models employed allow .for the possibilities 

of nonnormal errors and nonlinear functionals in the state equation, the observational 

equation, or both. Missing data problems (including the k-step ahead prediction problem) 

are also easily incorporated into this framework. We illustrate the broad applicability of 

our approach with several examples and data compiled by the National Center for Health 

Statistics. 
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I. ]NTRODUCTION 

Over the past several years, time series analysis has become one of the practicing actuary's 

standard tools for studying and understanding sequential data. These techniques have proved 

especially sxluable for analyzing economic indicator series, such as stock prices and interest rates 

over time, and adso mortality and morbidity series, such as monthly death or disability rates from 

various diseases by age and sex. ha both of the above examples, the ability to react quickly to 

changes in conditions, as well as to reliably forecast future trends, is critical to the well-being of a 

financial inst i tut ion.  

Unfortunately,  because the  appearance  of t ime series m e t h o d s  on the actuarial  sy l labus  has 

been fairly recent,  ma,uy ac tuar ies  are unaware of the power afforded by these techniques.  Fur ther ,  

mos t  of those who have s tud ied  t ime series analysis have only seen the most  basic linear,  Gauss ian  

(normal)  models developed and  Box and Jenkins (1976), as covered on the  exam syl labus  in the 

tex tbook by M'dler and Wichern  (1977). This  is unfor tunate ,  as m a n y  of the  t ime series encountered 

in practice cannot  be descr ibed by such simple models. For example ,  a s t andard  model m i g h t  take 

the  form 

y~ = h(y~-l)  + ~t, t = 1 . . . . .  n 

where h(~t_L) = CYt- l ,  a l inear funct ion, and the et's are assumed to be a ~white noise" process, 

i.e. independent  Gaussia.n errors with mean  0. However, a more  realistic a s sumpt ion  for many  

data.sets might  be to let h(Vt_ 1 ) be a nonlinear function of y t - l ,  or to adopt a non-Gaussian error 

distr ibut ion for the  ~t's. T h e  above assumpt ions  enable simple updat ing  of es t imates  via  the  usual  

Ka lman  filter, bu t  ~ e  f requent ly  found in practice to be too restrictive for realistic d a t a  analysis .  

As an example,  consider the  ischemic heart  disease mor ta l i ty  da ta  in Figure l(a).  These  are the 

final National Center  for Heal th  Statistics (NCHS) es t imates  of the month ly  death ra tes  for men 
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aged 25 to 34 over the period J~muary 1979 - December 1986. As the trend is clearly nonstation- 

ary, a standard Box-Jenkins autoregressive integrated moving average (AP,.IMA) model analysis 

would proceed by differencing the series to achieve stationarity; a histogram of these differenced 

death rates is given in Figure l(b). Notice tha t  this distribution does not appear to be normally 

distributed; a more sharply peaked distribution with much heavier tails, such as the double expo- 

nential distribution, seems to be called for. Section 4 below offers further examples from the realm 

of mortality rate time series that illustrate such advanced modeling conditions. 

In the remainder of this paper, we first review the applicable statistical methodology for the 

analysis of morbidity, mortality and other  health related data that are known to e.xhibit nonlin- 

ear and non-Gaussian behavior. In particular, an adaptive Monte Carlo computational technique 

known as the Gibbs saxapler is proposed as a mechanism for implementing a conceptually and 

computationally simple solution in such situations. This method will help implement our second 

goal: the solution of several difficult modeling problems that  have heretofore been intractable using 

traAitional computational methods. Examples of such problems include explicit incorporation of 

covaxiates (such as age and sex), heteroscedasticity of errors over time, multivariate analysis (in- 

cluding simultaneous modeling of both preliminary and final mortality estimates), the modeling of 

asymmetric densities on the positive real line (as might be appropriate for death rates), and model 

choice criteria for selecting the best model from many. Finally, we offer specific numerical exam- 

ples which illustrate the relevance of the methodology, giving details concerning our FORTRAN 

implementation. We suggest that the availability and easy programmability of advanced time se- 

ries modeling techniques will lead to higher quality estimation and prediction of time-dependent 

quantities relevant to financial institutions managing risk. 
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2, I~IODEL SPECIFICATION AND THE GIBBS SAMPLER 

2.1 Model  Specification 

The state space model has become a powerful tool for modeling and forecasting dynamic sys- 

tems. These models, in conjunction with the Kalma.n filter, have been used in a wide range of 

applications from many disciplines including biology, economics, and engineering, and consequently 

have become of increasing interest to statisticians. These models are particularly amenable to a 

Bayesian approach, since the time-ordered arrival of the data means that the notion of updating 

prior knowledge in the presence of new data arises quite naturally. Good summaries of the work in 

this area appear in West, Harrison and Migon (1985) and West and Harrison (1989). 

We will consider the state space model: 

xt = F tx t - I  + ut,  and 

Yt = H t x t  + v t ,  t = 1 . . . .  , n  

(i) 

where xt is the p × i state vector, yt is the q x 1 observation vector, Ft is a p × p matrix of 

constants, and Ht is a q × p matrix of constants. Let y = (Yl .... ,y~) denote the observed data, 

x = (zl,...,z,~) the (unknown) elements of the state, and z0 the initial state. Typically, ur and 

vt are taken as independent and identically distributed, with ut ~ Np(0, Z) and vt ~ Nq(0. T), 

where Np denotes the p-dimensional normal distribution. AJso, the matrices -Ft,]/~, Z, and T are 

generally assumed to be known. 

In a recent paper, Carlin, Polson and Stoller (1992) developed methodology for modeling the 

nonnormality of the ut, the vt, or both. A further departure from the model specification (I) was 

to allow for asymmetric densities on 3 "  (e.g. gamma or WeibuU), unknown and possibly unequal 

variances in the state or observational equation, and unknown parameters in the transition matrices 
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Ft and Hr. In general., we may allow for nonlinear functional  forms by writing 

z ,  = k ( z , _ l )  + ut, and 

y t = h t ( z t ) + v t ,  t = 1 , . . . , n ,  

(2) 

where f t ( ' )  and hi(-) are given, but perhaps depend on some unknown parameters .  Finally, the 

experimenter may wish to entertain a variety of possible nonlinear functional forms or choices of 

error distributions, resulting in a model choice problem.  

In general, the likelihood specification for our model ,  suppressing the conditioning on (P0, P'0, 

Ft,  H t ) ,  is given by 

vt  n 

p(~,'~ . . . .  , y. ,  =o, :~ . . . . .  =,,l~:, T )  = g~(zol~o, ~o) 1"I gl(zt  Iz , -~,  E) 1-I g2(Y, lz,, T )  
t ---- I  t = l  

(3) 

for some densities g l ( ' )  and g2('). Specifically, we mode l  gl and g2 by letting 

9~(=dz,-1, ~ ) = / ^  p(=,lz,-~, ~t, r~)pl(,Xt)d,~,, and 

g2(Yd~,, V) = fo ~'(~,1~,,=',, "r)p2(~,t)d~,, t = I . . . . .  n ,  

(4) 

where we depart from the  usual Gaussian assumption by assuming that ,  conditional on the nuisance 

parameters  A and ~0, 

, ~ d = , - l , ) , , , ~  ~ N ( / , ( = , _ , ) , ) , , ~ ) ,  and 

y t ] z t ,w t ,  T ~ N ( h t ( z t ) , w t T ) ,  t = 1 . . . . .  n . 

(5) 

Of course if h t ( ~ )  -- Htxt  and f t (z t -1 )  -- F tz t -1 ,  we have the linear model (1)- Note tha t ,  by 

varying Pl(~t)  and .~(wt),  the distributions gl and g2 are scale mixtures of muJtivariate normals 

for each t, thus enabling a wide variety of nonnormal  error  densities to emerge in (3). For example,  
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in the univariate case (where we denote E and T by a and r, respectively) the distributions 

z t l z t _ l , ~  and yt}z~, r can be double exponential, logistic, exponential power, or ! densities (see 

Andrews and Mallows, 1974, West, 1987, and Carlin and Poison, 1991). In the multivariate case a 

rich class of densities emerges including the r-dimensionM hyperbolic distribution (see Barndorff- 

Neilsen and Halgreen, 1977). Note that we are assuming p(), ,~) = YIt"=l p1(~t)p2('zt), so that the 

densities zdz~_l ,  E and Ytlzt,T are possibly different scale mixtures of normals. A further easily 

incorporated extension is to allow for different densities as t varies, t = 1 , . . . ,  n. 

While we plan to investigate methodology for error densities on the positive real line. for the 

purpose of illustration the rest of this proposal will focus on modeling in the symmetric errors case 

using a nonlinear, multivaxiate scale mixture state space model. The key to the approach is the 

introduction of the (generally high dimensional) nuisance parameters ,k and w and the structure 

(5) which, as we shall now see, lends itself naturally to the Gibbs sampler, our computational tool, 

2.2 Implementation of the Gibbs sampler 

The Gibbs sampler is a Monte Carlo integration method which proceeds by a Markovian up- 

dating scheme. It is essentially a modification of the Metropolis algorithm (Metropolis et. al., 

1953), developed formally by Gema~ and Geman (1984) in the context of image restoration. 

In the statistical framework, Tanner and Wong (1987) used essential]y this algorithm in their 

substitution sampling approach. Most recently, Gelfand and Smith (1990) developed the Gibbs 

sampler for general settings~ the reader is referred to that paper for a discussion of the method 

and its properties. To summarize the method briefly, suppose we have a collection of k (pos- 

sibly vector-valued) random variables U l , . . . ,  Uk whose complete conditional distributions, de- 

noted generically by f (Uj lU, , r  ¢ s ) , s  = 1 . . . . .  k, are available for sampling. Here, "available" 

means that samples may be generated by some method, given values of the appropriate condi- 
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tioning random vaxiables. Under mild conditions (see Besag, 1974), these complete conditional 

distributions uniquely determine the full joint distribution, f ( U l , . . . ,  U~), and hence el] marginal 

distributions f ( U , ) , s  = 1 , . . . , k .  The Gibbs sampler generates samples from these marginal dis- 

tributions as follows: Given mx arbitrary starting set of values Ul(o), . . . ,  UM0), we draw [:111) from 

f(VllU21o) . . . . .  Uk(o)), then U20) from f(V2]Ul(l),U3(o) . . . .  ,Uk(o)), and so on up to Uk(1) from 

f ( U k l U l o )  . . . . .  Uk-t(H) to complete one iteration of the scheme. After l such iterations we obtain 

(Ul{0,-. -, Uk{i))- Gemam and Gemam (1984) show under mild conditions that this k-tuple converges 

in distribution to a random observation from f ( U 1 , . . . , U ~ )  as | ~ oo. For this reason, in the se- 

quel we suppress the  (1) subscript, assuming that  1 is sufficiently large for the generated sample to 

be thought of as a realization from the joint distribution. Now, repLicating the entire process in 

parallel G times provides i.i.d, k-tuples (U~ ~) . . . . .  U29)), g = 1 . . . .  ,G  from the joint distribution. 

These observations can then be used for estimation of any of the marginal densities. In particular. 

if f(U~[U~, r # s) is available in closed form, then 

](vo) = -6 ~_,/(V, lV~g~,~ ~ ~). (6) 
g=l= 

In the context of our state space models, in order to implement the Gibbs sampler we require 

samples from the following complete conditional distributions: 

• x t lx j# , ,A,w,X: ,T ,y ,  t = 0 , . . . , n  

• w t l w j # t , . k , E , T , y , x ,  z o ' . , w t l T ,  y t , x , ,  t =  1 . . . . .  n 

• A t } A : # ~ , w , X , T , y , x , z o ~ A t l E ,  x~ ,x t_ l ,  t =  1 . . . . .  n 

• E [ A , ~ , T , y , x ,  x o ~  E[X,y,x,  xo 

• T l A , ~ , E , y , x , x o  ~ T lw ,y ,x  

33 



We now consider the first two distributions above. The third follows in a similar manner to the 

second. The last two, under conjugate priors, follow from standard normal and Wishart distribution 

theory, due to the conditioning on A and ~. 

First, under model (I), we prove a [emma which determines the set oi" conditionals, ztix:#t, A, 

~0, E, T,y, t = 1 ..... u. The nonlinear case (2) will be illustrated in Example 2.2 below. 

LF.MMA. The complete conditional distribution xt[x~#t, X,~, ~, T, y is A'1,(Btbt, Bt), where 

~ + I E  Ft+z and  bt r = ~- (7) 
~- '+ /z ,~ r - ,H ,+  r -, ~ r _ . ~  - '  ~,~T- 'H, .,T..C-~r,~, 

B';'~ = ~ ~,~ ),~+~ " ,k~ ~ ),~+~ " 

PRoof'. By Bayes theorem, the required exponent is a sum of three terms, that is, modulo a 

normalizing constant, -2 log f(zt I xj~,, A, w, E, T, y ) is 

~-(z,-_r,z,_~)rg-~(zt-F,z,_~)+!(yt-tZ, zt)rT-~(yt-ft,zt)+ ~ l--~(zt+l-F,+:0zE-~(z,+~- F,+~zt) 

which on manipu la t ion  gives the desired result.  O 

Note t h a t  ad jus tments  will need to be made  to  formula  (7) for the  cases t = 0 and t = n due to  

slight modif icat ions and  deletions i~ the  likelihood for these " endpo in t "  cases. "~'e i l lustrate these 

modific,xtions in Example  2.1. 

Now consider the de te rmina t ion  of ~ d ~ j # t ,  ,~, Z,  T.  y ,  x ~ ~ t I T ,  ~t, z~, t --- i , . . . ,  n. By Bayes 

theorem, ~;tlT, y,, :, oc f(yt}2~,~, T)p2(w,). But by (4) the normalization constant is known, and is 

given by 93(I/tl:~t, T). Hence the complete conditional for cat is of known functional form. Generation 

of the required samples may be done directly if this form is a standard density; otherwise, a carefully 

selected rejection method may be employed. 

We now turn  to two examples .  

E x a m p l e  2 ,1:  U n l v a r l a t e  l i n e a r  m o d e l .  For the purpose  of i l lustrat ion,  consider model ( I )  
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with p = q = 1 and E0 = Cr02,~3 = a : ,  T = r 2 , H t  = H and Ft = F .  Using the a b o v e l e m m a  and 

tak ing  case with the  endpoint  ca~es, we h~ve xtlxj#:t, X ,w ,  a, r ,  y ~ N ( B t b t ,  Bt) where 

B [  1 = 

~ + q -~  t = O 

F 2 +Tr~, ,  t = l , . . . , n - 1  

H2 
~ + 7"r'~. , t = n 

and 

xt  

F x . - 2  H n ~ + ~ ,  t = n  

The  complete  conditionals for ~r ~ and r 2 are obtained as follows. Assuming  the independen t  a 

priori  specifications a :~ ~ IG(ao ,  bo) and r ~ ~ IG(co, do), where I G  denotes  the inverse (reciprocal)  

g a m m a  distr ibution,  then  

( ~,~IX, y , : , , ~ o ~ t a  , , o + ~ , { ~ o + - ~ ; ' = , ( ; ~ , - r = , _ , ) / ~ ,  , and 

( , ,  }-,) r ~ l w , y , x ' I G  c o + ~ ,  + ~ , t = l ( y ~ - H x t ) 2 / w t  . 

(8) 

For the  to complete conditionals,  suppose we wish to model y l x ,  r as a product  of double exponen-  

tials. The  necessary a priori specification for wt is then wt ~ Expo(2) ,  the  exponential  d i s t r ibu t ion  

hav ing  mean  2. Since y t lx t ,wt ,  r ,,, N ( H x t ,  wtr2),  the complete condit ional  for wt is then 

(1( 

t h a t  is, wt[ r , y ,  x ,,~ G I G  ~, 1, , where G I G  denotes  the  generalized inverse G a u s s i a n  

dis t r ibut ion (see Devroye, 1986, p. 478). In order to sample from this  density, we note t h a t  it is 
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reciprocal of an ,nverse Oaussian t l,," ' ) , a  density from which we may easily sample the 

A similar approach to the one just described could be used to model nonnormality in the state 

equation via the X complete conditionals. Finally. if F or H are thought of as unknown parameters 

(as is often the case in practice), then their complete conditional distributions will also be required 

in order to implement the Gibbs sampler (see Example 4.1 below). [] 

E x a m p l e  2.2: Non l inea r  model .  We now determine the distributions ztlz:¢t,  X,w, E, T, y 

for model (2), the nonlinearity presenting no further complications in the remaining complete 

conditional distributions. We consider separately the three cases where nonlinearity occurs in the 

state equation, the observation equation, or both. 

First, suppose that h t ( X . t )  = Htxt, but the state equation is nonlinear. Then ztlxj#t, X, w. E. T, y 

o¢ wl(xt)Np( Bttbm Bit) where 

z -~ n ~ T - ' U ,  b~, = f ' (~ t - ' ) rZ- '  ~'rX-'H' 
BS' = -h-/-, + , ~  , ~ + - - , ~ ,  (10) 

and _1_1.!._ But 0 l for wl(z,) = exp (-2~,+,(zt+]- ft(zt))), dearly < wl(zt)_< 

all zt, and so the distribution from which we want to sample is dominated by the A'(B]tb]~.Blt) 

density. Hence, we may use rejection sampling (see for example Devroye, 1986, section II.3) in 

order to obtain a random observation from the required complete conditional. That is. we sample 

an observation zt from a N(Bltblt, Bit) density, and subsequently accept it with probability wl(x~). 

Of course, this algorithm may be rather inefficient if the wl(zt) are close to 0; in such cases, 

more sophisticated envelope functions may be needed (see for example Gilks and Wild, 1991. or 

Carlin and Gel/and, 1992). Such envelope functions are often normal or t densities chosen to be 

as simiJar to the desired complete conditional as possible, thus enabling more efficient rejection 

sampling. However, the experimenter needs to take care that such an envelope function does in 
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fact "blanket" the complete conditional distribution for all zt. Uncertainty about this condition, 

along with the need to recompute the envelope at each iteration and each replication of the Gibbs 

sampler (since the values we condition on change as the algorithm progesses) make such approaches 

unat t ract ive unless the naive method described above is prohibitively slow. 

Secondly, suppose that  f t ( z t - l )  = Ftzt- l ,  but that  now the observational equation is nonlinear. 

Then xt[xjC_t, )~, ca, ~, T, y oc w2(zt)Np(B2tb~t, B~) where 

E -x V ~ r . - ' r , + ~  b r _  ~ _ ~ , ~  + 
B~ = ~ + ~t+1 ' ~t At+~ 

1 and w~(a,) = exp (-i~--~t (pt - h t (x , ) )TT- i (y ,  - h , (z , ) ) ) ,  and again rejection may be employed. Fi- 

nally, when both components are nonlinear, zt]zi~t, A,ca, r,, T ,y  c( w1(zt)w~(xt)Np(f~(zt-i ), ARE). 

Thus we sample a Np(J't(z~_l), AtE) random variable and accept it with probability wl(z~)w2(z~). [] 

3. ESTIMATED MARGINAL POSTERIOR DENSITIES 

With all the complete conditionals available for sampling, it now remains to show how to esti- 

mate the marginal posterior densities of the quantities of interest using the generated Gibbs samples. 

If we denote this collection by {(z} g), t = 0 ..... n), (AI g), t = i ..... n), (~g), t = I,..., n), E {9), T {g), 

# = 1,...,G}, thenwe may use (6) to obtain 

G 
1 x - -  , . (g)  (g) - ( s )  . { s )  w(g)  ,~,(g) T ( 9 )  .. ~ ( x d y ) =  ~2_ . , p t zdz ,_ l , z t+ l ,A t  ,At+l, , . . . .  ytp. 

9=1 
(11) 

Note that  this of course assumes that  the z~ complete conditional distribution is available in closed 

form. If this is not the case (as in Example 2.2 above), an alternative would be to simply compute 

a kernel density estimate using the {zl 9)) samples themselves. Another approach would be to 

obtain the G standardizing constants necessary in equation (11) by univ~riate numerical integration, 
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perhaps  a simple t rapezoidal  rule. While  a bit more  work, this  la t ter  approach would almost  

certainly produce a bet ter  densi ty  es t imate  as it does not  discard the  functional  form used to 

obtain the  {zl ~)} i terates .  

We note  t ha t  equat ion  (11) could be used to obtain a marginal  posterior densi ty e s t ima te  for 

z . + l  provided Y~+t was available, offering a solution to the  so-called filtering problem. If Y.+I is 

not yet available, the problem becomes one of one-step ahead prediction, and can be solved by a 

slight modification of the Gibbs algorithm. In fact, the k-step ahead prediction problem can be eas- 

i.ly handled as follows: Suppose we desire an estimate ofp(z~+k{y) where again y = (Yl .... , y,) and 

Y~+l, • •., Y~+k have not yet been observed. We simply add {z,+l,..., x,~+k, Y,+I,.. -, Y~+k. A,+I ..... 

An+k,":~+1,... ,w~+k} to the Gibbs sampler as 4k additional unknown parameters. The complete 

conditional distributions for the new x's are again obtained using the lemma in section 2 above. 

where now of course the upper "endpoint" condition pertains to x~+k instead of z,. Similarly, the 

complete conditionals for the new A's and ~'s arise in a manner exactly analogous to that described 

in section 2. Finally, the complete conditional distributions for th~ new y variables come directly 

from the model specification, namely 

y,~+t[{zi, i, ",Ji=l , x 0 , ~ , T , y  ,-~ yn+tlxn+t..~,~+t,T ~ N(h , ,+t ( z ,~+t ) .~ .+tT)  , t = 1 . . . . .  k . 

We now simply run the  Gibbs sampler  as usual,  obta ining for any i E { 1 , . . . ,  k} the  slightly modified 

version of (11), 

G 
1 ~ - - .~  ,x(g ) x(g ) ),(9) ,~,(~) ~-. g) .y.(g) ,,(g)~ (12) p ( x . + i l y ) =  ~ 2~P(X,~+il .+ , -1 ,  . + i + l ' " n + i , - - . +  . . . . . . .  +i, ,  

g = l  

the  pr imary  difference being the  dependence on the  genera ted  "data"  values ~ (9) ly,~+,,g = 1 . . . . .  G}  

ra ther  than  an observed value y=+,. Of course, as these fu ture  Y.+i values become available, we 
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(9) simply use these values in lieu of sampled values Yr,+i and  rerun the  algorithm - a computa t iona l ly  

simple solution to the  filtering problem. Examples  4.2 and  4.3 offer an illustration of this  process. 

4. NUMERICAL EXAMPLES 

E x a m p l e  4.1:  U n i v a r i a t e  l i n e a r  m o d e l .  Cons ider  again the  model presented in Example  

2.1. We apply this  model  to the  aforementioned d a t a  displayed in Figure l (a) .  Recall t ha t  these 

da t a  are final NCHS e s t i m a t e s  of  the  numbers  of  dea t h s  due to ischemic heart  disease per 100.000 

men  aged 25-34. T h e  counts  are given month ly  over the  period from January  1979 to December  

1986. As this series appear s  nonstat ionary,  a s t a n d a r d  t ime  series analysis would likely fit an 

A R I M A  model us ing  normal  errors to the differenced series, which is plotted as as ter isks  versus 

t ime  in Figure 2. F i t t ing  a s t a n d a r d  AR(1) model us ing  the  s ta t is t ical  package MINITAB (1989). we 

obtained an autoregress ive  pa r ame t e r  es t imate  of  - 0 . 5 8 ,  with a s tandard  error of  0.09. MINITAB 

also produces predicted values for the time series, which are plotted as a solid line in Figure 2. 

While  this one p a r a m e t e r  model  is quite simple, the  predicted values it produces can be ra ther  

poor (see those in the  vicinity of  mon th  60, for example) .  We shall compare the  fit of  this  model  

with tha t  of our s t a t e  space  model.  

We assume tha t  the  e s t i m a t e s  Yt in the  da ta  are unb iased  for the  t rue monthly  dea th  ra tes  z t ,  and 

thus  set B = 1. T h e  plot of  the  differenced da ta  sugges t  t ha t  the  simple exponential  model  given 

by Ft = F is not  unreasonable ;  however, we wish to t r ea t  F as an unknown parameter .  This  can 

be easily incorporated into t he  framework developed in section 2 by assuming tha t  F ~ N ( # r ,  a~)  

and noting that  the  comple te  conditional is given by FI ,k ,w,  a, r , x , y  ~ N(BFbF,  BF) ,  where 

B ~  1 = --~ ~ + - -  and bF = + - - .  
,=1 ° 3  ' "~ ,=1 ;~, " 3  

Looking again at  F igure  2, note  tha t  a change in t he  variance (heteroscedasticity of errors)  seems 
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to take place near month  25, and  again a round  month  65. While  this  might  suggest  including a 

separa te  a~ or r~ pa ramete r  for each t ime point  t, such overparamet r iza t ion  seems excessive for 

these  data .  Thus ,  as in section 2, we assume a~ = a s and r~ = r 2 for all t. Placing independent  

inverse g a m m a  priors with pa r ame t e r s  Ca0, bo) and {co. do) on a 2 and  r :~, respectively, their complete  

condit ional  dis tr ibut ions are again  given by (8). Similarly, the  complete  conditionals for x~.t = 

0 , . . . ,  n are the  s a ~ e  as those  in Example  2.1 above (recall we employ  a N(~0,  a(~) prior on xo). 

The  densit ies p(x, [y)  may be e s t ima ted  using equation (11) with the  a rgument  F (a) added to the  

list of condi t ioning a rguments ,  since F is no longer known but  ins tead a component  of  the  sampler .  

In order  to demons t r a t e  the  approach to nonnormal  error d is t r ibut ions ,  consider the  two models  

M 1  and .M2 given by 

M I :  u t ' ~ N ( 0 ,  a 2 ) , v t ~ N ( 0 , r  2) ,  and .M2: u t ~ D E ( O , a ) , v t ~ D E ( O , r ) .  

For .M l ,  we take At = wt = 1 with probabili ty one for all t = 1 , . . . , n ,  leading to complete  

condit ional  dis tr ibut ions for At and  wt which are also degenerate  at the  value 1. For M 2 ,  we take 

bo th  the  A, and wt to be independent ly  d is t r ibuted a priori as Expo(2)  random variables, leading 

to the  comple te  conditionals 

) , t ~ G I G  ~,1, .x~-_a 2 2 

in a m a n n e r  similar to tha t  su r round ing  equat ion (9). We comple te  the  specification of the prior 

on z0 by se t t ing  #o = 0.0 and a0 = 0.2 ( the differenced series should be centered close to 0), 

and  /~F = - 0 . 5  and aF  = 0.25 (pas t  experience with da ta  of  this type  s u ~ e s t s  tha t  F should be 

negat ive with high probability).  We take a ra ther  ~ g u e  prior on a 2, having both prior mean  and  

prior s t anda rd  deviation equal to (10) 2 (i.e., a0 = 3, b0 = 0.005). Finally, we take an informative 
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prior on r :2, having mea~u and standard deviation equal to (0.1) 2 (i.e., co = 3, do = 50). The 

resulting low variability in the observational equation will make our results more comparable to 

those obtained from a standard AR(1) model. 

For our analysis, we ran the Gibbs sampler for I = 50 iterations on each model separately. 

obtaining the two model-specific density estimates iS(Fly,.A4i) shown in Figure l(c). In each case, 

our algorithm used G = 500 parallel replications per iteration, and convergence was judged both 

by monitoring sample moments of the Gibbs values themselves and by plotting successive density 

estimates for the inflation constant F. We see that the normal errors assumption produces a 

posterior distribution for E which is slightly more ~riable, and generally suggests slightly smaller 

values for F. The mode of the DE errors model posterior distribution, -0.425, provides a point 

estimate of F; the point estimate for the normal errors model is slightly more negative, in fine with 

the AR(1) estimate of -0.58. Notice that there is a reasonable amount of uncertainty associated 

with our F estimate: Figure l(c) shows that values between -1  a~d 0 remain plausible in light of 

the data. This of course is consistent with the large amount of noise evident in the data (Figure 

2). A fully Bayesian approach would involve obtaining estimates of the posterior probabilities 

p(.A~,ty), i = 1, 2, leading to a Bayes factor between the normal and DE models; a Gibbs sampling 

approach useful in choosing amongst competing error distributions is discussed by Carlin and Poison 

(1991). Overall, the preliminary results obtained here indicate that  the assumption of normal errors 

is not a grossly misleaxling one. 

Calculations similar to those undertaken for F could also be performed for all of the x~ states. 

In particular, since in this case the xt complete conditionals are available in closed form, equation 

(11) could be used to obtain point estimates and credible sets for each at. However, rough point 

and interval estimates for any parameter 8 may be obtained by simply taking appropriate functions 

or quantiles of the (O(g),g = 1 , . . . ,G}  iterates themselves. For example, a point estimate of z~ is 
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given by ~ - - 1  z l~) /G,  and the .025 and .975 empirical percentiles of the zl g) distribution provide a 

95% interval es t imate  for xt. These est imates are plotted as dashed lines in Figure 2. The posterior 

means are extremely close to the observed y~ values; the sum of the squared discrepancies (residuals) 

between the two is only 0.002, as compared with 0.330 for the AR(1) model fit above. Of course, this 

is not really a ~fair ~ comparison since the s ta te  space model has many more parameters  - our main 

point here is to i l lustrate that  predicted values and confidence limits are produced automatically 

as a by-product of the algorithm. In fact, since all the random generation is "one-for-one" (no 

rejection algorithms are needed), the algorithm is surprisingly fast, a typical run taking no more 

than 10 minutes using FORTRAN on a DECSta t ion  3100. 

E x a m p l e  4.2:  B i v a r i a t e  l inear  m o d e l .  In monitoring numbers of deaths  by sex and cause 

over time, the NCHS actually first assembles preliminary rate estimates y~P}, and later revises them 

into final estimates y~/). The final estimates are based on a much larger sample of  individuals, and 

as such are much more  precise than the preliminary ones as well as being less variable across t. But 

of course the preliminary estimates are not  devoid of information about the  t rue underlying rate 

states zt, and so we might seek methodology for combining these two sources of information. The 

general linear framework outlined in Section 2 above offers such a methodology:  we simply take 

p = 1 and q = 2 in model (1), defining the vector Yt = (YlP),ylI))T and taking H~ = (1.1) y (i.e., 

we assume that  both  the preliminary and final es t imates  are unbiased for zt) .  The true state zt is 

still univariate, so we again have E0 = a2o and E = a 2, Mathematically we would like to assume 

the y~ covariance matr ix ,  T,  to be diagonal, but  this is perhaps unjustified in tha t  the preliminary 

data is included when compiling the final es t imates ,  leading to dependence between yl p) and yl/}. 

As an concrete illustration, consider the septicemia mortali ty rate da ta  for mean aged 75-84 

which is plotted versus t ime in Figure 3. A steadily increasing pat tern in apparent ,  again meaning 

that  a standard ARIMA analysis would require differencing to produce s ta t ionari ty  before modeling 
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could begin. However, our  s t a t e  space approach enables  direct model ing of the  mean  s t ruc tu re  on 

the  original scale, r a the r  t han  removing all such s t ruc tu re  by differencing. In this way we can 

preserve the  in terpre tabi l i ty  of our results .  Again the  simple linear growth model Ft = F seems 

justified, mad for simplicity we adopt  the  normal  errors model (X = w = 0). 

We now list the  comple te  conditional d is t r ibut ions  necessary for implementa t ion  of the  Gibbs 

sampler  in this case. First  for xt, using the  results  of  the  L e m m a  in Section 2 and taking care with 

the endpoint  cases we have tha t  z t ] z j¢ , ,  y~, a S, r 2 ~ N ( B t b , ,  Bt),  where 

B~ -1 = ao  ~ + F ~ o  -2 ,  

B~ -1 = a -2(1  + F 2 ) +  1 T T - 1 1 ,  

B~ -l = a -~ + 1 T T  - l l ,  

bt = #oao ~ + F u - 2 z l ,  

bt = F a - ~ ( x t _ l  + zt+~) + y T T - 1 1 ,  

bt = F a - ~ z ~ - 1  + y T T - 1 1 ,  

t = O  

t =  1 , . . . , n -  1 , (13) 

where 1 denotes a 2 × 1 vector of l ' s .  Next,  for a 2 and T we a s sume  the independent  a priori  

specifications 0 .2 ~ IG(ao ,  bo) and T -1 ~ W ( ( p R )  -1 ,  p),  where 16 r denotes  the  Wishar t  dis tr ibut ion,  

the  usual  conjugate  prior distr ibut ion for covariance matr ices  (see Box and .Tiao, 1973. p. 427). 

S tandard  calculations again lead to the  complete  condit ionals  

c21X, Z o ~ I G  a o + ~ , { ~ + ½ ~ = l ( z t - F z t _ l )  2 , and 

n , n + p  . 

Generat ion from the  Wisha r t  distr ibution may  be accomplished via an algori thm due to Odell and 

Fieveson (1966); this  a lgor i thm is outlined in the  2 × 2 case by Gelfand et al. (1990). Finally, we 

again wish to t rea t  F as an  unknown parameter ,  ass igning it the  N(I~F,a~)  prior distr ibution.  The  

complete  condit ional  for F is thus  of the  same form as given in Example  4.1 above. 

For the  values of  the  model  hyperpaxameters ,  we simply chose ~0 = 4 and o02 = 1, corresponding 
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very roughly to the  observed level of the yt series at t = 0. We also took a0 :- 3 and b0 = 2, implying 

a prior mean and s tandard  deviation of (0.5) 2 for a 2. Since the matrix R -1 is the  prior expected 

value o f t  -1 , and the  preliminary estimates y~P} are clearly more variable than the  final ones y[1} we 

chose R = Diag(2 ~, (0.5) ~) (roughly the prior mean of T). While this implies the  oversimplification 

that  the two elements  of yt are uncorrelated, we shall adopt  the small prior precision value of p -- 2, 

resulting in a vague prior which wilt allow the da ta  to suggest the correct value of  Corr ( ]~  (p}, ]~(f}). 

Finally, we chose #F  = 1.01 and a~ --- 0.05, indicating a very vzgue belief in a one percent monthly 

upward drift for our series. 

Running G = 500 parallel replications of the Gibbs sampler for I = 50 i terat ions each, we 

obtained Gibbs i terates  { z t : , j  = 1 . . . . .  G}. As in the previous example, we obtained simple point 

estimates of the xt posterior  mea~s as averages of these i terates,  and a 95% poster ior  credible se~ 

for zt via the .025 and .975 empirical percentiles of the  xt7 distributions. These point  and interval 

estimates are plotl;ed in Figure 3. Notice that  our model has had the desired smoothing effect 

throughout the series. The est imated posterior mean of T is given by 

13.25 2.73 / 
E[V]y] = 

2.73 2.86 

implying a modest  posterior  correlation between the preliminary and final es t imates  of 0.44. 

In order to i l lustrate  the solution to the one-step-ahead prediction problem (i.e., find the 

marginal posterior density of x,,+l given y) ,  suppose that  up until now we have observed only 

the first 83 Yt values in Figure 3, so that  y = (Y l , . . . ,  Ys3) T. Now notice that  the  nonappearance  of 

ys4 and xss in the  likelihood (3) means that  a Monte Carlo mixture density es t imate  is available as 

1 G 

j---1 
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This est imate is plotted as the  solid line in Figure 4(b). Now suppose  that  Ys4 has become available 

(in our dataset ,  ys4 = (8.994,8.443)T), and so we may wish to solve the filtering problem (i.e., 

find the marginal posterior density of  xs4 given y and Ys~). This is easily done in our context by 

including xs4 as an additional parameter  in the sampling order and rerunning the algorithm. With  

Gibbs samples for this parameter  now av-e.ilable, we can obtain a mixture  density est imate simply 

by mixing the appropriate complete conditional distributions from equation (13), namely 

1 a 
10(xs41y, y~)  = ~ Z N (B(s4j)bis45),  B(s4 , j ) ) ,  

where B(s40 ) - 1  = aj-2 + ITT~-I1 and b(a4,j} = Fja72z (~ j )  + y ~  jIT~'II . ,  This estimate is plotted 

as the dashed llne in Figure 4(b). Notice that  the filtering poster ior  is less variable (due to the 

addit ion of the new information) and centered at a slightly higher  value (closer to the observed 

 ues of and 

In a simliar vein, Figure 4(a) plots two est imated marginal posteriors for F ,  one conditional 

on y ("predict ion") and the o ther  conditional on y and ys4 ("fil tering").  Unlike the plots for as4, 

since all the yt's have a direct impact  on the posterior for F ,  we would expect it to be only slightly 

less diffuse for filtering than for prediction. This is indeed what  we see in Figure 4(a). 

E x a m p l e  4.3:  U n i v a r i a t e  n o n s t a t i o n a r y  g r o w t h  m o d e l .  The y and z ~ u e s  displayed as 

solid hnes in Figure 5 were generated according to the model 

xt = ax,-1 + 3x , -1 / (1  + z L l  ) + 7 cos (1.2(t - 1)) + ut, and 

yt = z~/20 + vt, t = 1 . . . .  ,100 

(14) 

where xo -= O, the ut axe independent  random variables having a t-distribution with u = 10 degrees 

of  freedom, mean zero, and variance 10, and the vt are dis t r ibuted as N(O, 1) random variables 

4S 



i ndependen t  of the  ui, t = 1 . . . . .  100. In the  rejoinder to his pape r ,  Ki tagawa (1987) fit a non- 

Gaussia2a filter and  smoother  to d a t a  generated from this model  where  the  ut and vt were both  

Gauss i an  white noise sequences with these  same means  and variances,  and  the  values a = .5, ~3 = 25, 

and  7 = 8 a s sumed  known. We shall use these  values for a ,  fl and  "r in our  s tudy  but  assume they 

are u n k n o w n  to the experimenter ,  and  ob ta in  marginal  posterior dens i t ies  for all three. In addition, 

we shall  obta in  an es t imate  of p(zl01iy),  the  density of the  one-s tep  ahead  predicted state.  

To implement  the  Gibbs sampler we follow the model out l ined  in Example  2.2, where p = 

q = 1. We again assume a 2 ~ IG(ao, bo) and r 2 ~ IG(co, do)), which again leads to inverse 

g a m m a  complete  conditionals of a form similar to tha t  given in equa t ion  (8). Next, by let t ing 

v/At ~ X2v, we get tha t  marginally, utia ~ t(O,a, v) as required, leading  to the  complete conditional 

Aila , a , /3 ,  7, Y, x,  z0 being distr ibuted as 

I G  ( V'-~ 1 , 2 {  [xl - ax t - l  -13x~- l l (  l + z2-1) - "r c°s( l'2( t - 1 )  )] }-') 
+v , t = 1 , . . . , 1 0 1 .  

Since we are a s suming  the observation noise to be Gaussian,  we m a y  take wt = 1, t = 1 , . . . .  101. 

Turn ing  to the  zt complete conditionals and  again making  the pr ior  a s sumpt ion  zo ~ N(po, a2o), 

we no te  t h a t  the  nonlinear s t ructure  in bo th  the  s ta te  and observat ional  equat ions  precludes closed 

form comple te  conditionals,  but  we m a y  use the  rejection a lgor i thm discussed in Example 2.2 to 

gene ra te  the  necessary samples.  T h a t  is, we generate z, from a N ( a z t - 1  + ~3z,-l/(1 + z~_ 1) + 

~, c o s ( 1 . 2 ( t -  1)) , A~a 2) distribution and  accept  it with probabil i ty wl (z i )w2(z t ) ,  where wl(z , )  = 

exp { ~ C ' < , + , -  <'=, + ,~=,/Cl + ~,~ +-, cos~ ~.2,~/~} and ,,~=,~ : exp { ~--~,. ( , , , -  =,~/~0~} fo~ 

t = 1 . . . .  ,100. For t = 0, we generate  i t  ,,- N(po, eg) and accept  with probability wl(zt);  for 

t = I01 we generate  zt as usual but  accept  with probability w2(xt).  Note tha t  this last complete 

condi t ional  depends on Viol, a "data"  value which is not observed b u t  ins tead generated according 
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to its complete conditional distribution, which of course is N(x~m/20 , wtr2). 

Finally, for the prior on the state equation model parameters we suppose that (a,;3, 7) T 

Na((p~,p~,p~)T, V) where V Diag(a~, 2 2 = a~, a,). This enables complete conditionals of the form 

N(Bb, B),  where for a,  

~ t=~lzt-1 ( zt-I  7cos(1 .2( t_ l ) ) )  , B_ 1 = __1 1 z~-l and b =  ~c, 1 ~ol 
,,~+~,=~-7, ' ,,~+~ _ ~ ~'-~1+~,~-~ 

whilst for ~, 

Z t _ i  B_ ~ 1 1 z~_~ , and b =  ~ + I .  iol 
= - -  - -  Z ~ ' i 7 7 ~  ) [~ '  - ~ * ' - ~  - ~ cos(1.2(t  - 1))1 , ~'~ ' t 'a=,=,A,(l ' t -x~-,)  a a~ c'2,_-, ', ,-1 

and finally for % 

( ) B_ ~ = 1 I ~-~ cos2(1.2(t - i)) and b = ~---+---* XT" cos(l.2(t - i)) zt_.___.__2.~ . 
~ +  ~,-~ ~ =  -g, , ~,~ _~,~ ~,=, ~, ~, - ~ , _ ~  - ~ ~ + =,=_~ 

For this example we took m = 0 and ao 2 = I0. ao = 3 and be = .05 (so that the prior on c 2 has 

mean and standard deviation equal to 10), and co = 3 and do = .5 (so that the prior on r 2 has mean 

and standard deviation equal to I). We also chose p~, = .5,/*~ = 25,~ = 8, at, = .25, cr;3 = 10, and 

c% -- 4. We then ran the Gibbs sampler for l = 50 iterations, using G = 500 parallel replications 

per iteration. The generation cycle in this case involves updating 3(101) + 7 = 310 parameters 

per iteration~ 102 of which (the z's) must be sampled via rejection, thus substantially adding to 

the computational burden; however, programming effort is still quite minimal. Figures 6 (a) - (c) 

show the resulting marginal posterior density estimates of the form given in (6} for a,/~, and % 

Note that this estimation is quite unambiguous, the posteriors being centered nearly at the true 

parameter values and fairly tightly concentrated. To compute the marginal posterior density of 
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zl01, we could use equation (12) with n = 100 and i = 1, but the nonappearance of y2ol and zlo~ 

in the likelihood implies that  we may take advantage of the simplified conditional density given in 

(5), obtaining the est imated density as 

P ( z l o l I Y ) =  u ~ N  \ looJ J , , 
.q--~l 

This es t imate  is given in Figure 7(a). Nervous about the validity of the bimoda] shape of this 

posterior,  we const ructed a histogram of the  actual Gibbs values { z l ~ , g  = l . . . . .  G}, shown in 

Figure 7(b),  which also supports a bimodal  shape. Looking again at the pa t te rn  of the true z 

~ u e s  in Figure 5(b),  the reason for the bimodality becomes apparent:  the system is currently 

near the  zero point,  and is likely to drop back down into the negative realm, as it has done most 

recently. However, there is a substantial probabil i ty that  the system will now return to the positive 

realm, explaining the  second "bump." 

Curious about  the  effect knowledge of Ylol would have on the posterior for xl01, we repeated the 

above analysis using the  observed value yl01 = 4.55. In computing the marginal posterior for z~01, 

we are now solving the  filtering problem. The addition of Y101 to the likelihood means obtaining 

this marginal  posterior  by simple mixing as in equation (15) is no longer available, and we must 

resort to  mixing the  full posteriors as in equation (12). The normalization constants  needed for 

each te rm of  this sum were computed using a trapezoidai approximation. Figures 8(a) and (b) 

show the  resulting est imated posterior and actual  Gibbs samples, respectively, from running I = 50 

iterations of G = 2500 replications each ( the larger G being required to obtain the same level of 

accuracy with the  more  complicated density est imation procedure). We see that  the bimodal shape 

observed in Figure 7 has become more exaggerated,  the additional information provided by Yloz 

leading to  a t ighter  distribution for both modes.  The peaks have also shifted to the left by roughly 
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5 units; interestingly, the true value x101 = -9 .05 is very close to the location of the first mode 

(z = -8.86). The ability to effectively handle bimodalities is one of the features of Monte Cazlo 

integration methods like the Gibbs sampler; analytic approximations such as Laplace's method (see 

Tierney and Kadane, 1986) axe generally not recommended for use in such situations. 

While calculations s imil~ to those undertaken for zl01 could also be performed for all of the 

remaining zt states, to save time we simply calculate the rough zt point estimates G z~g)/G 

mentioned earlier, and plot them as dashed lines in Figure 5(b). They perform surprisingly well, and 

on the whole seem quite competitive with those obtained by Kitagnwa (1987, p. 1062), especially 

given our assumption of nonnormal errors in the state space and that a,~3,7,~r and r were all 

unknown. 
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Figure 1. Ischemic heart disease data, men aged 25-34 
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Figure 2. D i f fe renced  ischemic heart  d isease  data,  men aged 2 5 - 3 4  

S t a n d a r d  AR(1 )  vs. state s p a c e  mode l  with G = 500  
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Figure 3. Sept icemia data and estimates, men aged 75 -84  

G = 500, y(84) assumed known 
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Figure 4. Estimated posteriors, septicemia data 
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Figure 5. Data and estimates, Example 4.3 
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Figure 6. Estimated marginal posteriors, Example 4,3 
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Figure  7. O n e - s t e p  ahead  predict ion,  E x a m p l e  4 . 3  
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Figure 8. Filtering, E x a m p l e  4 .3  
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