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A METHOD TO DETERMINE CONFIDENCE INTERVALS FOR TREND
by William A. Bailey

ABSTRACT

The method involves resampling (with replacement but without
random numbers), numerical convolutions for sums and quotients,
and the estimating of confidence intervals for trend in average
size claim. Starting with an original sample of comprehensive
major medical claims (per claimant). for each of two calendar
years, we use numerical convolutions for sums to generate
distributions of average size claim (per claimant) for resamples
of varicus sizes from each of the two calendar years, use
numerical convolutions for quotients to generate distributions of
trend (in average size claim per claimant) from the first to the
second of the two calendar years, note certain stabilities in
standardized versions of these distributions, and estimate

confidence intervals for the underlying trends.
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INTRODUCTION

Suppose for a given accident year we have n claims

severities

Xy, X5, Xh,ee., Xo7

and suppose for a later accident year we have m claims

severities

Yir Y20 ¥3seees Yai

with

with

If the coverage is a type for which inflationary trends are

significant, we might want to estimate the trend from the earlier

to the later of the given accident years.

An estimate £ of the true trend ¥ in severity could be obtained

from the ratio of the average claim severities in the later

accident year to the average claim severities in the earlier

accident year; namely,
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n
1 z ,
-— X
a )
1=1

If the given accident years are s years apart, then the annual

trend might be estimated by
A 1/s
(1+t)  -1.

While useful, € is a single point estimate for the true severity
trend ¢ and gives no indication of the uncertainty involved in
the estimate. In order to try to measure the degree of
statistical uncertainty involved in this estimate, we begin by

reinterpreting our data.

Instead of considering the set of values

(=]
t=1,n

to be the experience for the earlier of the given accident years,
we treat it as a sample M of n claims drawn from the population

of all claims that could have occurred in that accident year.

t+ This sample will be referred to as the original sample for this
accident year.
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We let the empirical distribution fx of severities X for the

earlier of the two given accident years be expressed as

1=1,n’

fx=( Xy pl]

where n’ is the number of different severities in the set

1=1,n

and p; 1is the relative frequency of x; for i=1,2,...,n'.

Clearly, n >= n’.

Similarly, the set of values

(¥ ).

can be treated as a sample ¥ of m claims drawn from the
peopulation Af all claims that could have occurred in the later
of the two given accident years; and we let the empirical
distribution fY of the severities Y for that accident year be

expressed as

fY =[ YI 51 ]“1,-' .

+ This sample will be referred to as the original sample for the
later of the two given accident years.
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where m’ is the number of different severities in the set

and E, is the frequency of y, for i=1,2,...,m . Clearly, m >=

~
We can estimate the distribution f&‘ of resample point estimates T

for the true severity trend ¢ as follows:

(1) sample n times from the distribution £ summing the results

xl
and dividing by n, to obtain a possible average size claim (say

a) from the earlier of the two given accident years;

{(2) sample m times from the distribution fy, summing the
results and dividing by m, to obtain a possible average size

claim (say b) from the later of the two given accident years;

(3) calculate t = 2 - 1, which is a trial resample point
a

estimate of the true severity trend ¢;

Repeating steps (1) through (3) many (say v) times produces an
approximation to the distribution f% of possible sample point

estimates T of the true severity trend 9.
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We now describe this classical simulation process in more detail.
Afterward, we will offer a more efficient method (the generalized

numerical convolution) for simulating the distribution of

resample point estimates.

BOOTSTRAPPING FOR TREND IN AVERAGE SIZE CLAIM

Resampling (With Replacement) Using Random Numbers

The cumulative empirical distributions for the two given accident

years are

1
X, zpk and Y, Zpk

k=1 k=1
1=1,n" }=1,m"

respectively. The resampling (with replacement) from the

original samples would involve the following steps:

(1) Generate a random number, say r, and determine i such that
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i

Zpk is the cumulative probability nearest to r.

k=1

Look up xj and add it to an accumulator.

(2) Repeat Step (1) n times.

(3) Divide the resulting accumulation by n, to obtain the average

size loss per claimant, and call the result a;

J

(4) Perform Steps (1) through (3} again, but using z:ﬁk instead

{

k=1

of Zpk and y; instead of x, in Step (1), and m instead of n in

k=1
Steps (2) and (3), and call the result b;

[V

A
(S) Calculate t=

the true trend ¢:

(6) Repeat Steps (1) through (5), say, v times.

~
- 1, which is a possible point estimate t for

Let the frequency distribution of the resulting values of 14T be

labelled as £ . and represented as
1+T
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A
[ 1+t, r, ]kﬂ v

A
where v’ is the number of different point estimates t obtained in
Step (5), and r, is the frequency of 1+€:k for k=1,2,...,v'. Now

f ~, once generated, could be used to estimate the standard
14T

error in trend or other such statistics. This procedure is

referred to as bootstrapping.*

If we are going to use this approach, it would be helpful to know
how large v should be in order to produce a reasonably good
representation of what the distribution of 1+T would be if v
were chosen to be infinity. Table #0 shows results of this
approach using v=10> 10' and 10° trial resanple point estimates,
m=n=64, and the accident year pair is 1983-84. The last column
of Table #0 shows results from an almost exact representation of

what the distribution f1+% of 1+§ would be if v were chosen to

be infinity.t

+ For a detailed description of bootstrapping see Efron and
Tibshirani reffl]. Efron coined the term "bootstrapping" in the
late 1970’s.

t For the method used to obtain this distribution, see section
"OPERATIONAL BOOTSTRAPPING FOR TREND IN AVERAGE SIZE CLAIM."
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Table #0

£f A
1+T

v:
cumula-~|v=10> |v=10" [v=10° infinity
tive| 1+T | 14T | 1+T | 14T
. 000001 0.109
.00001 .146 0.146
.0001 .206 0.17%
.001 .264 0.247

.01/0.378}0.392] .389 0.375
.02510.472]0.467| .462 0.457
.0510.5440.535{ .532 0.526
.1/0.636|0.622| .622 0.618
.2{0.74810.737) .742 0.737
.3/0.838[0.834( .840 0.837
.4(0.938{0.925| .930 0.932
.5/1.022(1.017(1.025 1.028
.6(1.125711.123|1.130 1.135
.711.23611.24311.256 1.261
.8{1.41811.409:1.424 1.431
.911.72311.687|1.706 1.723
.95(2.037(1.968(2.000 2.027
.97512.398(2.323{2.331 2.370
.99|2.96412.871(2.833 2.940
.999(4.06814.433|4.274 4.844

.9999 6.458!5.618| 6.635
. 99999 7.299 8.360
.999999 10.239
mean(1.121{1.061]1.055 1.0686
var-10*{ .244| .204| .204 .204
n 64 64 64 64
n 64 64 64 64
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This resampling procedure is practical if v=n and m are each
small. However, as v, n and/or m increase, this procedure
becomes impractical. So, we turn to a method which we call

"Operational Bootstrapping."

OPERATIONAL BOOTSTAPPING FOR TREND IN AVERAGE SIZE CLAIM

Resampling (With Replacement) Without Random Numbers

In contrast to classical bootstrapping, where random numbers are
used to do the resampling, we can use numerical convolutions
to generate the distributions without using any random numbers,

For example, consider the distribution

XX,

of
X, + X,

where X; and X, are independent identically distributed random

variables, each distributed as
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[xipl]
1=1,n’.

Symbolically, we can express fx +X in terms of the distributions
174,

of X, and X,, as follows:

+ The symbol + between two distributions is being used here to
mean convolute for sums.
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X+%;, PPy
X1+X; PPz

X+ % Py P’
XotXy  Pa-Py
Xo+X,  P2-Pa

XX, Pz P’

Xp'tXy  Pa’'Pi
xn""xz Pn’ "P2

Xno +Xn, Pn: 'Pn/

which we might express as

X;tX; PyPj

1=1,n";)=1,n"
Using this distribution as our prototype and assuming that

X,.X3,...,X, are independent identically distributed random

variables each distributed as

[ LT 31 ]|=1n’

we can proceed recursively to generate
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X+ Xt XX,

i = f can wri
where, since fx3+x4 X, +X, we ca rite

fx1+xz+x3+XA= fxl+x2+ fx3+x¢ B fx1+X2 * fx,+xz;

and continue to perform convolutions between the results of other

convolutions until we have obtained the desired result: namely,

fx1+x2+...+x“

Proceeding naively in this manner, the number of lines in the
resulting distributions could become prohibitively large from the
standpoints of both computer storage and computing time. The
APPENDIX - UNIVARIATE GENERALIZED NUMERICAL CONVOLUTIONS
describes a method of overcoming this problemn. This method
(after dividing the amounts by n) produces a distribution having
mean equal to the mean of the original sample and variance equal

to the variance of the original sample.

We can similarly generate the distribution

B Y, .Y
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of
Y, 4 Yo+ ... + Y

B,

where

are independent identically distributed random variables, each

distributed as

[ Y 51 ]1:1,.’

To generate the distribution

h = Tam (Ttvt. . 41 7 T (XXt . 4X,)

of

(L/m) - (Y, + Yo + o0 + Yo} /7 ( (/M) (% + Xp + 000 + X)),

we can first generate
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*
Ly rvar. . oavy 7 Exangs. . ax

n

Letting

fx,+x2+...+xn be represented as ( u, p, ] .

i=1,n

and

fyl+Y2+"'+Yn be represented as [ v, 5’ } .
i=1,m

’

we have

iy v+, .4y (X +Xo+. . . +X,)

={ V’ EJ ]j:l.m./ [ o Py ]lzl n*

+ The symbol / between two distributions is being used to mean
convolute for quotients, dividing the first random variable by
the second.
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fV/U = vj/ul pl'is)

1=1,n%; }=1,0"

Then,  £1.8 T Tlum (Y,#¥at. . 4Y)/( m (X 4%+, . .+X) ) vould

be obtained by multiplying the amounts (not the probabilities} in

the distribution by n/m.

BV Yt 4Y) /(X + Xt o o +X,)

The distributions f1+§ generated by the methods of this section

are representations of the distribution fl+% which would have
been generated by the method of the previous section if we could
have generated an infinite number of random nunbers. "’ For
this reason we would expect the distributions shown in Table #0
in the columns headed v=10°, v=10" and v»=10° to approach the

distribution shown in the column headed "v=infinity" as v

increases.

t+ See APPENDIX - Univariate Generalized Numerical Convolutions.
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CONFIDENCE INTERVALS FOR TREND - LARGE SIZED RESAMPLES

Lowrie and Lipsky’ presented group major medical expense claims
by claimant per accident year for each of the five years 1983 to
1987. Their distributions are shown separately for adult or
child combined with either comprehensive or supplemental
coverage. We will focus on adult comprehensive coverage only,
noting that the deductible is $100 per calendar year and the

coinsurance is 20%.

We considered the random variable

1+T

E[1+T]

Note that E[1+W] is clearly equal to unity. We were interested
to find that f1+w shows a remarkable degree of stability as we
vary the accident year pairs. Using the operational

bootstrapping approach described in the previous section, the
distributions f1+% and f1+w were generated for each of the
accident year pairs 1983-84, 1984-85, 1985-86 and 1986-87 and are
shown in Table #1, In Table #1 the numbers of claims in the

resamples varied from 66,260 to 111,263. We concluded that,

t+ See ref{2].
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provided the numbers of claims are of this order of magnitude,

£ can be used as a pivotal distribution; that is, that for

1+W
any true trend ¥, the point estimates 1+’i‘|o,J can be considered to

be distributed as f(1+190) - (14W) .
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L] =
f A = f / f
1+T Z (trm) - ¥y Z (trn) - X,
1=1 =1

£
1+W

Table #1

+

(14T) /JE[ 1+T]

cumula-

tive

1983-84

14T 14W

1984-85

A
1+T 14+W

1985-86

14T 14W

1986-87

1+T 1+W

.000001
.00001
.0001
.001
.01
.025
.05

.95
-975
.99
.999
.999%9
.99999
.999999

mean
var-10‘3
n

m

.965

.972

.979

.988

.999
1.004
1.009
1.014
1.021
1.025
1.029
1.033
1.037
1.041
1.046
1.053
1.058
1.063
1.069
1.081
1.091
1.099
1.109

.934
.940
.948
.956
.967
.972
.976
.982
.988
.992
.996
1.000
1.004
1.007
1.012
1.019
1.024
1.029
1.034
1.046
1.055
1.064
1.073

1.033 1.000

.209 .223
66260

76857

.982

.989

.996
1.005
1.016
1.021
1.026
1.031
1.037
1.042
1.046
1.049
1.053
1.057
1.062
1.068
1.073
1.078
1.084
1.095
1.104
1.113
1.122

.936
.942
.949
.958
.968
.973
977
.982
.988
.993
.996
1.000
1.003
1.007
1.012
1.018
1.023
1.027
1.033
1.043
1.052
1.060
1.070

1.049 1.000

.211  .192
76857

83457

.979

.986

.993
1.001
1.011
1.016
1.021
1.026
1.032
1.036
1.040
1.043
1.047
1.051
1.055
1.062
1.067
1.071
1.077
1.088
1.097
1.105
1.115

.938
.945
.951
.959
.969
.974
.978
.983
.989
.993
.997
1.000
1.003
1.007
1.011
1.017
1.022
1.027
1.032
1.042
1.051
1.059
1.068

1.044 1.000

.195 .179
83457

88977

1.001
1.007
1.015
1.023
1.034
1.039
1.043
1.048
1.054
1.059
1.063
1.066
1.070
1.074
1.078
1.085
1.090
1.095
1.100
1.112
1.121
1.129
1.139

.938
.945
.951
.959
.969
.974
.978
.983
.989
.993
.997
1.000
1.003
1.007
1.011
1.017
1.022
1.027
1.032
1.042
1.051
1.059
1.068

1.066 1.000

.204 .179
88977

111263

T £
ti/m Y,
i=1

used to mean convolute

fn/-)'Yl

+
f(1/-)~Y2

f(l/n)-‘{1
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We note that

fl+W is approximately N(E[1+W],Var{1+W]) and

f1+'i‘ is approximately N(E[1+"I“],Var[1+‘f‘]) .f

A Numerical Example of Determining a Confidence Interval for

Trend Using Large Resamples

We now turn our attention to determining a confidence interval

for the true trend 9. We wish to determine

¥, such that Pr{ 9; < ¢ }) =1 - a/2

and

¥, such that Pr{ ¥ < ¢, ) 1 ~a/2,

so that the random interval (¢,,%;) encloses the true trend ¢ at

the desired level (1-a) of confidence.

From Table #1 we can select a value of W (say w;) such that

1l -a/2 = Pr{ w, < W }; that is, such that

i

l -~ a/2 Pr{ 1+w; < 1+W }

+ An expression such as N(u,o-zJ is being used, as is customary,
to indicate a normal distribution with mean i and variance o".
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Pr{ 1+w, < (1+T)/(149) )}

[

Pr{ (l+w,)- - (1+8) < 1+§ )

Pr( 1+9 < (1+T)/(1+w,) )

i

Pr{ ¢ < (1+T)/(1+w;) - 1 }

so we choose ¥, = (1+§)/(1+w,) - 1.

Similarly, from Table #1 we can select a value of W (say w,) such
that

1 - af2 = Pr{ W < w, }; that is, such that

1 - a/2 = Pr{ 1+W < 1+w,
= Pr{ (1+T)/(1+9) < l=w,)

= Pr{ 1+T < (1+w,)- (1+3) )
= Pr{ (1+4T)-(1+w,) < 1+9 )
= Pr{ (1+4T)/(1+w,)-1 < & )

so we choose ¥, = (1+%)/(1+w2) - 1.

If 1-a = 95%, then referring to Table #1 (1983-84) we can let

1+w, = .972 and 1l+w, = 1.029 and find that
%, = 1.033/1.029 -1 = .004 and
Y, = 1.033/.972 -1 = .063.

Therefor, the confidence interval for the true trend ¢ is

(9,,%,) = ( 0.4%, 6.3% );
3.3% was the corresponding point estimate. This result and the
corresponding results for the other calendar year pairs are shown

in the following table:
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(1+8)

Mean andT 95% Confidence| Calendar

50th Percentile Interval Year n m
1.033 (1.004,1.063) 1983-84 66260 76857
1.049 (1.021,1.078) 1984-85 76857 83457
1.044 (1.016,1.071) 1985-86 83457 88977
1.066 (1.039,1.0985) 1986-87 88977 111263

Test of Normality Assumptions

In order to see whether we could produce equally good confidence
intervals making use of some normality assumptions, we assumed
that fx*" and fy*® could be approximated by the normal
distributions N(n-E[X], n-Var{X}) and N(m-E[Y] m-Var(Y]),

respectively. f1+% was then obtained by generating
N(m-E(Y) m-Var{Y]) / N(n-E[X], n-Var(X])

and transforming the resulting distribution by multiplying the

amounts (not the probabilities) by n/m. The resulting figures

turned out to agree exactly with the figures shown in Table ﬂl.*

t+ The mean and the median could turn out to be different, but
here they happen to be identical to the number of decimal places
shown.

+ A referee pointed out that if X and Y are asymptotically normal
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In the following section we investigate the corresponding
situation where n and m are equal and medium sized, say 64 to

16,384.

CONFIDENCE INTERVALS FOR TREND - MEDIUM SIZED RESAMPLES

So far we have been dealing with resamples of size n or m from an
original sample of size n or m, respectively, either using or not
using random numbers. But even though the original samples are

of size n or m, we can generate resamples of, say, size n (<n)

random variables and % =¥ / X - 1, then % is asymptotically
N(u,0?) with

b=y / By -1 and

2 _ 2 2 LI 2 2
o = uy Ty / Hy n + oy/ Hy m;

and that these can be approximated by replac1ng the population
quantities with the sample values.

If we had available (and used} the detailed data underlying the
loss distributions presented by Lowrie and Lipsky (ref [2]), our
confidence intervals would be slightly wider. Using the

calendar year pair 1987-1988 and the above formula for o° we find

that the ratio of o° based on the detailed data to o° based on
the grouped data is 1.016; that is, a 1.6% deficiency in the
variance. The data for 1988 was not shown in reference [2);
however, Professor Lowrie was kind enough to furnish that data to
me for the purposes of this paragraph. Professor Lowrie said
that the "STANDARD DEVIATION" figures shown in reference (2] were
calculated by an incorrect formula and should not be used.
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and m (<m): in particular, we can choose n = m ( < min{n,m}).
The purpose of doing this would be to see what confidence
intervals for trend might look like if the resamples were of

medium (rather than large) size.

Consider

10 = Tm v+, ..+ Y5 7 Tom (et ...+ Xg)

n

1

R i
)£ )

[SVEIRD 41 (1s8) - X,
I=1 i=1

where n takes on the value 64, 128, ..., or 1024 and the X, and
Y, are based on calendar years 1983 and 1984, respectively, 1984
and 1985, respectively, 1985 and 1986, respectively, or 1986 and
1987, respectively. The distributions fj;.7 are shown in Table

#2, along with the corresponding standardized distributions fi,y

= £(1+T)/E[1+T].

For determining confidence intervals for trend where the
resamples are of medium size, we wish to assume for given n that
fi1+w

does not differ significantly as we vary the calendar year pairs.
The reasonableness of making this assumption seems to be
confirmed by the fact that for fixed n = m the standardized

distributions fj4y4 in Table #2 vary as little as they do by
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calendar year pair, at least in the portion of the distributions

between cumulatives of .025 and .975.

A Numerical Example of Determining a Confidence Interval for

Trend Using Medium Resized Samples

Suppose a trend factor of 1.15 has been observed from one year to
another and the number of claims is 64 in each of the two
accident years. We will now determine a 95% confidence interval
for the true severity trend ¥, again using the formulas shown in

the previous numerical example.

Referring to Table #1 (1983-84) we can let 1+w;=2.108 and
1+w,=.406 if 1-a=.95; so ® = 1.15/2.108 = .546 and ¥, =
1.15/.406 = 2.83. Thus the estimated 95% confidence interval

for the underlying trend factor 1+¢ would be

(.546,2.83).

This result and the corresponding results for the other calendar

year pairs are shown in the following table:
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95%
50th confidence |calendar
mean |percentilel|interval year n (m
1.125| 1.028 (.546,2.83) |1983-84 |64 |64
1.147| 1.050 (.542,2.91) |1984-85 |64 |64
1.142 1.037 (.533,2.96)/1985-86 |64|64
1.171 1.059 (.524,3.05)/1986~-87 6464

Table #2 includes distributions for 5=ﬁ=64,128,256,512 and 1024
for calendar year pairs 1983-84, 1984-85, 1985-86 and 1986-87;
and distributions for n=m=2048, 4096, 8192 and 16384 for calendar

year pair 1983-84.
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Table #2

64

&4
f A= f / f
1+7T z (1/64) Y, Z (1r64) - X,
=1 1=1
=f n
1+W (1+T) /E[ 1+T]
cumulat-|1983-84 1984~85 1985-86 1986-87
A~ A A A

tive 1+T 14W] 14T 14+W]  1+7 1+W 1+7T 1+W
.000001| .109 .097| .101  .088| .123  .107 .101  .087
.00001] .146 .129} .124  .108| .150  .131} .122 .104
.0001} .179 .159| .161  .140| .193 .169| .159 .135
.001| .247 .220| .220  .191| .253 .z221| .225 .192
.01 .375 .334( .366 .319| .369 .323 .360  .308
.025 .457 .406| .453  .395| .444  .389 .441 377
.05 .526 .468! .531  .463| .518  .453 .520  .444
.1 .618 .550] .623  .543] .610 .535| .614 .524
.2 .737 .655] .749  .652| .737 .646) .749  .639
.3 .837 .744| .854 .744| .839 .735| .853 .728
.4 .932 .829| .949  .827| .937 .821| .951 .g12
.5] 1 028 .914(1.050 .915{1.037 .909| 1.059 .904
.6| 1.135 1.009[1.15%9 1.010[2.151 1.008| 1.175 1.003
.7} 1.261  1.121]1.294 1.127]1.283 1.124) 1.316 1.123
.8l 1.431  1.272{1.474 1.284{1.464 1.282| 1.502 1.283
.9) 1.723  1.s32(21.775 1.547|1.770 1.551] 1.826 1.559
.95| 2.027 1.802]/2.094 1.825[2.095 1.839| 2.172 1.854
.975| 2.370 2.108[2.435 2.122(2.465 2.159| 2.570 2.194
.99| 2.940 2.614[2.924 2.548(3.011 2.637| 3.218 2.747
.999| 4.844 4.308|4.237 3.693|4.714 4.129| 5.435 4.640
.9999| 6.635 5.900|5.578 4.861|6.461 5.659| 9.069 7.742
.99999] 8.360 7.434|6.972 6.076(8.138 7.128]|12.108 10.336
.999999[10.239 9.104{8.453 7.366|9.926 8.695|14.811 12.644
mean| 1.125 1.000|1.147 1.000[1.142 1.000| 1.171 1.000
var| .267 .211| .264 .201| .283 .217 .338  .246

n 64 64 64 64

m 64 64 64 64
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Table #2 - Continued

128 128

£ A=)t X
1+T (17128 Y, (171283 - X,
i=1 1=1

£ £ A A
14W (1+T) /JE{1+T]

cumula-|1983-84 1984-85 1985-86 1986-87
tive| 14T  1+4W| 14T  1+W] 14T  1+W| 1+T

.000001} .209 .193| .187 .170| .221 .202} .192

.00001| .246 .227( .223 .202] .255 .233| .227

.0001| .295 .272( .269 .244] .305 .278| .274

.001| .366 .338| .339 .307) .376 .343| .347

.01} .489 .452| .474 .429| .489 .446| .475

.025( .560 .518| .555 .503; .556 .507| .551

.0S| .624 .576| .626 .568| .618 .564| .619

.1/ .702 .649, .710 .643]| .697 .636| .704

.2| .803 .742| .816 .740| .804 .737| .813

.3 .881 .814| .899 .814| .886 .808| .902

-4/ .954 .B81| .975 .B83| .963 .878| .980

.511.028 .94911.051 .953{1.039 .947(1.060
.611.107 1.02311.135 1.028(1.122 1.024)1.147 1
-711.200 1.108}1.231 1.116(1.220 1.112|1.249 1
-»8(1.319 1.219{1.356 1.229(1.347 1.228|1.383 1
.911.515 1.399/1.559 1.413]1.556 1.419;1.602 1
951,717 1.586(1.758 1.593(1.766 1.610(1.832 1
-975[1.936 1.788(1.958 1.77411.983 1.8092.081 1
.99[2.271 2.098(2.224 2.015/2.291 2.089(2.452 2

.9993.168 2.927[2.887 2.6163.129 2.854|3.689 3.

.999913.982 3.678|3.544 3.211(3.930 3.584(5.261 4
.99999|4.813 4.446(4.211 3.817]4.733 4.316|6.456 5
+999999{5.703 5.2684.893 4.434/5.577 5.087(7.627 6

mean|{1.082 1.000(1.103 1.000{1.097 1.000{1.124 1
var| .126 .108| .127 .104( .135 .112; .160

n 128 128 128 128

m 128 128 128 128
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Table #2 - Continued
256

£
1+T Z (17256 Y, z (1/256) - X,
1=1 i=1

£ = £ A A~
1+W (1+T)/E[1+T]

cumula-|1983-84 1984-85 1985-86 1986-87
tive 1+'i‘ 1+W 1+'i' 1+W 1+&' 1+W 1+'i‘

1+W

.000001)] .327 .309| .301 .279} .338 .315| .30%
.00001| .369 .349; .342 .317} .378 .353) .350
.0001} .423 .399| .397 .369( .430 .402| .405
.001| .495 .468| .472 .438| .501 .467| .480
.01{ .602 .569{ .589 .546( .603 .563( .594
.025) .660 .623| .656 .608; .660 .616| .656
.05 .713 .673f .715 .663| .711 .664{ .714

-1} .776  .732| .784 .727) .776 .724] .783

.2| .857 .809| .871 .808| .859 .802| .871

.3| .919 .867| .936 .868| .923 .862| .939

.4 .974 .920{ .995 .923| .982 .916|1.001
.5(1.029 .971;1.052 .975/1.040 .970(1.061

.6/1.088 1.027!1.113 1.032]1.102 1.028(1.126 1.
.7]1.154 1.089}11.183 1.097|1.172 1.094}1.201 1.
.811.239 1.170]1.270 1.178]/1.262 1.178[1.296 1.

.9/1.375 1.298(1.406 1.303/1.403 1.309(1.448 1

.9511.508 1.423)1.531 1.420(1.537 1.435;1.597 1.
.97511.644 1.552[1.650 1.430]1.670 1.559{1.750 1.
.9911.829 1.726{1.803 1.671{1.846 1.723|1.963 1.
.999(2.278 2.151(2.167 2.010(2.279 2.127(2.654 2.
.9999(2.271 2.555(2.518 2.335[(2.696 2.516{3.324 3.
.9999913.137 2.96212.864 2.655!3.111 2.904(3.904 3.
.99999913.570 3.370(3.206 2.97313.528 3.29314.522 4.

mean}{l1.059 1.000;1.078 1.000|1.097 1.000(1.097 1.

var| .062 .055] .063 .055| .135. .058| .079
n 256 256 256 256

256 256 256 256

g

.281
.319
.369
<437
.542
.598
.651
.714
.794
.856
-913
.967
026
094
181
.319
456
595
789
419
029
558
121

000
.066
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Table #2 - Continued

512

f A =
1+T
1=1

£
1+W

512

Y£ X
ass12) - Y, (ass12) - X,

i=1

L aed) /E(140)

1984-385
1+T

cumula~|1983-84

tive 1+’f‘ 1+W

1985-86

1+  1+W

1986-87

14T 1+W

. 000001
. 00001
.0001
.001
.01
.025
.05

.1

.2

.3

.4| .989
.5
.6
.7
.8
.911.274
.95
.975
-99

. 999
.9999
.99999
. 999999

.457
.498
. 549
.614
.702
.748
.789

.432
.475
.529
.599
.696
.748
.793
.847
.914
.965
1.009
1.052
1.097
1.146
1.207
1.298
1.379
1.454
1.546
1.760
1.959
2.149
2.334

. 405
. 446
-497
.563
.654
.702
.745
.796
.859
.906

.901

.988
1.030
1.076
1.134
1.219
1.295
1.365
1.452
1.653
1.840
2.019
2.192

1.065
.032

1.000
.028

mean

var

n 512 512

gt
wn
iy
N

512

.465 .4490
.478
.525
.585
.666
.709
.748
.795
.856
.902
.943
.984

1.027

1.075

1.134

1.224

1.306

1.323

1.481

1.712

1.930

2.142

2.349

1.000
.029

. 440
.483
.836
*.606
.701
.751
.796
.850
.919
.971
1.017
1.063
1.110
1.164
1.232
1.336
1.433
1.529
1.660
2.017
2.350
2.667
3.000

406
.446
. 495
.560
.648
.694
.735
.785
. 849
.897
.540
.982
1.026
1.075
1.138
1.234
1.324
1.413
1.533
1.863
2.171
2.464
2.767

1.000
.034

1.082
. 039

512

512
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Table #2 - Continued

1024

1024

f A= f / f
1+7T Z (171024 Y, z (1/1024) - X

1=1

£

1+W

i=1

f(1+§)/s[1+§]

cumula-

tive

1983-84

14T 1+W

1984-85

A
1+T 1+W

1985-86

A
1+T 1+W

1986~87

1+T 1+W

.000001
.00001
.0001
.001
.01

. 025
.05

.1

.2

.3

.4

.5

.6

.7

.8

.9
.95
.975
.99

. 999
.9999
.99999
. 999999

mean

var

n

m

. 549
. 592
.641
. 699
. 774
.812
. 844
. 884
.933
.970
1.002
1.033
1.065
1.101
1.144
1.206
1.261
1.311
1.371
1.510
1.639
1.766
1.892

.559
.594
.636
.687
.754
.788
.819
.854
.899
.933
.963
.992
1.022
1.055
1.096
1.156
1.210
1.260
1.322
1.464
1.595
1.720
1.841

1.040
. 016

1.000
.014

1024

1024

.565
.607
.655
.713
.787
.824
.857
.897
.947
.984
1.017
1.049
1.082
1.119
1.164
1.229
1.287
1.339
1.404
1.555
1.697
1.839
1.984

.532
.570
.615
.670
.743
.780
.812
.851
.898
.934
.965
.994
1.024
1.058
1.098
1.157
1.207
1.253
1.209
1.434
1.547
1.652
1.752

1.058
. 017

1.000
.015

1024

1024

.549
.593
.643
.702
.778
.816
.850
.890
.940
.978
1.011
1.043
1.076
1.113
1.157
1.222
1.278
1.330
1.392
1.537
1.673
1.806
1.941

.559
.593
.634
.684
.751
.784
.814
.851
.897
.931
.962
.992
1.022
1.057
1.098
1.160
1.214
1.263
1.324
1.464
1.591
1.713
1.829

1.051
.017

1024

1.000
.015

1024

.524
.573
.627
.693
.776
.817
.854
.898
.953
.995
1.031
1.066
1.103
1.143
1.192
1.263
1.325
1.382
1.453
1.615
1.769
1.921
2.076

.531
.567
.611
.665
.736
72
.804
.842
.890
.927
. 959
.990
1.022
1.058
1.103
1.169
1.229
1.286
1.360
1.540
1.710
1.874
2.036

1.075
.021

1.000
.017

1024

1024
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Table #2 - Continued

L s,
ass) - Y,

n

SVESED

1=1

£ (1+7) /JE[1+T]

cumula-

tive

1983-84

1+T

1+W

1983-84

A
14T

1+W

1983-84

A
1+T

1+W

1983-84

1+T

1+W

.000001
.00001
.0001
.001
.01
.025
.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95
.975
.99
.999
.9999
.99999
.999999

mean

var

a

.674
.707
. 744
-788
.844
.872
.897
.925
-961
.988
1.011
1.033
1.056
1.080
1.110
1.153
1.189
l.222
1.261
1.347
1.424
1.496
1.564

1.037
.008

.650
.682
.718
.760
.814
.841
.865
.893
.927
.953
.975
.997
1.018
1.042
1.071
1.112
1.147
1.178
1.216
1.299
1.374
1.443
1.509

1.000
.007

.769
. 794
.822
.855
.897
.917
.935
.956
.982
1.001
1.018
1.033
1.049
1.066
1.087
1.116
1.141
1.163
1.189
1.246
1.294
1.339
1.380

1.03%
.004

.743
.767
.794
.826
.866
.886
.903
.924
.949
.967
.983
.998
1.014
1.030
1.050
1.079
1.102
1.124
1.149
1.203
1.251
1.293
1.333

1.000
. 004

.841
.859
.880
.904
.935
.850
.963
.978
.997
1.010
1.022
1.033
1.045
1.057
1.071
1.091
1.108
1.123
1.141
1.179
1.211
1.240
1.266

1.034
.002

.813
.831
.851
.875
.904
.919
.931
.946
.964
.977
.988
.989
1.010
1.022
1.036
1.055
1.072
1.086
1.103
1.140
1.171
1.199
1.224

1.000
.002

.894
.907
.923
.941
.963
.974
.983
.994
1.007
1.017
1.025
1.033
1.041
1.050
1.060
1.074
1.086
1.096
1.108
1.134
1.156
1.175
1.193

1.034
.001

.865
.878
.893
.910
.932
.942
.951
.962
.974
.984
.992
1.000
1.007
1.016
1.025
1.039
1.050
1.060
1.072
1.097
1.118
1.137
1.154

1.000
.001

2048

2048

4096

4096

8192

8192

16384

16384

95




Test of Normality Assumptions

If n and m are sufficiently large, we can avoid performing the

convolutions to produce

f and f
Y +Y 4. . +Y b ORD FE R &

That is, if £ and £ are close to being
Y +Y 4. . 4T X +Xo+. . .+ Xz

normal distributions, we can assume that

. +
f is N( E(Y{+Y,+ ... + Y3 var(Y,+¥,+ ... + Yz
Y Yot Y ( E(Y,+Y, &), (Y, +Y, &) )

and

f is N( E(X+X,+ ... + Xz}, Var(X+X,+ ... + Xz)
Xy +Xot e o X e Xa) . e ah )

and do only a single convolution for quotients; namely,

tA good discretized version of a normal distribution can be
obtained by generating a binomial distribution b(n:;p), where n

is large and p = .5; and then a discretized version of n(u,o’)
can be obtained by performing the usual type of transformation
X-n-p

ncp.q

2 =0
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N(E( (1@ - (¥,+Yo+...Y5), Var( s« (Y, +¥ot. .. +¥) )
/

N(E{ - (Xy+Xp+...+X5) ), Var( asm- (X+ Xp+...+Xz) ).

Based on the underlying adult comprehensive major medical claim
samples and the generated distributions, we can draw the

following conclusions for this data:

1. For resample sizes of 256 or less, the assumption of normality
for distributions of average size claims may not be particularly
useful; this 1is because such assumption produces negative

average size claim per claimant with appreciable probability.

2. From Table #3 it can be ascertained how good the assumption of
normality for distributions of average size claim per claimant
are for generating distributions of point estimates of trend for

resamples of size n=m=512.

3. Table #3 for m=n=1024 (not shown) demonstrated that the
assumption of normality for distributions of average size claim
distributions for resamples of size 1024 produces point estimate
of +trend distributions shown in Table #2 (for n=m=1024), to an
accuracy of at least 3 decimal places in 1+T. This does not
imply that the point estimate of trend distributions themselves

are normal.
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4, Table #2 can be used almost directly to determine how large
the samples need to be in order for the trend distributions

themselves to be essentially normal; that is, whether

f1 4 is approximately N(E[1+%],Var[l+§]) or
+

f1+w is approximately N(E[1+W],Var[1+W]).

Of course, it is easy to see that such normality is lacking if
the median is not egqual to the mean or if symmetry is lacking.
If the median is close to the mean and a fair degree of symmetry

exists, then you may want to compare
N(E[1+T],Var[1+T ith £
+ ar[l+ wi A Or
(E[ 1, [ 1) 147
N(E[1+W]),Var{1+wW]) with f

1+W

at selected cumulative probabilities, e.g. .025, .05, .95 and

.975.
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Table #3

512 512
£ A = f / f
1+7 Z s Y, Z uss12) - ¥
=1 1=1

Fl+'i" = N(E((1/552) (Y +Y¥o+. . - ¥gyp) ,Var(ussia)r - (Y +Y+. . . +Y5,,))

/
N(E(ass2) - (X, +X,+. . . +Xg5y5) ), Var(assia- (X + Xp+. .. +Xg2))

cumula-|1983-84 1984-85 1985-86 1986-87
A A A A A A A A
tive 1+T 14T’ 1+T 14T/ 1+T  3+T/ 1+T 1477

.000001} .457 .384| .432 .405| .465 .3811! .440 .338
.00001| .498 .440| .475 .460| .505 .439| .483 .403
.0001] .549 .8506; .529 .523] .585 .,504] .536 .475
.001] .614 .582| .599 .597| .618 .583| .606 .563
.01| .702 .680| .696 .6%4] .705 .683| .701 .671
.025] .748 .730| .748 .743| .750 .734| .751 .726
.05} .789 .774| .793 .787 .791 .778} .796 .776

.11 .838. .826) .847 .B40| .841 .B32! .850 .835

.21 .901 .894| .914 .907| .906 .900] .919 .90S

3] .947 .944) .965 .959} .954 .,953] .971 .966

.4| .989 .990/1.009 1.004| .998 .998{1.017 1.017
.511.030 1.033|1.052 1.050|1.041 1.043}1.063 1.066
.6[1.073 1.079{1.097 1.096(1.096 1.091({1.110 1.117
«7{1.121 1.130(1.146 1.149(1.137 1.143;1.164 1.176
.811.182 1.19311.207 1.214}1.200 1.2081.232 1.248
+911.274 1.286{1.298 1.315|1.295 1.305|1.336 1.355
.95]1.361 1.37111.379 1.40411.381 1.393]1.433 1.452
.975]1.443 1.450{1.454 1.490{1.463 1.475{1.529 1.545
.99(1.549 1.550(|1.546 1.598!1.566 1.579{1.660 1.662
.999(1.798 1.792|1.760 1.869|1.811 1.834]2.017 1.953
.969912.035 2.038)1.959 2.155|2.042 2.097]2.350 2.259
.9999912.266 2.30372.149 2.47212.266 2.382}2.667 2.599
-999999:2.492 2.598(2.334 2.840[/2.485.2.703/3.000 2.367

mean|1.047 1.048(1.065 1.066(1.058 1.059|1.082 1.084
var|( .031 .034| .032 .036| .033 .036] .039 .044

n 512 512 512 512

m 512 512 512 512

A
The coelumns headed 1+T in this table are taken from Table #2,.

99



RECAP AND CONCLUSIONS

We started with original samples of comprehensive major medical
claims per claimant, one sample for each of two calendar years.

By resampling with replacement (using numerical convolutions)
from the corresponding empirical distributions, we generated
distributions of average size claim per claimant where the number
of resamples was a power of 2 from 6 to 15 (i.e. 64, 128, 256,
512, 1024, 2048, 4096, 8192 or 16384). Assuming an equal
number of resamples in each of two calendar years, we convoluted
these latter distributions for quotients to obtain distributions
of point estimates for trend in average size claim per claimant
from the one calendar year to the other. The results are shown

in Table #2.

Table #1 presents similar distributions of resample point
estimates for trend in average size claim per claimant where the
numbers of resamples in adjacent calendar years are those of the
original experience during the observation period (1983 to 1987,
inclusive). The distributions in Table #1 are close to normal,
wvhich is perhaps not unexpected in view of the fact that the
numbers of claims lie in the range from 66,260 to 111,263.

Standardizing these trend distributions by dividing the amounts
(not the probabilities) by their respective mean values, we find

a high degree of stability as we move from one pair of calendar
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years to another. This enables us to use the distributions in
Table #1 for determining confidence intervals for trend in
average size claim per claimant, where we are dealing with such

large resample sizes.

We show how we might use Table #2 to estimate 95% confidence
intervals for trend where medium-sized samples of comprehensive
major medical losses per claimant are available. Of course,
since the underlying experience data involves $100 deductible/20%
coinsurance and essentially no maximum, Table #2 should be used
with caution if the major medical plan deviates significantly
from this. Table #2 shows considerable stability* in the
standardized distributions of resample point estimates for trend,
as we move from one pair of calendar years to another. This
enables us to use the distributions in Table #2 for determining
95% confidence intervals for trend in average size claims per

claimant , where we are dealing with resamples of medium sizes.

The numerical convolutions (for sums and dgquotients) used in
preoducing the figures in Table #1, #2, and #3 were generated
using the methods described in APPENDIX - UNIVARIATE GENERALIZED
NUMERICAL CONVOLUTIONS using e=10""° and nax=1000. For any one
convolution the total of the discarded probability products did

not exceed 5-107; choosing a smaller value for € would make this

+ At least where the cumulative is in the range from .025 to
.975.
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figure even smaller.
APPENDIX - UNIVARIATE GENERALIZED NUMERICAL CONVOLUTIONS

If fy and fy are independent distributions of the discrete finite
univariate random variables X and Y, respectively, then the
distribution fy;y of the sum W=X+Y is the convolution fy + fy of
fx and fy for sums.t

Let fy be expressed in element notation as

x1, Pl

x1 plnl

n

which we will also express as

[ xl, pl, ]‘_1 .-
'

t+ We are using the operation + instead of * between two
distributions to indicate convolution for sums; that is, fy + fy

instead of fy =« fy. We use the notation fy/fy for the
convolution of fy and fy for quotients X/Y.
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Similarly, let fy be [xz, pZ,J

Then fi4w = fx+y = fx + fy =

rxl1+x21

X1,+x2,

x11+x2n2
X1,+X2,
X1,+X2,

x12+x2n2
X1,+%x2,
X13+X2,

X13+X2,,

X1, +X2,

X1, +x2,

X1, +%2;,

P1,-p2,
Pl;-p2;

Pl, 'pznz

pl;p2,
Pl,-p2,

Plz'Pznz
Pl;-p2,
Ply-p2;

pls'pznz

plnipzl
plnl-p22

Ply, P2y,

which we might also express as

103
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x1,+x2, pl,'p2,

l=1,nx; )=‘l,nZ

If n, and n, are (say) 1000, then generating this matrix would

involve 10° lines .t

This would be practical if we do not
intend to use fj.y in further convolutions. But, if (for
example) we want to generate the distribution fy = fy + fg of

U = (X+Y)+Z where

fz = [ X3, P ]
k=1,1000

then we would be dealing with 16° lines. And further

convolutions would become impractical, because of both the amount

of computer storage and the amount of computing time required.

The following algorithm has been designed to overcome these

t For a generalized convolution of fx‘ and fx2 to generate the
distribution fx,/x, ©f the random variable X,/X, this expression
would be replaced by

x1,/x2; pl,-p2;

1=1,n_; }=1,
n1 3 n2

¢ There may be some collapsing due to identical amounts on
different lines. The number of lines produced is reduced by
representing on a single line all lines with identical amounts;
on that 1line is the amount and ¢the sum of the original
probabilties.
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problems.

The Univariate Generalized Numerical Convolution Algorithm

Choose £>0. Typically ¢ is chosen to be 107'° or 1075,

Loop #1:

Perform the calculations indicated in Matrix (1) above,
discarding any lines for which the resulting probability is less
than £:; that is discard lines for which

ply-p2; < e.

The purpose of this is to avoid underflow problems and to

increase the fineness of the partitions (meshes) to be imposed.

Calculate

low, = min{ x1,+x2,20 | pl,-p2, < ¢ } v ¢

t+ In many applications we replace x1;+x2; by log(x1l,+x2,), which

will allow finer subintervals at the low end of the range. of
course, to be able to use logs the range of X+Y should not
include values less than one (to avoid theoretical and numerical
problens).

¥ For a generalized convolution of fxl and fxz to generate the
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and

1=1,2,...,ny

j=l,2,....n2

Let nax be a positive integer selected for the purpose of

creating the following partition:

high,-low,
let 8 = —m—w——~;
nax/2-1
partition the interval (lowy-A,high +4) into nax/2+1
subintervals:
distribution fy /x of the random variable X,/X these
1/ %5 1/ &2

expressions would be replaced by

low, = min{ x1,/x2*0 | pl,-p2, < € )
1=l.2,....nl
j=1.2,....n2

and

high, = max{ x1,/x2*0 | pl,'p2, < ¢ }.
1=1,2,...,np
)=l,2,....n2
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let A = ;
nax/2-1
partition the interval (lowy~A,high, +4) into nax/2+1
subintervals:
r Subinterval I

1 {0,0]

2 ( low,~-A, low, )

3 [ low,, low,+1:4 )

4

[ low,+1:A, low +2-A )

nax/2 ( low,+(nax/2-3)-A, high,-4 )
nax/2+1|[high,,high +A)

Subinterval I, is the degenerate interval consisting of 0 alone.
If for some rp>1 0el., then 0 is deleted from I, that is,

that particular subinterval has a hole at 0.

Loop #2:

For each r (r=1,2,...,nax/2+1l) set to zero the initial value of
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each of the accumulators

mo{Itr))
m,[I¢r]

my (It} and

my(Ite) ],

For each i (1=1,2,...,n,) and j (j=1,2,...,n;) for which

X1, +x2) > €,

determine the positive integer r for which

X1;+x2, € I

and perform the accumulations

mo[Itrr] = Mo[I] + pl,-P2,

m{Im] = m{Im] + (x1 x2,)'-P1,-p2,
my(I1] = my[Tm] + (x1,+x2,)° pl, P2,
my(I] = my[I]) + (x1,+x2))°-pl,-p2,

That is, we generate the probability and the 0'" through

moments for each mesh interval It (r=1,2,...,nax/2+1).
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LOOp #3:

Vvon Mises Theorem and algorithmt guarantee that for each r

(r=1,2,...,nax/2+1) there exist and we can find two pairs of real
numbers

(X;(m,pyn) and (X,(r),pa(r))
such that

X;(melir) and X,(r1€l(r)

and such that the following relationships hold:

t See pages 269-270 of Ref[3].

¥+ In socme cases Xx;,=X, and what would otherwise be two pairs
(x,(r),py (1)) and (x,(1),ps(1)) collapse into one pair
(%, (r) ,py (T)+po (X)) . This would happen, for example, where the
values of x1,+x2, that fall intoc I(r) are all identical.

109



Moment Relationship "C" Notation

2
0 Zpl(r) = my[Ir)] probability
1=1
2
1 Zx,(r)l-p,(r) = m[I) 1st moment
i=1
2
2
2 Zx,(r) ‘pytry = my[Itm] |{2nd moment

1=1
2

3 Zx,lr)a-p,(r) = m;[Itr] {3rd moment

i=1

The "“C" program VONMISES accepts the 0h through 37! moments and
produces two points* and associated probabilities, with the

feature that these moments are accurately retained.

Having kept accurately the 0t through 3r¢ moments of X+Y within
each mesh interval, we have automatically kept accurately the

corresponding global moments.

We can then express the full distribution fy;y of the univariate

random variable X+Y as

X try P o)
r=1,nax/2+1;k=1,2

t Ibid
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We will now describe how we actually obtain the number pairs

(Xl(r),pl(r)) and (xz(r),pz(r))
for any given value of r (r=1,2,...,nax/2+1). To simplify the
notation somewhat in this description we will replace the symbols

me(Iter}, m[Tr)], ma[It] and my{Itr))
by
m,, m, m, and m;,
respectively.

If my=0 and m,*0, then we let

Xy (r)

I
o

pytr) =

&

X,ir) = 0 pz(r)

]
o

otherwise,
. ~10
if mg'm; - mm < 10 -imi, we let

X tr) = my/mg, pitr) = Wy
Xptr) = 0 p,tm = 0;

that is, in effect, use a single number pair rather than two

. . . . . +
number pairs if the variance in I« is close to zero.

+ We treat this situation differently in order to avoid exceeding
the 1limits of precision of the numbers being held by the
computer.
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otherwise, perform the following calculations:

my - W=, - My

co = ——————————
Ro - My =My - I8y
Iy " Mpy~Mg* My
c; = —
Wy M~y "M,
1 .
a, = —( -¢; -leyrey = 4ol
2
1 .
a, = E'( -c, +leyrey - dhcl
Mg - ax=m,
s1 = —_——
az—a,
my~My - Ay
52 = ——_—
az-a,
X, () = a, Pty = S,
Xyir) = a, P} = Spi
We check that x,() and x,ir) both lie in Iw; and, if

not, then
if It is a degenerate interval (i.e. consists of a

single point), then we let

X, (r) m,/m, Py (r) = M,

Xptr) 0 p,tn = 0;

otherwise,* ve let

+ This situation will occur only when the accuracy of the numbers
being held by the computer is being impaired by the fact that the
computer can hold numbers to only a limited degree of precision;
since this situation occurs only where the associated probability
is extremely small, the fact that not all of the first three
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o = 1(-m,/mp) - (my/mp)+(mp/m) |°°

m/my -~ left endpoint of I

right endpoint of It - m,/mg

X, tr) = -0 k1'% + m,/mg Pitr) = my/ (1+K)

%w = o/1k1"° + my/mg Patr) = pytr-K;

It is desirable to use double precision floating

point numbers in performing these calculations: otherwise, you
may run into numerical difficulties.
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moments are being retained in this situation is not of practical
significance.
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