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A METHOD TO DETERMINE CONFIDENCE INTERVALS FOR TREND 

by William A. Bailey 

ABSTRACT 

The method involves resampling (with replacement but without 

random numbers), numerical convolutions for sums and quotients, 

and the estimating of confidence intervals for trend in average 

size claim. Starting with an original sample of comprehensive 

major medical claims (per claimant) for each of two calendar 

years, we use numerical convolutions for sums to generate 

distributions of average size claim (per claimant) for resamples 

of various sizes from each of the two calendar years, use 

numerical convolutions for quotients to generate distributions of 

trend (in average size claim per claimant) from the first to the 

second of the two calendar years, note certain stabilities in 

standardized versions of these distributions, and estimate 

confidence intervals for the underlying trends. 
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INTRODUCTION 

Suppose for a given accident year we have n claims with 

severities 

s 
X~, X~, ' ' " X3 r - • • X n # 

and suppose for a later accident year we have m claims with 

severities 

y~,  y~ ,  y~ . . . .  , y l ;  

If the coverage is a type for which inflationary trends are 

significant, we might want to estimate the trend from the earlier 

to the later of the given accident years. 

An estimate t of the true trend @ in severity could be obtained 

from the ratio of the average claim severities in the later 

accident year to the average claim severities in the earlier 

accident year; namely, 
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m 

1 

= 1 .  
n 

1 
- - [ x ~  
rl 

If the given accident years are s years apart, then the annual 

trend might be estimated by 

^ I/s 

(l+t) -I. 

While useful, t is a single point estimate for the true severity 

trend ~ and gives no indication of the uncertainty involved in 

the estimate. In order to try to measure the degree of 

statistical uncertainty involved in this estimate, we begin by 

reinterpreting our data. 

Instead of considering the set of values 

x~ ] i=1.n 

to be the experience for the earlier of the given accident years, 

we treat it as a sample t of n claims drawn from the population 

of all claims that could have occurred in that accident year. 

* This sample rill be referred to as the original sample for this 
accident year. 
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We let the empirical distribution fx of severities X for the 

earlier of the two given accident years be expressed as 

fx = [ xl PL ]l=,,n, 

where n' is the number of different severities in the set 

x~ ] i=1.n 

and Pl is the relative frequency of x i for i=l,2,...,n'. 

Clearly, n >= n'. 

Similarly, the set of values 

Y~ ] 1:I,, 

can be treated as a sample t of m claims drawn from the 

population of all claims that could have occurred in the later 

of the two given accident years; and we let the empirical 

distribution fy of the severities Y for that accident year be 

expressed as 

fY =[ Yl Pl Ii.I.., . 

t This sample will be referred to as the original sample for the 
later of the two given accident years. 
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where m' is the number of different severities in the set 

Y~ IL:,,. 

and p, is the frequency of Yl for i=l,2,...,m'. 

m~° 

Clearly, m >= 

We can estimate the distribution f^ of resample point estimates 
T 

for the true severity trend ~ as follows: 

(i) sample n times from the distribution fx' summing the results 

and dividing by n, to obtain a possible average size claim (say 

a) from the earlier of the two given accident years; 

(2) sample m times from the distribution fy, summing the 

results and dividing by m, to obtain a possible average size 

claim (say b) from the later of the two given accident years; 

(3) calculate t b - I, which is a trial resample point 
a 

estimate of the true severity trend @; 

Repeating steps (i) through (3) many (say v) times produces an 

approximation to the distribution f~ of possible sample point 

estimates T of the true severity trend @. 
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We now describe this classical simulation process in more detail. 

Afterward, we will offer a more efficient method (the generalized 

numerical convolution) for simulating the distribution of 

resample point estimates. 

BOOTSTRAPPING FOR TREND IN AVERAGE SIZE CLAIM 

Resampling (With Replacement) Using Random Numbers 

The cumulative empirical distributions for the two given accident 

years are 

[ i] I 1 XL ~Pk and yj Xp k 

k=l i = 1, n' k=1 J=l, m' 

respectively. The resampling (with replacement) from the 

original samples would involve the following steps: 

(i) Generate a random number, say r, and determine i such that 

69 



i 

[ Pk is the cumulative probability nearest to r. 

k=1 

Look up x i and add it to an accumulator. 

(2) Repeat Step (i) n times. 

(3) Divide the resulting accumulation by n, to obtain the average 

s i z e  l o s s  p e r  c l a i m a n t ,  a n d  c a l l  t h e  r e s u l t  a ;  

] 

(4) Perform Steps (I) through (3) again, but using ~Pk instead 

k=~ 
I 

of ~ P k  a n d  y j  i n s t e a d  o f  x L i n  S t e p  ( 1 ) ,  a n d  m i n s t e a d  o f  n i n  

k=l 

Steps (2) and (3), and call the result b; 

~_ b 
(5) Calculate - -- - i, which is a possible point estimate t for 

a 

the true trend ~; 

(6) Repeat Steps (i) through (5), say, v times. 

Let the frequency distribution of the resulting values of I+T be 

labelled as f ^ and represented as 
I+T 
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l+tk rk k:l, V' 

where v' is the number of different point estimates t obtained in 

A 
Step (5), and r k is the frequency of l+t k for k=l,2,...,v ' . Now 

f ^, once generated, could be used to estimate the standard 
l+T 

error in trend or other such statistics. This procedure is 

referred to as bootstrapping.* 

If we are going to use this approach, it would be helpful to know 

how large v should be in order to produce a reasonably good 

representation of what the distribution of I+T would be if v 

were chosen to be infinity. Table #0 shows results of this 

approach using u=103, 104 and l0 s trial resample point estimates, 

m=n=64, and the accident year pair is 1983-84. The last column 

of Table #0 shows results from an almost exact representation of 

what the distribution f ^ of I+T would be if v were chosen to 
I+T 

be infinity. $ 

* For a detailed description of bootstrapping see Efron and 
Tibshirani ref[l]. Efron coined the term "bootstrapping" in the 
late 1970's. 

For the method used to obtain this distribution, see section 
"OPERATIONAL BOOTSTRAPPING FOR TREND IN AVERAGE SIZE CLAIM." 
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Table  #0 

fl+T 

V= 

cumula- v=103 v=104 v=10 s infinity 

t i . e  1+÷ i+@ 1+@ 
.000001 
.00001 I .146 
.0001 .206 
.001 .264 
.01 0.378 0.392 .389 

.025 0.472 0.467 .462 
.05 0.544 0.535 •532 
.I 0.636 0.622 .622 
.2 0.748 0.737 •742 
.3 0.838 0.834 •840 
.4 0.938 0.925 .930 
.5 1.022 1.017 1.025 
.6 1.125 1.123 1.130 
.7 1.236 1.243 1.256 
.8 1.418 1.409 1.424 
.9 1.723 1.687 1.706 

.95 2.037 1.968 2.000 
.975 2.398 2.323 2.331 
• 99 2.964 2.871 2.833 

• 999 4.068 4.433 4.274 
• 9999 6. 458 5. 618 

• 99999 7 • 299 
.999999 

mean 1.121 1.061 1.055 

war-10 ÷3 .244 .204 .204 

n 64 64 64 

m 64 ~ 64 64 

^ 

I+T 

0.109 
0.146 
0. 179 
0.247 
0.375 
0.457 
0.526 
0. 618 
0.737 
0.837 
0.932 
1.028 
1.135 
1.261 
1.431 
1.723 
2.027 
2.370 
2.940 
4.844 
6. 635 
8.360 

10.239 

1.066 

.204 

64 

64 
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This resampling procedure is practical if v=n and m are each 

small. However, as v, n and/or m increase, this procedure 

becomes impractical. So, we turn to a method which we call 

"Operational Bootstrapping." 

OPERATIONAL BOOTSTAPPING FOR TREND IN AVERAGE SIZE CLAIM 

Resampling (With Replacement) Without Random Numbers 

In contrast to classical bootstrapping, where random numbers are 

used to do the resampling, we can use numerical convolutions 

to generate the distributions without using any random numbers. 

For example, consider the distribution 

fXI*X 2 

o f  

X I + X 2 

where X I and X 2 are independent identically distributed random 

variables, each distributed as 
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Xl Pt I I=l.n'. 

Symbolically, we can express fx,+x 2 in terms of the distributions 

of X, and X2, as follows: 

= f t 
fx~+xz = fx I + X 2 

t The symbol + between two distributions is being used here to 
mean convolute for sums. 
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x1+xl Pl .Pl 

x1+x2 Pl "P2 

x,+x., p, .p., 

x2+ xl P2. Pl 

xz+xz Pa" P2 

= 

Xa+ Xn' P2" Pn' 

Xn' +X1 Pn' "Pl 

X., +X 2 Pn' "P2 

(n, +Xn, Pn, 'Pn, 

which we might express as 

Using this distribution as our prototype and assuming that 

X1,X2, .... X n are independent identically distributed random 

variables each distributed as 

Xi P| I l=l,n' 

we can proceed recursively to generate 
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fX,+X2+X3+X 4 

where, since fX3+X 4 fX,+X 2 we can write 

fXI+X2+X3+X4 = fx1+x2 + fX3+X 4 = fX,+X 2 + fx1+x 2 ; 

and continue to perform convolutions between the results of other 

convolutions until we have obtained the desired result; namely, 

fx1+x2+. . . +X, . 

Proceeding naively in this manner, the number of lines in the 

resulting distributions could become prohibitively large from the 

standpoints of both computer storage and computing time. The 

APPENDIX - UNIVARIATE GENERALIZED NUMERICAL CONVOLUTIONS 

describes a method of overcoming this problem. This method 

(after dividing the amounts by n) produces a distribution having 

mean equal to the mean of the original sample and variance equal 

to the variance of the original sample. 

We can similarly generate the distribution 

fY,+Y2+...+Y. 
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of 

Yl + Y2 + --. + Y., 

where 

Y1 , Y2 , " "" , Ym 

are independent identically distributed random variables, each 

distributed as 

yl p, ]i:~,.'. 

To generate the distribution 

f ~ = f 
I+T (I/m)(YI+Y2+...+Y.) / f(izn)(X~+X2+...+Xn) 

of 

(i/m).(Yt + Y2 + --- + Y.) / ( (i/n).(X, + X 2 + ... + Xn) ), 

we can first generate 
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t 
fY,+Y~+...+Y, / fX,+X2+...+X n 

Letting 

fx2+x2+...+Xn be represented as [ u I Pl l~=1.n" 

and 

fY,+Y2+...+Y, be represented as [ vl Pt ] . 
~=I r m 

we have 

f (¥,+Y2+... +Y®) / (X1+X2+... +X~) 

= [ v] P) Ij:1,m./ [ ul Pt li=,,n- 

t The symbol / between two distributions is being used to mean 
convolute for quotients, dividing the first random variable by 
the second. 
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Then, fl+T = f(I/-) (YI+Y2+... +Y.)/( (I/n) (XI+X2+...+X,)) would 

be obtained by multiplying the amounts (not the probabilities) in 

the distribution f(y1+y2+...+y,)/(X1+X2+...+X, ) by n/m. 

The distributions f ^ generated by the methods of this section 
I+T 

are representations of the distribution fl+T which would have 

been generated by the method of the previous section if we could 

have generated an infinite number of random numbers, t For 

this reason we would expect the distributions shown in Table W0 

in the columns headed u=lO 3, v=10 4 and v=lO s to approach the 

distribution shown in the column headed "v=infinity" as v 

increases. 

t See APPENDIX - Univariate Generalized Nmnerical Convolutions. 
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C O N F I D E N C E  I N T E R V A L S  FOR T R E N D  - LARGE S I Z E D  R E S A M F L E S  

Lowrie and Lipsky* presented group major medical expense claims 

by claimant per accident year for each of the five years 1983 to 

1987. Their distributions are shown separately for adult or 

child combined with either comprehensive or supplemental 

coverage. We will focus on adult comprehensive coverage only, 

noting that the deductible is $i00 per calendar year and the 

coinsurance is 20%. 

We considered the random variable 

I+T 
W - i. 

E[I+~] 

Note that Eli+W] is clearly equal to unity. We were interested 

to find that fl+W shows a remarkable degree of stability as we 

vary the accident year pairs. Using the operational 

bootstrapping approach described in the previous section, the 

distributions fl+T and fl+W were generated for each of the 

accident year pairs 1983-84, 1984-85, 1985-86 and 1986-87 and are 

shown in Table #I. In Table #I the numbers of claims in the 

resamples varied from 66,260 to 111,263. We concluded that, 

* See ref[2]. 
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provided the numbers of claims are of this order of magnitude, 

fl+w can be used as a pivotal distribution; that is, that for 
^ 

any true trend @o the point estimates I+TI~ o can be considered to 

be distributed as f 
(i+~o). (l+w). 
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fl+T = 

Table #1 

m i 

(I/m) • Y I  (1/n~ • X! 
l = l  l = l  

f = f ^ 
I+W (I+T)/E[ I+T] 

, cumula- 1983-84 1984-85 1985-86 1986-87 

i tiv, 1+÷ l+W 1+~ l+W 1+÷ m+w 1+~ m+w 

.000001 
.00001 
.0001 
.001 
.01 

.025 
.05 
.i 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

.95 
.975 
.99 

.999 
.9999 

.99999 
.999999 

mean 

war.10 ¢3 

m 

.965 .934 
• 972 .940 
.979 .948 
.988 .956 
.999 .967 

1.004 .972 
1.009 .976 
1.014 .982 
1.021 .988 
1.025 .992 
1.029 .996 

.982 936 
• 989 942 
.996 949 

1.005 958 
1.016 968 
1.021 973 
1.026 977 
1.031 982 
1.037 988 
1.042 .993 
1.046 .996 

979 .938 
986 945 
993 951 

1 001 959 
1 011 969 
1 016 974 
1 021 978 
1 026 983 
1.032 .989 
1 036 .993 
1 040 .997 

1.001 .938 
1.007 .945 
1.015 .951 
1.023 .959 
1.034 .969 
1.039 .974 
1.043 .978: 
1.048 .983 i 
1.054 .989 
1.059 .993 
1.063 .997 

1.033 1.000 
1.037 1.004 
1.041 1.007 
1.046 1.012 
1.053 1.019 
1.058 1.024 
1.063 1.029 
1.069 1.034 
1.081 1.046 
1.091 1.055 
1.099 1.064 
1.109 1.073 

1.033 1.000 

.209 .223 

66260 

76857 

1.049 1.000 
1.053 1.003 
1.057 1.007 
1.062 1.012 
1.068 1.018 
1.073 1.023 
1.078 1.027 
1.084 1.033 
1.095 1.043 
1.104 1.052 
1.113 1.060 
1.122 1.070 

1.049 1.000 

.211 .192 

76857 

83457 

1 043 1.000 
1 047 1.003 
1 051 1.007 
1 055 1.011 
ii 062 1.017 
1 067 1.022 
1 071 1.027 

~i 077 1 .032  
088 1.042 

.097 1.051 
1.105 1.059 
1.115 1.068 

1.044 1.000 

.195 .179 

83457 

88977 

1.066 1.000i 
1.070 1 . 0 0 3  i 
1.074 1.007 
1.078 1.011 
1.085 1.0171 
1.090 1.022 
1.095 1.027 
i.i00 1.032i 
1.112 1.042 
1.121 1.051 
1.129 1.059 ~ 
1.139 1.068 

1.066 1.000 

.204 .179 

88977 

111263 I 

n 

t If = 
(i/m) • YI 

I=1 

used to mean 

f ( l / m )  • YI 

convolute 

+ f + 
( l / i )  " Y 2  

f 
(i/m) "YI ' 

... + 

f (l/m) " Y 2 '  

f is being 
(I/m) • Y1 

• . . and f 1 l/m) • Ym 
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We note that 

fl+W is approximately N(E[I+W],Var[I+W]) and 

f ^ is approximately N(E[I+T],Var[I+T]).t 
I+T 

A Numerical Example of Determining a Confidence Interval for 

Trend Using Large Resamples 

We now turn our attention to determining a confidence interval 

for the true trend ~. We wish to determine 

@i such that Pr( @I < @ } = 1 - ~/2 

and 

~2 such that Pr{ ~ < ~2 ) = 1 -u/2, 

so that the random interval (O1,O2) encloses the true trend ~ at 

the desired level (l-a) of confidence. 

From Table #i we can select a value of W (say w,) such that 

1 - a/2 = Pr{ w I < W ); that is, such that 

1 - u/2 = Pr{ l+w I < I+W } 

t An expression such as N(~,~2~ is being used, as is customary, 

to indicate a normal distribution with mean ~ and variance 2. 
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= Pr{ l+w I < (I+T)/(I+O)) 

= Pr( (l+w,)-(l+O) < I+T ) 

A 
= Pr{ i+O < (I+T)/(I+w,) ) 

= Pr( 0 < (l+T)/(l+w,) - I ) 

so we choose O, = (l+T)/(l+w,) - I. 

Similarly, from Table #I we can select a value of W (say w2) such 

that 

1 - ~/2 = Pr{ W < w 2 }; that is, such that 

1 - ~/2 = Pr( l+W < l+w 2 } 

= Pr((I+T)/(I+O) < l=w2) 

= Pr{ I+T < (l+w2)'(l+O) } 

= Pr{ (l+T).(l+w2) < i+O } 

= Pr( (I+T)/(I+w2)-I < O ) 

so we choose 02 = (l+T)/(l+w2) - i. 

If i-~ = 95%, then referring to Table #I (1983-84) we can let 

l+w I = .972 and l+w 2 = 1.029 and find that 

01 = 1.033/1.029 -i = .004 and 

02 = 1.033/.972 -i = .063. 

Therefor, the confidence interval for the true trend O is 

(O2,O1) = ( 0.4%, 6.3% ); 

3.3% was the corresponding point estimate. This result and the 

corresponding results for the other calendar year pairs are shown 

in the following table: 
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(1+~) 

Mean and t 95% Confidence Calendar 
50th Percentile Interval Year 

1.035 (1.004,1.063) 1983-84 
1.049 (1.021,1.078) 1984-85 
1.044 (1.016,1.071) 1985-86 
1.066 (1.039,1.095) 1986-87 

n 

66260 
76857 
83457 
88977 

m 
76857 
83457 
88977 

111263 

Test of Normality Assumptions 

In order to see whether we could produce equally good confidence 

intervals making use of some normality assumptions, we assumed 

that fx*n and fy*" could be approximated by the normal 

distributions N(n.E[X],n-Var[X]) and N(m.E[Y],m.Var[Y]), 

respectively, f ^ was then obtained by generating 
I+T 

N(m.E[Y],m.Var[Y]) / N(n-E[X],n.Var[X]) 

and transforming the resulting distribution by multiplying the 

amounts (not the probabilities) by n/m. The resulting figures 

turned out to agree exactly with the figures shown in Table #1. 

t The mean and the median could turn out to be different, but 
here they happen to be identical to the number of decimal places 
shown. 

A referee pointed out that if X and Y are asymptotically normal 

85 



In the following section we investigate the corresponding 

situation where n and m are equal and medium sized, say 64 to 

16,384. 

CONFIDENCE INTERVALS FOR TREND - MEDIUM SIZED RESAMPLES 

So far we have been dealing with resamples of size n or m from an 

original sample of size n or m, respectively, either using or not 

using random numbers. But even though the original samples are 

of size n or m, we can generate resamples of, say, size n (<n) 

random variables and T = Y / X - I, then T is asymptotically 

N(~,~ 2) with 

= ~y / U X -i and 

2 2 2 4 2 2 
= ~¥ " ~X / ~X ' n + ~y/ ~X " m; 

and that these can be approximated by replacing the population 
quantities with the sample values. 

If we had available (and used) the detailed data underlying the 
loss distributions presented by Lowrie and Lipsky (ref [2]), our 
confidence intervals would be slightly wider. Using the 

calendar year pair 1987-1988 and the above formula for 2 we find 

that the ratio of 2 based on the detailed data to 2 based on 
the grouped data is 1.016; that is, a 1.6% deficiency in the 
variance. The data for 1988 was not shown in reference [2]; 
however, Professor Lowrie was kind enough to furnish that data to 
me for the purposes of this paragraph. Professor Lowrie said 
that the "STANDARD DEVIATION" figures shown in reference [2] were 
calculated by an incorrect formula and should not be used. 
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and m (<m); in particular, we can choose n = m ( < min(n,m)). 

The purpose of doing this would be to see what confidence 

intervals for trend might look like if the resamples were of 

medium (rather than large) size. 

Consider 

fl+T = f(I/~)(¥1+Y2+ ... + Y~) / fcl/~)(X1+X2+ ... + X~) 

y f i 7f 
(I/K) • YI (i/5) - X i 

I=I |=I 

where n takes on the value 64, 128, ..., or 1024 and the X i and 

¥, are based on calendar years 1983 and 1984, respectively, 1984 

and 1985, respectively, 1985 and 1986, respectively, or 1986 and 

1987, respectively. The distributions fl+T are shown in Table 

#2, along with the corresponding standardized distributions fl+W 

= f(1+~)/E[1+~]. 

For determining confidence intervals for trend where the 

resamples are of medium size, we wish to assume for given n that 

fl+W 

does not differ significantly as we vary the calendar year pairs. 

The reasonableness of making this assumption seems to be 

confirmed by the fact that for fixed n = m the standardized 

distributions fl+W in Table ~2 vary as little as they do by 
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calendar year pair, at least in the portion of the distributions 

between cttmulatives of .025 and .975. 

A Numerical Example of Determining a Confidence Interval for 

Trend Using Medium Resized Samples 

Suppose a trend factor of 1.15 has been observed from one year to 

another and the number of claims is 64 in each of the two 

accident years. We will now determine a 95% confidence interval 

for the true severity trend O, again using the formulas shown in 

the previous numerical example. 

Referring to Table #i (1983-84) we can let i+w,=2.108 and 

l+wa=.406 if i-~=.95; so 01 = 1.15/2.108 = .546 and ~ = 

1.15/.406 = 2.83. Thus the estimated 95% confidence interval 

for the underlying trend factor i+O would be 

(.546,2.83). 

This result and the corresponding results for the other calendar 

year pairs are shown in the following table: 
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50th 

mean percentile 

1.125 1.028 
1.147 1.050 
1.142 1.037 
1.171 1.059 

95% 
confidence 

interval 

(.546,2.83) 
(.542,2.91) 
(.533,2.96) 
(.524,3.05) 

calendar 

year ,n 
1983-84 164 64 
1984-85 !64 64 
1985-86 64 64 
1986-87 164 64 

Table #2 includes distributions for n=m=64,128,256,512 and 1024 

for calendar year pairs 1983-84, 1984-85, 1985-86 and 1986-87; 

and distributions for n=m=2048, 4096, 8192 and 16384 for calendar 

year pair 1983-84. 
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Table #2 

6 4  64  

(I/64) ' Y ! (I/64) • X! 
L=l I=! 

f = f 
l+W (1+÷)/E[I+~] 

cumulat- 1983-84 1984-85 1985-86 1986-87 

tlve 1÷÷ 1+w 1+÷ l÷W 1+÷ l÷W 1+÷ a÷w 

.000001 lO9 097 101  . 0 8 8  123 
.00001 
.0001 
.001 
.01 

.025 
.05 
.i 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

.95 
.975 
.99 

.999 
.9999 

.99999 
.999999 

m e a n  

v a t  

n 

146 
179 
247 
375 
457 
526 
618 
737 
837 
932 

1 028 

129 
159 
220 
334 
406 
468 
550 
655 
744 
829 
914 

124 
161 
220 
366 
453 
531 

.623 

.749 

.854 

.949 
1.050 

.108 

.140 

.191 

.319 

.395 

.463 

.5431 

.652 

.7441 

.8271 

.915 

• i01 .087 
.122 .104 
.159 .135 
225 .192 
360 .308 
441 .377 
520 .444 
614 .524 
749 .639 
853 .728 
951 .812 

i 059 .904 
1.135 
1.261 
1.431 
1.723 
2.027 
2.370 
2.940 
4.844 
6.635 
8.360 

10.239 

1.125 

.267 

64 

64 

009 
121 
272 
532 
802 
108 
614 
308 
900 
434 
104 

1.000 

.211 

1.159 1.010 
1.294 1.127 
1.474 1.284 
1.775 1.547 
2.094 1.8251 
2.435 2.122 
2.924 2.548 
4.237 3.693 
5.578 4.861 
6.972 6.076! 
8.453 7.366 

1.147 1.000 

.264 .201 

64 

64 

.107 
150 .131 
193 .169 
253 .221 
369 .323 
444 .389 
518 .453 
610 .535 

.737 .646 
839 .735 
937 .821 

1 037 .909 
1 151 1.008 
1 283 1.1241 
1 464 1.2821 
1.770 1.551 
2.099 1.839i 
2 465 2.159! 
3 011 2.637 
4.714 4.129 
6.461 5.659 
8.138 7.128! 
9.926 8.695 

1.142 1.000 

.283 .217 

64 

64 

1 175 1.003 
1 316 1.123 
1 502 1.283 
1 826 1.559 
2.172 1.854 
2.570 2.194 
3.218 2.747 
5.435 4.640 
9.069 7.742 

12.108 10.336 
14.811 12.644 

1.171 1.000 

.338 .246 

64 

64 
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Table #2 - Continued 

128  128  

(I/~28)- YI II/12S) .XL 
!=I 1~,1 

I+W (I+T)/El I+T] 

cumula- 1983-84 1984-85 11985-86 1986-87 
^ A 

tire 1+3 l+W I+T l+W I+T l+W I+T I+W 

.000001 
.00001 
.0001 
.001 
.01 

.025 
.05 
.i 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

.95 
.975 
.99 

.999 
.9999 

.99999 
•999999 

mean 

war 

.209 .193 

.246 .227 

.295 .272 
• 366 .338 
.489 .452 
.560 .518 
.624 .576 
.702 .649 
.803 .742 
.881 •814 
.954 .881 

1.028 .949 
1.107 1.023 

.187 •170 

.223 .202 

.269 .244 

.339 .307 
• 474 .429 
.555 .503 
.626 .568 
.710 .643 
.816 .740 
.899 .814 
.975 .883 

1.051 .953 
1.135 1.028 

• 221 202 
255 233 
305 278 
376 343 
489 446 
556 507 
618 564 
697 636 
804 737 
886 .808 
963 .878 

1.039 .947 
1.122 1.024 ~ 

.192 .171 

.227 .202 

.274 .244 

.347 .309 

.475 .423 

.551 .490 

.619 .551 

.704 .627 

.813 .724 

.902 .802 

.980 .872 
1.060 .943 
1.147 1.021 

1.200 1.108 
1.319 1.219 
1.515 1.399 
1.717 1.586 
1.936 1.788 
2.271 2.098 
3.168 2.927 
3.982 3.6781 
4.813 4 . 4 4 6  I 
5.703 5.2681 

1.082 1.0001 

.126 .108 

128 

128 

1.231 1.116 
1.356 1.229 
1.559 1.413 
1 758 1.593 
1 958 1.774 

2.224 2.015 
2.887 2.616 
3 544 3.211 
4 211 3.817 
4.893 4.434 

1 103 1.000 

.127 .104 

128 

128 

1.220 1.112 1 
1.347 1.228 1 
!1.556 1.419 1 
1.766 1.610 1 
1.983 1.809i 2 
2.291 2.08912 
3.129 2.854 i 3 
3.930 3.584 5 
4.733 4.316 6 
5.577 5. 087 7 

1.097 1.000 1 

• 135 • 1121 

128 

128 

.249 i.iii 

.383 1.231 

.602 1.426 

.832 1.630 
• 081 i. 851 
.452 2.181 
• 689 3 • 282 
261 4 - 681 
456 5.743 

• 627 6. 785 

124 i. 000 

.160 .127 

128 

128 
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Table #2 - Continued 

256 256 

| I / 256"  Y !  11/2561 - X i 
i = l  i ' 1  

f = f 
l+W (l+÷)/E[l+~] 

cumula- 1983-84 1984-85 
^ ^ 

tlve I+T I+W I+T l+W 

.000001 
.00001 
.0001 
.001 
.01 

.O25 
.05 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

.95 
.975 
.99 

.999 
.9999 

.99999 
.999999 

mean 

war 

i 

327 309 
369 349 
423 399 
495 468 
602 569 
660 623 
713 673 
776 732 
857 809 
919 867 
974 920 

1.029 971 
1.088 1.027 
1.154 1.089 
1.239 1.170 
1.375 1.298 
1.508 1.423 
1.644 1.552 
1.829 1.726 
2.278 2.151 
2.271 2.555 
3.137 2.962 
3.570 3.370 

1.059 1.000 

• 062 .055 

256 

2 5 6  

.301 279 

.342 317 

.397 369 

.472 438 

.589 546 

.656 608 

.715 663 

.784 .727 

.871 .808 

.936 868 

.995 923 
1.052 975 
1.113 1 032 
1.183 1 097 
1.270 1 178 
1.406 1 303 
1.531 1.420 
1.650 1.430 
1.803 1.671 
2.167 2.010 
2.518 2.335 
2.864 2.655! 
3.206 2.9731 

1.078 1.000 

.063 .055 

256 

256 

1985-86 1986-87 

I+T I+W I+T I+W 

338 .315 
378 .353 
430 .402 
501 .467 
603 563 
660 616 
711 664 
776 724 
859 802 
923 862 
982 916 

1 040 970 
1 102 1.028 
• 172 1.094 

1 262 1.178 
1 403 1.309 
1 537 1.435 
1 670 1.559 
1 846 1.723 

1.001 
1.061 
1.126 1 
1.201 1 
1.296 1 
1.448 1 
1.597 1 
1.750 1 
1.963 1 

.309 281 

.350 319 
• 405 369 
• 480 437 
.594 542 
.656 598 
.714 651 
• 783 714 
.871 794 
.939 856 

913 
967 
026 
094 
181 
319 
456 
595 
789 

2 279 2.127 
2.696 2.516 
3.111 2.904 
3.528 3.293 

1.097 1.000 

• 135, .058 

256 

256 

2.654 2.419 
3.324 3.029 
3.904 3.558 
4.522 4.121 

1.097 1.000 

• 079 .066 

2 5 6  

256 
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Table #2 - Continued 

5 1 2  5 1 2  

f ^ :  X f  / 
I + T  ( 1 / 5 1 2 )  • Y |  1 1 / 5 1 2 )  • X I 

t = l  t = t  

f = f ^ ^ 
I+W (I+T)/E[ I+T] 

cumula- 

tive 

.000001 
.00001 
.0001 
.001 
.01 

.025 
.05 
.i 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

.95 
.975 
.99 

.999 
.9999 

.99999 
.999999 

m e a n  

w a r  

1983-84 

l+W l+W 

.457 .436 

.498 .476 

.549 .525 

.614 .587 

.702 .671 

.748 .715 

.789 .754 

.838 .801 

.901 .860 

.947 .905 

.989 .945 
1.030 .984 

1 9 8 4 - 8 5  

I+T I+W 

1 9 8 5 - 8 6  

I+T I+W 

1986-87 

I+T I+W 

• 432 .405 
.475 .446 
.529 .497 
.599 .563 
.696 .654 
.748 .702 
.793 .745 
.847 .796 
.914 .859 
.965 906 

1.009 948 
1.052 988 

.465 .440 

.505 .478 

.555 .525 

.618 .585 

.705 .666 

.750 .709 

.791 .748 

.841 .795 

.906 .856 

.954 .902 

.998 .943 
1.041 .984 

• 440 .406 
• 483 .446 
.536 .495 
".606 .560 
.701 .648 
.751 .694 
.796 .735 
.850 .785 
• 919 .849 
.971 .897 

1.017 .940 
1.063 .982 

1.073 1.025 
1.121 1.071 
1.182 1.129 
1.274 1.217 
1.361 ~.300 
1.443 1.379 
1.549 1.480 
1.798 1.718 
2.035 1.944 
2.266 2.165 
2.492 2.381 

1.047 1.000 ! 

.031 .028 

512 

512 

1.097 1 030 
1.146 1 076 
1.207 1 134 
1.298 1 219 
1.379 1 295 
1.454 1 365 
1.546 1 452 
1.760 1.653 
1.959 1.840 
2.149 2.019 
2.334 2.192 

1.065 1.000 

.032 .028 

512 

512 

1.086 1.027 
1.137 1.075 
1.200 1.134 
1.295 1.224 
1.381 1.306 
1.463 1.323 
1.566 1.481 
1.811 1.712 
2.042 1.930 
2.266 2.142 
2.485 2.349 

1.058 1.000 

.033 .029 

512 

512 

i. Ii0 1.026 
1.164 1.075 
1.232 1.138 
1.336 1 234 
1.433 1 324 
1.529 1 413 
1.660 1 533 
2.017 1 863 
2.350 2 171 
2.667 2 464 
3.000 2 767 

1.082 1.000 

.039 .034 

512 

512 
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Table #2 - Continued 

1024 1024 

I ' I t (I/1024) • YI (I/i0241 • X| 
I=I i=l 

f = f ^ 
l+W (I+T)/E [ I+T] 

1983-84 1984~85 1985-86 1986-87 

I+T l+W I+T I+W I+T I+W I + T  l+W 

cumula- 

tive 

. 0 0 0 0 0 1  
.00001 

. 0 0 0 1  
.001 
.01 .o251 
• 0 5  I 

. 1  

. 2  

. 3  

4 
5 

6 

7 

8 

9 

• 9 5  I 
.975 
.99 

. 9 9 9  I 
. 9 9 9 9  

. 9 9 9 9 9  
. 9 9 9 9 9 9  

mean 

v a t  

a 

• 549 559 
• 592 594 
• 641 636 
.699 687 
• 774 754 

• 812 788 
.844 819 
.884 854 

.565 .532 
• 607 .570 
• 655 .615 
.713 .670 
.787 .743 

• 824 .780 
.857 .812 
.897 .851 

• 549 .559 
.593 .593 
.643 .634 
.702 .684 
.778 .751 

.816 .784 

.850 .814 

.890 .851 

• 524 .531 
• 573 .567 
.627 .611 
.693 .665 
.776 .736 

• 817 .772 
• 854 .804 
• 898 .842 

.933 .899 

.970 .933 
1.002 .963 
1.033 .992 
1.065 1.022 
i.i01 1.055 
1.144 1.096 
1.206 1.156 
1.261 1.210 
1.311 1.260 
1.371 1.322 
1.510 1.464 

1.639 1.595 
1.766 1.720 

1.892 1.841 

1.040 1.000 

.016 .014 

1024 

1024 

i 
.947 .898 
.984 934 
.017 965 
.049 994 
.082 11024 
.119 1.058 

i~.164 1.098 

~ . 2 2 9  1 . 1 5 7  

.287 1.207 
Ii.339 1.253 
Ii.404 1.209 

1.555 1.434 
1.697 1.547 
1.839 1.652 

1.984 1.752 

1.058 1.000 

.017 .015 

1024 

1024 

.940 .897 
• 978 .931 

1.011 .962 
1.043 .992 
1.076 1.022 
1.113 1.057 
1.157 1.098 
1.222 1.160 
1.278 1.214 
1.330 1.263 
1.392 1.324 
1.537 1.464 
1.673 1.591 
1.806 1.713 

1.941 1.829 

1.051 1.000 

.017 .015 

1024 

1024 

• 953 .890 
• 995 .927 

1.031 .959 
1.066 .990 
1.103 1.022 
1.143 1.058 
1.192 1.103 
1.263 1.169 
1.325 1.229 
1.382 1.286 
1.453 1.360 
1.615 1.540 
1.769 1.710 
1.921 1.874 

2.076 2.036 

1.075 1.000 

.021 .017 

1024 

1024 

94 



Table #2 - Continued 

5÷÷ = I t , It 
( l / ~ ) . Y l  I 1 / ~ - X  i 

i=l i=1 

f ~ f ^ ^ 
I+W (I+T)/E [ I+T] 

cumula- 1983-84 1983-84 1983-84 1983-84 
A 

tire I+T l+W I+T I+W I+T I+W I+T I+W 

.000001 
.00001 
.0001 
.001 
.01 

.025 
.05 
.i 
.2 
3 
4 
5 
6 
7 
8 
9 

.95 
.975 
.99 

.999 
.9999 

.99999 
.999999i 

m e a n  

v a r  

& 

• 674 650 
.707 682 
• 744 718 
.788 760 
• 844 814 
.872 841 
• 897 865 
.925 893 
.961 927 
• 988 953 

1.011 975 
1.033 .997 
1.056 1.018 
1.080 1.042 
I.ii0 1.071 
1.153 1.112 

.769 .743 

.794 .767 
822 .794 
855 .826 
897 .866 
917 .886 
935 .903 
956 .924 
982 .949 

1.001 .967 
1.018 .983 
1.033 .998 
1.049 1.014 
1.066 1.030 
1.087 1.050 
1.116 1.079 

• 841 813 
• 859 831 
• 880 851 
.904 875 
• 935 904 
.950 919 
• 963 931 
• 978 946 
• 997 964 

1.010 977 
1.022 988 
1.033 999 
1.045 1.010 
1.057 1.022 
1.071 1.036 
1.091 1.055 

894 
907 
923 
941 
963 
974 
983 
994 

1 • 007 
i. 017 
1.025 
1.033 1 
1.041 1 
i. 050 1 
i. 06O 1 
i. 074 1 

.865 

.878 

.893 

.910 

.932 

.942 

.951 
962 
974 
984 
992 
000 
OO7 
016 
O25 
039 

1.189 1.147 

1.222 1.178 
1.261 1.216 
1.347 1.299 
1.424 1.374 
1.496 1.443 
1.564 1.509 

1.037 1.000 

• 008 .007 

2048 

2048 

1.141 1.102 
1.163 1.124 
1.189 1.149 
1.246 1.203 
1.294 1.251 
1.339 1.293 
1.380 1.333 

1.035 1.000 

.004 .004 

4096 

4096 

1.108 1.072 
1.123 1.086 
1.141 1.103 
1.179 1.140 
1.211 1.171 
1.240 1.199 
1.266 1.224 

1.034 1.000 

.002 .002 

8192 

8192 

1.086 1.050 
1.096 1.060 
1.108 1.072 
1.134 1.097 
1.156 1.118 
1.175 1.137 
1.193 1.154 

1.034 1.000 

.001 .001 

16384 

16384 
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Test of Normality Assumptions 

If n and m are sufficiently large, we can avoid performing the 

convolutions to produce 

f and f 
YI+Y2+...+YI X,+X2+...+X ~ . 

That is, if f and f are close to being 
YI+Y2+...+Yi XI+X2+...+X ~ 

normal distributions, we can assume that 

f 
Y~+Ya+... +Y~ 

is N( E(YI+Y2+ ... + Yi), Var(Y1+Y2+ --- + Y~) ) 

a n d  

f is N( E(XI+X2+ ... + X~), Var(X1+X2+ ... + X~) ) 
X,+X2+...+X~ . 

and do only a single convolution for quotients; namely, 

*A good discretized version of a normal distribution can be 
obtained by generating a binomial distribution b(n;p), where n 

is large and p = .5; and then a discretized version of n(~,~ 2) 
can be obtained by performing the usual type of transformation 

x - n - p  
z = 6 "  + I / .  

n ' p ' g  
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N(E( (iz~. (Y2+y2+...yi), Var( ~,zi~" (Y~+Y2+...+YI) ) 

/ 

N(E( ~II~. (XI+Xz+...+X~) ), Var( c~1~-(X,+ X2+...+Xs) ). 

Based on the underlying adult comprehensive major medical claim 

samples and the generated distributions, we can draw the 

following conclusions for this data: 

I. For resample sizes of 256 or less, the assumption of normality 

for distributions of average size claims may not be particularly 

useful; this is because such assumption produces negative 

average size claim per claimant with appreciable probability. 

2. From Table #3 it can be ascertained how good the assumption of 

normality for distributions of average size claim per claimant 

are for generating distributions of point estimates of trend for 

resamples of size n=m=512. 

3. Table #3 for m=n=1024 (not shown) demonstrated that the 

assumption of normality for distributions of average size claim 

distributions for resamples of size 1024 produces point estimate 

of trend distributions shown in Table #Z (for n=m=1024), to an 
^ 

accuracy of at least 3 decimal places in I+T. This does not 

imply that the point estimate of trend distributions themselves 

are normal. 
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4. Table #2 can be used almost directly to determine how large 

the samples need to be in order for the trend distributions 

themselves to be essentially normal; that is, whether 

^ ^ 

f ^ is approximately N(E[I+T],Var[I+T]) or 
I+T 

f is approximately N(E[I+W],Var[I+W]). 
I+W 

Of course, it is easy to see that such normality is lacking if 

the median is not equal to the mean or if symmetry is lacking. 

If the median is close to the mean and a fair degree of symmetry 

exists, then you may want to compare 

^ 

N(E[I+T],Var[I+T]) with f ^ or 
I + T  

N(E[I+W],Var[I+W]) with fl+W 

at selected cumulative probabilities, e.g. .025, .05, .95 and 

.975. 
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Table #3 

512 512 

q+÷= l , {1/512) "Yi (1/512) . X  I 
I=1 ~=1 

FI+ ~, = N(E((,/sI2),(YI+Y2+...YsI2),Var((I/sI2)'(YI+Y2+...+Ys,2)) 

/ 
N(E(~*/S*2)" (XI+X2+...+Xsl 2)), Var(c,/st2J.(X1+ Xz+...+Xs12)) 

cumula- 1983-84 19E4-85 1985-86 1986-87 

ti e 1+÷ I+T'^ i I+T^ i+÷' I+T'^ I+T^ 
.000001 
.00001 
.0001 
.001 
.01 

.025 
.05 
.i 
.2 
.3 
.4 
.5 
.6 
.7 
8 

.9 
.95 

.975 
.99 

.999 
.9999 

.99999 
.999999 

mean 

var 

• 457 .3841 
.498 .440 
• 549 .506 

.614 . 5 8 2  I 

.702 .680 

.748 .730 

.789 .774 

.838. .826 

.901 .894 

.947 .944 

• 432 .405 
.475 .460 
.529 .523 
.599 .597 
.696 .694 
.748 .743 
.793 .787 
.847 .840 
• 914 .907 
.965 .959! 

.465 .381 

.505 .439 
• 555 .504 
.618 .583 
.705 .683 
.750 .734 
.791 .778 
.841 .832i 
.906 .900 
.954 . 9 5 3  I 

.440 

.483 

.536 
• 606 
.701 
.751 
.796 
.850 
.919 
.971 

338 
403 
475 
563 
671 
726 
776 

.835 

.909 

.966 
.989 .990 

1.030 1.033 
1.073 1.079 
1.121 1.130 
1.182 1.193 
1.274 1.286 
1.361 1.371 
1.443 1.450 
1.549 1.550 
1.798 1.792 
2.035 2.038 
2.266 2.303 
2.492 2.598 

1.047 1.048 

• 031 .034 

512 

512 

1.009 1.004 i 
1.052 1.050 
1.097 1.096i 

1.146 1.1491 
1.207 1.214 
1.298 1.315 
1.379 1.404 
1.454 1.490 
1.546 1.598 
1.760 1.869 

[1.959 2.155 
2 . 1 4 9  2 . 4 7 2  
2 . 3 3 4  2.840 

1 . 0 6 5  1 . 0 6 6  
I 

. 0 3 2  . 0 3 6  

512 

512 

.998 .998 i 
1.041 1.043 
1.096 1.0911 

1.137 1 . 1 4 3  i 
1.200 1.208 
1.295 1.305 
1.381 1.393! 
1.463 1.4751 
1.566 1.579 
1.811 1.834 

i 
. 0 4 2  2 . 0 9 7  
. 2 6 6  2 . 3 8 2  
.485.2.703 

1 1 . 0 5 8  1 . 0 5 9  

.033 .036 

512 

512 

1.017 1.017 
1.063 1.066 
1.110 1.117 
1.164 1.176 
1.232 1.248 
1.336 1.355 
1.433 1.452 
1.529 1.545 
1.660 1.662 
2.017 1.953 
2.350 2.259 
2 667 2.599 
3 000 2.367 

1.082 1.084 

.039 .044 

512 

512 

The columns headed I÷T in this table are taken from Table #2. 
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R E C ~  :~ AND C O N C L U S I O N S  

We started with original samples of comprehensive major medical 

claims per claimant, one sample for each of two calendar years. 

By resampling with replacement (using numerical convolutions) 

from the corresponding empirical distributions, we generated 

distributions of average size claim per claimant where the number 

of resamples was a power of 2 from 6 to 15 (i.e. 64, 128, 256, 

512, 1024, 2048, 4096, 8192 or 16384). Assuming an ec~/al 

number of resamples in each of two calendar years, we convoluted 

these latter distributions for quotients to obtain distributions 

of point estimates for trend in average size claim per claimant 

from the one calendar year to the other. The results are shown 

in Table #2. 

Table #i presents similar distributions of resample point 

estimates for trend in average size claim per claimant where the 

numbers of resamples in adjacent calendar years are those of the 

original experience during the observation period (1983 to 1987, 

inclusive). The distributions in Table #I are close to normal, 

which is perhaps not unexpected in view of the fact that the 

numbers of claims lie in the range from 66,260 to 111,263. 

Standardizing these trend distributions by dividing the amounts 

(not the probabilities) by their respective mean values, we find 

a high degree of stability as we move from one pair of calendar 
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years to another. This enables us to use the distributions in 

Table #1 for determining confidence intervals for trend in 

average size claim per claimant, where we are dealing with such 

large resample sizes. 

We show how we might use Table #2 to estimate 95% confidence 

intervals for trend where medium-sized samples of comprehensive 

major medical losses per claimant are available. Of course, 

since the underlying experience data involves $i00 deductible/20% 

coinsurance and essentially no maximum, Table #2 should be used 

with caution if the major medical plan deviates significantly 

from this. Table #2 shows considerable stability t in the 

standardized distributions of resample point estimates for trend, 

as we move from one pair of calendar years to another. This 

enables us to use the distributions in Table #2 for determining 

95% confidence intervals for trend in average size claims per 

claimant , where we are dealing with resamples of medium sizes. 

The numerical convolutions (for sums and quotients) used in 

producing the figures in Table #I, #2, and #3 were generated 

using the methods described in APPENDIX - UNIVARIATE GENERALIZED 

NUMERICAL CONVOLUTIONS using c=10 -Is and nax=lO00. For any one 

convolution the total of the discarded probability products did 

not exceed 5-10-7; choosing a smaller value for c would make this 

t At least where the cumulative is in the range from .025 to 
.975. 
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figure even smaller. 

APPENDIX - UNIVARIATE GENERALIZED NUMERICAL CONVOLUTIONS 

If fx and fy are independent distributions of the discrete finite 

univariate random variables X and Y, respectively, then the 

distribution fX+Y of the sum W=X+Y is the convolution fx + fY of 

fx and fy for sums.* 

Let fx be expressed in element notation as 

xl, . pl,] 

Xln I Plnl] 

which we will also express as 

xl, pl~ Ii=I.ni. 

* We are using the operation + instead of * between two 
distributions to indicate convolution for sums; that is, fx + fY 
instead of fx * fY" We use the notation fx/fy for the 
convolution of fx and f¥ for quotients X/Y. 
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Similarly, let fy be [ x2j p2j ] 
J=1,n 2 

Then fl+W = fX+Y = fx + fY = 

xl,+x21 pl I"p2, 

xl1+x22 pl,'p22 

Xl1+X2. 2 Pll • p2.2 

x12+x21 p12.p21 

XI2+X22 pl 2 • p22 

x12+X2.2 pl 2" P2. 2 

X13+X21 p13"p21 
X13+X2 ~ p13"p22 

X13+X2. z pl 3" P2. z 

Xln,+X21 Pln~p2, 

I Xl.,+X22 Pin, • p22 

xl.,+x2n 2 Pln I "P2. 2 

Matrix (i) 

which we might also express as 
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[ 1 xli+x2 j pl i.p2j 

I = l ,n l ;  J=l,n 2 

If n I and n 2 are (say) i000, then generating this matrix would 

involve 106 lines. $ This would be practical if we do not 

intend to use fl+W in further convolutions. But, if (for 

example) we want to generate the distribution fu = fw + fz of 

U = (X+Y)+Z where 

fz = [ x3k P3k Ik=~.,OO o 

then we would be dealing with 109 lines. And further 

convolutions would become impractical, because of both the amount 

of computer storage and the amount of computing time required. 

The following algorithm has been designed to overcome these 

t For a generalized convolution of fx, and fx2 to generate the 

distribution fxt/x 2 of the random variable XI/X 2 this expression 

would be replaced by 

xll/x2 j pl I-p2] ] |=l'nl;J:l'n2 

¢ There may be some collapsing due to identical amounts on 
different lines. The number of lines produced is reduced by 
representing on a single line all lines with identical amounts; 
on that line is the amount and the sum of the original 
probabilties. 
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problems. 

The Univariate Generalized Numerical Convolution Algorithm 

Choose c>O. Typically c is chosen to be 10 -I° or l0 -Is. 

Loop #i: 

Perform the calculations indicated in Matrix (i) above, 

discarding any lines for which the resulting probability is less 

than ~; that is discard lines for which 

pl1"p2 j < c. 

The purpose of this is to avoid underflow problems and to 

increase the fineness of the partitions (meshes) to be imposed. 

Calculate 

low x = rain( xl1+x2j,0 I PlI'p2j < c ) 

t In many applications we replace xli+x2 j by log(xl,+x2j), which 

will allow finer subintervals at the low end of the range. Of 
course, to be able to use logs the range of X+Y should not 
include values less than one (to avoid theoretical and numerical 
problems). 

For a generalized convolution of fX, and fx2 to generate the 
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i=1,2,...,n I 

J=1,2,...,n 2 

and 

high x = max{ xli+x2j-O I PlI"p2j < c }. 

[=l,2,...,n I 

J=1,2,...,n 2 

tt 

Let nax be a positive integer selected for the purpose of 

creating the following partition: 

highx-low x 
let A = 

nax/2-1 

partition the interval (1OVx-A,high~+A) into 

subintervals: 

nax/2+l 

distribution fXl/X 2 of the random 

expressions would be replaced by 

lov x = rain( xlL/x2j*O I PlL'p2j < c } 

I = 1 , 2 , . . .  ,n 1 

J=1 ,2 , . . . , n  2 

and 

high~ = max{ xll/x2j~O i PlI'P2j < c }. 

1 : 1 , 2 , . . . , n  1 

) = l ,  2 ,  . . . , n 2 

variable XI/X 2 these 
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highx-lOw x 
let A - 

nax/2-1 

partition the 

subintervals: 

interval ( 1 ow x- A, h ighx+ A ) into nax/2+l 

r Subinterval I ( r )  

11 
'2 
3 

4 

naz/2 
nax/2+ll 

[0,O] 
( lovx-A, low x ) 
[ lOWx, lOWx+l.A ) 
[ lOWx+l'd, lowx+2.A ) 

[ lOWx.(nax/2-3)'A, highx-A ) 

[highx,highx+A) 

Subinterval I, is the degenerate interval consisting of 0 alone. 

If for some ro>l Oelro , then 0 is deleted from It0; that is, 

that particular subinterval has a hole at O. 

Loop #2: 

For each r (r=l,2 ..... nax/2+l) set to zero the initial value of 
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each of the accumulators 

mo[I~r~] 

m, [I~rJ ] 

m2[I(r*] and 

m3[I~r~]. 

For each i (1=1,2 ..... nl) and j (j=l,2 .... ,n2) for which 

xll+x2 ] > ~, 

determine the positive integer r for which 

xlL+x2 ] ~ I(r) 

and perform the accumulations 

mo[I~r~ ] = mo[I~r) ] + pl,'P2j 

m1[I(r; ] = m,[I(r)] + (xl i x2j)1-Pll-p2j 

m2[I(r~ ] = m2[I(r* ] + (xli+x2j)2-pli'P2j 

m~[Icr)] = m3[I(r) ] + (Xl,+X2j)3"pll'p2j 

That is, we generate the probability and the 0 ~h through 3 rd 

moments for each mesh interval Itr~ (r=l,2 ..... nax/2+l). 
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LOOp #3: 

Von Mises Theorem and algorithm t guarantee that for each r 

(r=l,2,...,nax/2+l) there exist and we can find two pairs of real 

numbers 

t 
(x,~r),p,(r)) and (X2(r),p~cr)) 

SUCh that 

X,(r)~I(r) and X2(r)~I(r) 

and such that the following relationships hold: 

t See pages 269-270 of Ref[3]. 

In some cases x,=x 2 and what would otherwise be two pairs 

(x,(r),p1(r)) and (x2(r),P2(r)) collapse into one pair 

(x1(r),p1(r)+p2(r)). This would happen, for example, where the 

values of xll+x2 J that fall into I(r) are all identical. 
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Moment Relationship "C" Notation 

2 

0 ~plcr~ = m0[Icr~ ] 

t=t 

2 

1 IX|(r)t'pt(r) = m1[I(r)] 

|=I 
2 

2 IXi(rlZ'pi(r) = m2[I(r) ] 

t=t 
2 

3 ~X, lr)3'pl(r) = m3[Ilr} ] 
t = l  

probability 

Ist moment 

2nd moment 

3rd moment 

The "C" program FONMISES accepts the 0 th through 3 r4 moments and 

produces two points t and associated probabilities, with the 

feature that these moments are accurately retained. 

Having kept accurately the 0 th through 3 rd moments of X+Y within 

each mesh interval, we have automatically kept accurately the 

corresponding global moments. 

We can then express the full distribution fX+Y of the univariate 

random variable X+Y as 

Xk(r) Pk(r) ]r=t,==/2÷l;k=l,2 

t Ibid 
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We will now describe how we actually obtain the number pairs 

(XlCr~,p1~r)) and (X2Cr},P2Cr~) 

for any given value of r (r=l,2,...,nax/2+l). To simplify the 

notation somewhat in this description we will replace the symbols 

m0[ICr~], m1[ICr}], mz[I~r~ ] and ms[Ilr) ] 

by 

m o, m,, m e and m 3, 

respectively. 

If m1=0 and m0~0, then we let 

Xl(r) = 0 Pllr) = m 0 

X2(r) = 0 P2(r) -- 0; 

otherwise, 

if mo m 2 - m1"m I < i0-1°-Imi], we let 

x,¢~) = m11m o p,l~ = m o 

X2lr) = 0 P2(r) = O; 

that is, in effect, use a single number pair rather than two 

t 
number pairs if the variance in ICr} is close to zero. 

t We treat this situation differently in order to avoid exceeding 
the limits of precision of the numbers being held by the 
computer. 
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otherwise, perform the following calculations: 

m I - m3-m2 • m 2 
c 0 - 

~0" m2-]~I "ml 

m I • m2-m o • m 3 

c I 
m o- m2-m , -m l 

1 .s 
a~ = -.( -c, -Ic,'c, - 4.col 

2 

1 .s 
a 2 = 5. ( -c, .Icl.c , - 4.c01 

m o - az-m , 
81 - 

az-a I 

ml-m o. a, 
s2 

a2-a I 

Xl(r) = a I p1(r) = s I 

X2{r) = a z P2 (r) -- s2; 

We check that X1~r~ and x2~r~ both lie in I~r); and, if 

not, then 

if I~r) is a degenerate interval (i.e. consists of a 

single point), then we let 

x1~ = ml/mo PlCr~ = mo 

X2(r) = 0 pa(r) = 0; 

otherwise, t we let 

* This situation will occur only when the accuracy of the numbers 
being held by the computer is being impaired by the fact that the 
computer can hold numbers to only a limited degree of precision; 
since this situation occurs only where the associated probability 
is extremely small, the fact that not all of the first three 
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= I (-m,/%) • (ml/m~)+(m~/mo)I "s 

m,/m 0 - left endpoint of Icr) l 

k = right e n d ~  ~ Ilr----~ --ml/m o I 

x~ = -~'Ikl "s + ml/m o plcr~ = mo/(l+k) 

xz(r)  = o - / ] k l  ' s  + m l / m  o p2(r)  = p i ( r ) . k ;  

It is desirable to use double precision floating 

point numbers in performing these calculations; otherwise, you 
may run into numerical difficulties. 
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moments are being retained in this situation is not of practical 
significance. 
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