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Abstract 

Extending the general nonparallel shift approach to duration 

analysis developed previously by the author, this paper explores 

the immunization properties of that model. In particular, resul~s 

are developed regarding directional immunization, in which the 

yield curve shift direction vector is ~pecified; as well as for 

nondirection~l immunization. Throughout, the goal of imMunization 

at time k is seen to be intimately linked to the relationshio 

between the durational and convexity attributes of the portfolio 

and those of a k-period zero coupon bond. Applications to 

asset/liability management are then explored. 
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I. I r,t roo '.lct i c.n 

The conceots of Quration and immunization have Deen tne 

sUbjects of an increasing amount of interest, ooth from a 

theoretical and an applied perspective. Originally discovered 

over 50 years ago, duration was defined to better reflect tne 

length of a payment stream (Maca'.llay 01JI) ). A sh.:wt time later" 

(Hicks (/'IJ'h, it was ir,deper,dently der"ived in an irwestigati.:;,"n 

into the elasticity of the price of a bond with respect to the 

discount factor v = (1 + i)-l. 

Soon thereafter (Samuelson 01,/5"), Redir,gton ("~), o'.wati,:.n 

was rediscovered in the context of the immunization of a firm's or 

portfoli9'S net worth. That is, in pursuit of conditions under 

which assets and liabilities would be equally responsive to 

changes in an underlying interest rata. Redington's aoproacn was 

later adapted by Vanderhoof(/"~) and became what to many actuaries 

reoresented an introduction to this fielo of tnought ano its 

application to insurance ~ompany portfolios. Common to tne aoave 

investigations was the assumption of a single interest rate for 

all discountings of cash flows; that is, a flat Yleld curve. 

Fischer and Weil &1V) first extended the Redington model to 

reflect a non-flat term seructure, and developed a correspondlng 

duration measure often denoted 02. to distinguish it from the 

Maca~lay duration, 01' Thi~ measure reflected price sensitivity 

to parallel shifts in the term structure. That lS, shifts for 

which each ;ield point moves by the same amount. Other 

definitions of d'.lration were then developed (Bierwagl/177), Khang 
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(177). Bt'ennan ar,d Schwartz(j'lI.1» con'espondirlg to other rnooels e.f 

yield curve dynamics, or the manner in wh1ch the term structure 

changed. Surveys of these models and related matters can oe found 

in Bierwag, Kal.!fman and Toevs(IJ1.JJ) and Bier'wagV1i7). the latter 

reference also providing an excellent introduction to many aspec~s 

of this theory and its applications. The importance of the 

correct choice regarding yield curve dynamics was first noteo 1n 

Bierwag, Kaufman and Toevs("V~)) which investigated stochastic 

process risk. 

Other e)(tensiorls of Redington's work include Grove (l17'1) , 

which immunized a non-zero initial net worth, Kaufman (lfl'l). which 

investigated the immunization of the nat worth asset ratio, arid 

Bierwag, Kaufman and Toavs(J1t:J/'JC) which introduced a method.::ol.::ogy 

for developing an immunizing asset portfolio, and investigated tne 

concept of an efficient frontier in this context. 

More recent approaches have involved immunizing multiple 

liabilities (Shil.!(I1II», taK adJl.!sting the dut'atiorl measure (St.:;,cl-<. 

and Sirnonson(I?ll», and utilizing a durat10n vector appr.::oach t.::o 

imrnl.!nization (Chambers, Carleton and McEnally(j7n). This lattet' 

approach defined a vector in which each component reflected a 

"nloment" of adJ'.!sted times-to-receipt of the J.!nder'lying cash 

flo,,",s. In this conteKt, traditional duration is closely related 

to their first moment, while the concepts of "convexity" and 

"inertia" (BierwagQ"~) are closely related to their second 

moment. The adjustment made to the times-to-receipt of the cash 

flows was the reduction by one time unit. 

A general nonparallel shift approach to duration analysis was 
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devel,;:.ced in Reitano(j11), and an aoolication to measur1ng 

potential yield CI.1rve risl<. exemplified in Reitano(;,jO). 

analysis, a yield curve 1S 1dent1fied with. "vect,;:.r" ,:,f vail.les 

representing yields at the commonly quoted maturities. The 

underlying technique employed was a general multivariate analysls. 

Whi 1. multiv.ri.te models are not in general new (8ierwag{J'n», 

the p.rticular model utilized was found to provide great insignt 

to the sensitivity to general yield curve shifts. In part icular, 

"partial" durations were defined to reflect yield sensitivities 

point by point along the yield curve. These measures could then 

be easily combined to produce "directional" duration l'I1easut'es 

which reflected portfolio sensitivity to any yield curve shift. 

The tr.dition.l dur.tion measure, for example, reflecting 

sensitivity in the parallel shift direction, is seen to be the sum 

of the underlying partial durations. 

The current article extends this theory to the Question of 

immuroi zat i,;:.rl. The yield curve is again modelled as a vector of 

quoted maturity yields, with other yields assumed to be 

functionally dependent, such as via interpolatlon. Consequent ly, 

all yield curve changes are identified with vector shifts, and 

immunization pursued within this multivariate context. 

This immunization model is introduced in Section II, along 

with the necessary definitions from ReitanoC/U7). Section III 

then develops an extension of Redington's approach to general 

nonparallel yield curve shifts. Here, we define and explore 

directional immunization and extend and exemplify the general 

results within the context of spot rate and forward rate models. 
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In thlS context, as throughout the paper, the goal of 

immunizatlon at time k is seen to be intimately connect eo wltn tne 

relationship of the portfolio's directional duration and convexity 

attributes to those of a k par10d zero coupon bond. Natur'ally, 

immunization results for the special case of parallel shifts are 

seen to be equivalent to well-known results. Also in this 

section, the concept of an immunization boundary is explored, 

extend"ing the idea of durat ion wirldow (BierwagC",n», as is tne 

t"eturn on investment, general izing Babcock(178f1). 

Section IV then develops immunizatlon results in tne general 

nondirectional context. ThAt is, conditions under which portfoliO 

valu •• at time k are preserved under all yield curve shifts. The 

spot and ~orward rate models are reVisited, as are practical 

issues related to implementing this approach. 

investment results .r~ then developed. 

General return on 

Section V investigates the relationship of earlier 

immunization properties to the yield curve model employed. 

Finally, Section VI applies the previous results to tne 

context of asset/liability management. Surplus immunization 

conditions are developed in both the aosolute and asset ratio 

contexts and the results translated to implications for the 

immunization boundary. 

A technical appendix is included and contains the proofs of 

the duration theory underlying the immunization results. 
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II. Multivariate Immunization 

A. Multivariate Price Model 

Le~ PIt) denote a positive valued Multivariate orice functlon 

which reflects the dependency of the price of a portfolio of 

securities on an underlying yield curve vector, I = Iii, ••. , i m). 

This portfolio could eql.lOllly well reflect assets, liabilities, ·:w 

a net worth or surplus position. The cash flows anticipated by 

PII) may be fixed or interest dependent, with PII) corresoondingly 

representing a simple present value price function, or the orlce 

values obtained via a model which incorporates the options or 

other interest dependenciRs Ifor example, Clancy (",S) , Ho, Lee 

(n") , and Jacob, Lord and Ti lley (1117) ). 

The yield curve above is modelled as a discrete vector, 

representing as previously noted, thE quoted maturity points or 

yield drivers ln a given valuation Model. ThlS yield cl.lt've r,lay 

reflect any system of units Ibond yields, soot or forward rates), 

and any nominal basis lannual, semi-annual, etc.). In iJract ice, 

yield points at other maturities are tYP1caily derived from these 

values via interpolation and/or other conversion, so it 1S 

appropriate to view the price of the portfolio, pet), as a 

function of this yield curve vector. For example, with i 

corresponding to bond yields, pivotal yield values for maturities 

.25, 1, 3, ... 
'"" 7, 10, 20 and 30 years are sufficient for many 

valuations, and PII) can be modelled as a function of these eight 

observed values. 

As in Reitarlo(,'f7), we "lake the followir,g defir,itic.r,s, which 
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generalize the notlons of duratlon and convexity to tnis Yield 

vect .::lr bas i s. ~ccoreingly, we assume throughout tnat Pli) is 

twice dlfferentlable, wlth continuous secane order oartlai 

derivatives. 

CJ k(I), are defined for P(I) ~ 0 as follows: 

(2.1) OJ ( 1 ) = -d J P ( 1 ) / P ( 1) , J 1, ••• , m 

(2.2) J,k = 1, ••• ,m 

where d J P(l) and dJkP(l) denote the corresponding partial 

derivatives of pet). 

m~!~i~, denoted C(i), are defined as follows: 

(2.3) D<i) = (Dl<i), ••• ,Dm(i», 

ICll (I) . . . . Clm (i) I 
I I 

(2.4) C(I) = I I 
I I 
ICml (i) Cmrn (i) I. II 

Intuitively, 0J(I) reflects the sensitivity of P(I) to movements 

in the Jth yield paint. For example, if J = 10 in the aoove bond 

yield model, changes in thi~ yield will affect the value of casn 

flows at time 10 years, as well as those in the range from 7 to 20 

years because of the interpolation of yielos at these maturities. 
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Similarly, Cjk(i) reflects a "second ,:order" sensitivity ,:of P(i) t,;) 

movements on the jth and kth Y1elc points. 

When aopropriate, D(i) wlll be interpreted as a ~:ow matri~. 

Also, note that by the above continuity assumption that 

Cjk(!) - Ckj(!), and hence, C(i) is a symmetric matri~. 

Definition 2: Given PI!), and yield curve dlrection vector 

N - (nl, ••• ,nm) with N ~ 0, the ~~~~~!iQn91_gY~9!iQn_fYn~i~Qn in 

the direction of N, denoted ON(!), and the gi~~S!lQD91~sQn~~~i!~ 

fYDS!iQD in the direction of N, denoted CN(i), are defined for 

P(i) ~ 0 as follows: 

(2.5) 

(2.6) 

where dNP(!) and dNNP(l) Oenote the first and second c1recticnal 

derivatives of P(l) in the di,'ection of N. II 

Intuitively, N equals the "direction" of the Y1eld curve 

shift in that it reflects the relative magnituoe of the indiv1cual 

sh i ft amount s. A typical shift can then be mOdelled as 

tN - (tnl, ••• ,tnm), corresponding to eacn Yleld point 1J sniftlng 

by the amount tnJ. When all nj - 1, the classlcal parallel Sh1ft 

model results. 

As developed in Reitano(l7if), the directional measures can be 

eaSily obtained from the corresponding partial measures as 

follows: 
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(2.7) ON(i) 

(2.8) 

where NT denotes the tt"anspose of the column vector N. 

When N. (1, ••• ,1), the associated directional measures aoove 

reduce to the more traditional modified duration and convexity 

measures, OIl) and Cli), calculated with respect to parallel yield 

cl.Lrve sh i ft s. In addition, we have from (2.7) and 12.8), that 

these traditional measures equal the sums of tne corresponoing 

partial measures: 

12.9) 

12.10) ceil 

When necessary for clarity, duration and convex1ty functlons will 

explicitly reflect pei), such as ONIP;il for 0Nlil. 

B. Immunization Definitions 

Let Pkli) denote the forward value of the portfolio at tlme 

k ~ 0, on the yield curve vector i, where it is assumed that no 

securities are either added or removed from the portfolio. In 

addition, we assume that the yield vector changes from iO to i 

immediately after time 0, and remains fixed at this level 

throughout the period. Extending the classical notions of 

1mmunization, we have the following: 
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Definitlon 31 The price function PCi) is said to oe 12£~11~ 

i~m~ni;§Q_~~_~i~§_~_Qn_~n§_~i§lg_Y§~!2r_!I) if: 

(2.11) 

for i sufficiently C10SR to iO. That is, for Ii - iOI < r, wnere 

r > 0 and Iii denotes the standard Euclidean norm: 

Similarly, PCi) is said to be glQQ~ll~_i~mYni;§g_~~_~im§_~ 

2D_!Q.~i.!g_~~~!Qr_!a if (2.11) i. satisfied for all feasible 

yield vectors i. II 

For the purposes of DefinItion 3, "feasibility" will not be 

rigorously defined. Certainly, the rcstrictlon: 

(2.13) 0 ( iJ < 1 

is a minimal requirement for feasibility, though in practice other 

bounds may be more practical. 

We analogously define local and global immunization in the 

direction of N by: 

C2.14) 

for It I < r Clocal>, and for all feasible t Cgl.;)ball. 

Note that for the purposes of direction~l immunization, we 
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restrict our attention to yield curve shlfts of a fixed tyee, N. 
t 

so .:mly the am':".lY"lt of the shift" is vat'iaele. For examels, N could 

reflect the classlcal parallel snlft dlrec~ion vector, or a snlft 

vector which changes the yield curve level and slope, or more 

general types of shifts. In the nondirectlonal immunizat10n 

model, we consider all possible shift directions from 10. 

For P(1) to be immunlzed at time k on 10, it 1S clear from 

(2.11) and (2.14) that 10 needs to be a relative MinimUM of Pk(1) 

in the local immunization case, and a global minimUM in the global 

immunization case. For the results below, we utilize tne well-

known suffici.nt conditions for. point to be minimum value. For 

example, • sufficient condition for xO to be a local minimum of 

fIx) in the direction of N is that: 

(2.15) 0, 

(2.16) 

A sufficient condition for xO to be a global minimum is tnat 

(2.16) is satisfied for all x. 

Similarly, a sufficient condition for xo to be a local 

minimum of f(xO) is that (2.15) and (2.16) Mold for all N. That 

is: 

(2.17> 0, J = 1, ••• ,01 
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(2.18) IdJkT(Xt) I is positive deTir,lte, 

where IdJkf(Xt) I denotes tne second derivative matrix, or Hess1An 

matrix 01' f(x). A sufficient condit jon for Nt) to oe a global 

minimum is that (2.18) hold Tor all x. 

The sufficiency 01' such conditions Tollows from the mean 

value property of a Taylor series. 

j satisTying 0 < .s < 1 so that: 

Given x = xt) + N, there exists 

- f(xO) + dNf(xO) + ~dNNT(XO +,IN). 

In other words, a function's value at x = NO + N can be expressed 

in terms of a linear approximation .t xO: 

f(xO) + dNT(XO), 

ha/P 
plus a cOt'rection term equal to"the secor,d der1vative evaluated 

"somewhere" on the lina segment Joining xo and x. 

Consequently, if conditions (2.15) and (2.16) are satisTied, 

xO must be a local minimum of f(x) in the direction 01' N. Th 1S is 

because (2.16) impl ies that dNN (x) ) I) for x "close" to;) xo by 

continuity. Similarly, conditions (2.17) and (2.18) imply a local 

minimum relative to any direction, since: 

and by contir,uity, IdJkf(X) I is positive definite for x close to 
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ICO· 

C. The Forward Price Function: 

Given the Yleld curve vect'::lr i, let Zk (1) denote the p~'ice .:.f 

a k-period zero-coupon bond with maturity value of 1. Clearly, 

1/Zk(i) then equals the forward value at time k of 1 invested now, 

and consequently: 

(2.19) 

For example, if i J ~ i for all J, then Zk(i> = (1 + i)-k and 

Pk (i) • (1 + i) kp (i) • 

w. next investigate the immunization of P(i). As will be 

seen, the dUI'ational and convexity properties- of Zk(i) o~'ovide 

insight to suffici.~~ conditions for immunization of P(i) at time 

k. In particl.ilar, f'::lr l'::lcal immunization we ~'ecui,'e that P(i) 

yield vector iO. For global immunization, we also require 

convexity relationships on other yield curves besides iO. The 

concepts of "sarlle du~'at ion" and "r,lore c'::lnvex" wi 11 be made p~'ecise 

below, but will be seen to be natural generalizations of the 

classical notions to this multivariate context. 

I II. Directional Immunization 

A. General Results 

In this section, general results are presented on directional 
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imnnJni zat ion. In this context, it 1S sOJff'lclent fo~' P(i) to :"lave 

the same directional duration as Zk(i), and greater d1rectlonal 

c.:;.nvexity, to:::, be locally immo.lnized at tiro,e k. 

~roposition 1: Let P(i), iO and N ~ 0 be given and assume t~ere 

exists k ~ 0 so that: 

Then P(I) is locally immunized in the direction of N at time k on 

the yield vector 10-

The proof of Proposition is readily obtained from the 

following result, proved in the Appendix (Corollary A.4): 

Lemma 1: Let P(i) 

Then: 

ON (P ; 1) = ON (Q 1 ; i) - ON (Q2 ; i) , 

(3.3) CN (P ; 1) = CN (Q 1 ; i) - CN (Q2 ; i) 

+ 20N(C!2;i) CON(Q2;i) - ON(QUi»). 

proof of Proposition 1: 

Applying Lemma 1 to Pk(i) in (2.19), we have from (3.1) and 

(3.2) that: 
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(3.4l 0, 

(3.5l 

Consequently, the respective directional derivat1ves of Pk(il 

satisfy the conditions in (2.15l and (2.16l and tne result 

follows. II 

For global immunization in the direction of N, we require a 

convexity constraint on all feasible yield vectors i = iO + tN. 

While this constraint can be expressed directly in terms of (3.31, 

we instead chose an equivalent, more symmetric representation. 

Proposition 21 L.t P(1), 10 and N ~ 0 be given and assume that 

there exists k ~ 0 so that: 

(3.6l 

(3.7l 

for all feasible yield vectors i = iO + tN. Then P(il 1S globally 

immunized in the direction of N at time k on the Y1eld vector iO. 

proof: By Definition 2, dNP(il - -P(ilDN(il. 

derivatives and dividing.by P(il produces: 

(3.8l 

Taking directional 

Hence, IJsing 

Lemma 1, (3.7l assures that (3.5l is satisfied for all feaSible i, 
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while (3.6) implies (3.4), and the result follows as before. 

We note in oasslng that the conveKity constrain~ (3.2) in 

Proposition 1 can readily b. eKpressed in terms of directional 

. . . . 

derivatives as in Prooosition 2. Speci fically, due t,:) (3.8) ar'"IQ 

C3.1), we can rewrite this constraint as: 

For fiKed N ~ 0, the pair (k,la) of the above Prooositions 

give rise to a "duration window " (k,Pk(IO» as defined 1n Bierwag 

(1'17). Specifically, consider the graph of y P x (1) in the 

xy-pIAn. ~or .Ach feAsible 1 - 10 + tN. All such graphs will 

immunization, while all graphs with It I r will have this 

property in the local immunization C3~e. That is, each will oass 

through a "window" at x = k with lower bound equal to Pk 1i O). 

Consequently, the value Pk(10) also gives rise to tne min1MUM 

annual return on investment over the interval CO,kJ. 

It is natural to inquire into the existence of other such 

duration windows. That is, given It = 10 + tN, does there exist 

k - kIt) so that P(il is imrnunized at tirne kCt) on It? We )'"Iext 

consider all such pairs, (k(t),lt) and the associated duration 

windows, as forming an immunization boundary. 

Definition 4: Given PCI) and N _ 0, let It - 10 + tN denote the 

yillid vector on which pel) is locally (globally) inununu:ed in tne 

direction of N at tirne k - kCt) if such a k exists. Then the 
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N, denoted IBN(P~ is defined: 

(3. '3) II 

The immunization boundary then has the same property as does 

the duration window, yet over a range of forward times k. That 

is, the collection of graphs y = Px(1) for 1 = 10 + sN will be 

minimized at each such k(t) on the yield vector it in the global 

case, and for more limited ranges of yield values 1n the local 

immunization case. Therefore, Pk(it) reflects the m1n1mum 

portfolio value in this sense at each such time k(t), and 

consequently gives rise to the minimum annual return on 

investment, ilk), over every such interval (O,kJ, where: 

(.3. 10) i (k) k k (t), 

and iO 1S tne initial yield vector. Note tha~ for t = 0, tne 

minimum return given in (3.10) equals the k period return on tne 

zero coupon bond, Zk(10). due to (2.1'3). 

We next investigate the above concepts within the framework 

of two common yield vector models: 

mOdels. 

B. The Spot Rate Model 

the spot rate and forward rate 

Assume that iO = (iO, il, •..• i m) is given and reflects the 

current spot rate structure. For example, 10 might be the 

overnight rate. i 1 the 1 year spot rate, etc. F()t' notat ional 
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simplicity, we assume tnat these values are alreacy conver~ec .v 

tne nominal basis consistent with tne period length. 

To have a continuous discounting mocel, we interoolate scot 

rates for other periods as follows, where. is an integer: 

il+s a (1 - 5)1) + 5i)+1' O:::'s:>.1. 

Consequently, the zero coupon bond Zk(i) has value: 

(3.11> 

where k .. :t + s. For not~tional convenience we set: 

A calculation produces the following partial durations and 

convexities where [Ikl] denotes the greatest integer less than or 

eq'.lal to k.: 

(3.12) 

(3.13) 

2 2 
k(k+l)vk s 

o 
Hence, condition (3.1) in Propositl,::.n 

J [lid] 

J [lkl]+1 

otherwise 

i = J = [Ikl] 

i = [Ikl], J = [Ik:] + 1 

i .. [Ikl] + 1, J = [Ik:] 

i = J = [Ikl] + 1 
olio.,..,;/:· 

that DN(P;iO) = DN(Zk;iO) 

can be expressed as follows using (2.7) and (3.12), where 
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k. II + s: 

(3.14) 

Nota that the right hand side of (3.14) 1S not necessarily 

monotonic, so multiple solutions may exist. 

may fail to have a solution. 

In additi.:.n, (3.14) 

In the special case where N - (1, ••• ,1), the parallel shift 

direct ion vector, (3.14) reduces to: 

(3. 15) O(P;iO) = kVk. 

When the spot rate vector is flat, i J - i for all J, (3.15) is 

readily solved for k, producing the classic result: 

(3.16) k (l+ilO(P;il DM (P; i), 

where OM denotes the Macaulay duration of P. In this case, tne 

immuni~ation boundary is also easy to describe, subject to 

convexity constraints. Specifically, for any feasible rate i, the 

associated point is (k,Pk(i» where k is given by (3.16). Subject 

to a convexity test, this boundary then defines the minlmum value 

of Pk(il at each time k so produced. That is, for all k in the 

range of DM(p;il considered as a function of i. 

For spot rate vectors which are not flat, (3.15) can only be 

solved with extra effort. Because kVk is continuo~ls, it can first 

be evaluated for integer k, producing bounds for the exact 
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solut ion(s). F':'t' a oecreasing spot rate yield c'.n've, tne s,:.iut ioY", 

will oe unique if it e~ists, since then kVk will be mono~onlcally 

lncreasing. OtherWise, multiple solutions are possiDle as noted 

above. In any case, it lS interesting to note that the solution k 

again appears to be a Macaulay-type duration, in tnat: 

(3.17) k = (1 + ik)O(P,iO). 

To investigate the conve~ity constraint in (3.2), a 

calculation using (2.8) and (3.13) produces tne following, wnere 

k=I+!1I 

(3.18) CN(Zk;iO) a k(k+l)v~ «l-s)n, + sn)+1)2 

. 2 
(1 + 11k) DN(Zk;iO ) 

Consequently, because DN(Zk;iO) DN(P;iO), (3.2) oecomes: 

(3.19) 

or an equivalent inequality using the last e~pression in (3.1S). 

For e~ample if N = (l, ••• ,ll, can be equivalently 

rewritten: 

(3.20) C(P;iO) O(P;iO) (D(P;iO) + vkJ. 

When the yield curve is flat, a calculation below shows that 

(3.20) is always satisfied when cash flows are fixed and positive. 
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That is, we always have: 

(3.21> 

Hence, in this well-known case, the local Macaulay immunization 

boundary is as noted above: 

(3.22) 

In other words, for price functions with fixed positive cash 

flows, such as those for noncallable bonds, the immunization 

boundary .xi.ts for all k 1n th. range of the Macaulay duration 

funct ion. That is, for each feasible yield ratei, we calculate 

k .. DM(p;i> and .:;.btain the associated minunum valLle of the price 

function at k, namely (l+1)kp(1). In addition, tne associated 

minimum returns on investment, i(k), are glven by: 

(3.23) Uk) (1 + i)CP(i)/P(iO)Jk - 1, 

where iO is the initial yield to maturity. 

In the more general directional immunization case with fixed 

cash flows, not necessarily all positive, we have the following 

PropOSition, in which the convexity constraint is expressed in 

terms of the last expression in (3.18). 

Proposition 3: Let P(l) .. ~Jv3 be a price function with fixed 

cash flows and P(ll ~ o. 

for P(l) to satisfy: 

A necessary and sufficient condltion 
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(3.24) 

/(_j .. s" 
where v - Vk«l-s)nl + sn,+l)'Ais that: 

(3. a:1l 

proof: A calculation using (2.7) and (2.8) shows tnat gIven ~(i) 

r In a v J + 1/P(i) - vr PJX
J

• 
J J J 

Hence, 

and the reslJlt foll,:.ws. II 

It should be noted th~t in the classical Model with 

N .. (1, ••• ,1>, i J .. i and aJ 2;.0, (3.24) is always satIsfied since 

than XJ - J, PJ ~O. and the right hand side of (3.2 ) is O. In 

addition, Var(X J ) is equal to the portrolio "irlet'tia" 1n tnis 

case. as defined in BierwagU"n. 

In the most gener~l case, a simple necessary condition for 

(3.24) can be cited. Here, however, we express this convexity 

constraint in terms of (3.19). 

Proposition 4: Let pel) be given. A necessary condition for 
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(3.19) t.:;) be satisfied is that: 

(3.26) o. 

That is, DN(i) is a decreasing function at iO in the direction 

o~ N. 

proofl By (3.9), the above condition implies that 

2 DN(iO), which is clearlY a necessary condition for 

(3.19). II 

The above proposition provides an intuitive necessary condltion 

for immunization when the directional duration identity in (3.1) 

is satisfied. Clearly, this condition can be sharpened to be 

su ff icient as we 11. Speci fica 11 y, (3. 19) is eq '.I i va 1 er,t te.: 

(3.27) 

Conseq'.Iently, (3.26) is also a necessary conditi.:.n if ar,d c.nly 11' 
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c. The Forward Rate Mocel 

We assume Mere tha~ iO = (il ••••• im) is given and reflects 

the current forward rate structure. Corresponding to (3.11), we 

O~s.il: 

-5 
(3.28) i 1+1) 

Taking partial derivatives in (3.28) and applying (2.7), the 

condition in (3.1l that DN(PiiO) .. DN(Zki10) becoI.les: 

(3.29) 
t 

E nJOJ(p,lO) - E nJvJ + sn,+1vJ+l. 
1 

Clearly, the rignt hand side .:.f (3.2'3) is 

Monotonic in k if and only if all nJ have the saMe sign. In this 

case, the solution for k is unique when it exists. Otner"Wlse, 

Multiple solutions are possible. 

For the special case N .. (1, ••• ,1), (3.2'3) becomes: 

(3.30) 

where Vk is an "average" discount factor: 

• (3.31l k (~ vJ + SVt+1)· 

Consequently, in this case k is again seen to be a MacaUlay-type 

duration as in (3.17): 
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(3.32) k 

where ik 1S the interest rate associated with Vk 1n (3.311. 

that ~k reduces to v = (1 + 1) -1 when i J = i for all J and (3.32) 

is ident ical to (3.16). 

Taking second partial derivatives in (3.28) and applY1ng 

(2.8), we have: 

(3.33) 

D
N

(P;10), the convexity constra1nt 

in (3.2) becomes: 

(3.34) 

Clearly, in order for (3.34) to be satisfied, lt 1S necessary to 

have CN - D~ ) 0. Consequently, Proposition 4 appl1es in tnls 

context as well, as does the obvious counterpart to (3.27). 

D. Returns on Investment: 

As noted above, the immunization boundary gives rlse to the 

minimum return on investment, i (1<,), over' every per'iod (0, kJ f,:.,' 

which P(l) can be immunized at time k. The return on investment 

over CO, kJ is in fact a random variable, r"o the valLie ()f which 

depends on the yield vector i. Here as before, we assume the 

initial yield vector to be iO, and that this value changes to i 

immediately after time 0, and remains fixed at this level 
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thr~ughout the period. 

Similar to (3.10), which orovided the m~nimum value of Ik(il, 

we have: 

1 
(3.35) Ik(l) ,. CPk(I)/P(10»)k - 1, 

where 1 ,. 10 + tN. Following BabcockU"Y~ we seek an 

approMimation for Ik(I), where the approMimation reflects the 

dependency on t. To this end, let ,(t) denote the right hand 

side of (3.35), expressed as a function of t, where i - iO + tN. 

The first order Taylor series approximation is then 

.,(0) + 'I' (0) t. 

By substitution, w. hAve that ~ (0) - J(k), where J(k) is the 

k period return on the zero coupon bond, Zk(iO), due to (3.35). 

To eval'Jate ,,'(t), note that: 

Consequently, we obtain the approximation: 

(3.36) 

Not. that if P(I) is immunized at time k, then the above linear 

In this context, however, 

J (k) - i (k) as defined in (3.10). Since i(k) is the minimum value 

of Ik(I), by definition, it is clear that the above formula is 

somewhat crude in this case. 

Taking the second derivative of Vet), we obtain the 
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following generalization of C3.36), where all durations are 

evaluated on iO: 

C.3 • .37) Ik(!) ;:: J(k) + (1 + J(kllrDNCZk) - DN(P).Jt/k. 

+ (1 + J(k»{dNDNCZk) - dNDN(P) +;<DN(Zk) - DN(P»2}t 2 /2K. 

If P(1) is immunized at time k, we see from C.3.7) that tne second 

order term in (3.37) is positive, and hence Ik(i) ) J (k.) = i (k) 

as expected. 

For other values of k, the llnear term in (3 • .36) will in 

general be nonzero. Specifically, if P(i) is "l.:.nger" than Zk ':'1'1 

10 in the direction of N, then Ik(1) will decrease with increases 

in the yield structure in this direction. That is, the capital 

loss due to the increase in yields cannot be made up by 

reinvestment gains over the period CO,k]. Sir.lllat'ly, Ik.(i) wlll 

increase with decreases in the direction of N. On the I~thet' nand. 

if P(i) is "shorter" than Zk 01'1 iO in this dit'ectlQn, tnsn ·Ik.(i) 

will increase with yield increases in the directiQ" of N, Slnce 

then reinvestment gains will overCQme initial capital lQsses. In 

all cases, the second order adjustment in (.3 • .37) will be 

indeperlderlt of the "sign" eof the yield curve movemerlt, t'eflecting 

.f 
Qnly the magnitude"t. In general, h.:.wever, the "sigrl" Qf this 

adjustment will depend on k. 

Naturally, either of the abQve approximations can be used teo 

estimate the mean and variance of I~ given an.assumptit~n as to 

the probability density of t, or (i - iO) measured in units of the 

sh i ft vect or N. For example, from C3 • .36), we obtain: 
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(3.38) 

<3.39) 

IV. Non-Directional Immunization 

A. General Results 

In this section, general results on non-directional 

immunization will be d~veloped and seen to be natural 

generalizations of the above results. For local immunization, for 

example, we again require PCi) to have the "same d'J,'ati,:,r," as 

ZkCi) on iO, and be "more convex." Here, however, the constraints 

are stated in terms o~ the total duration vectors and total 

convexity matrices. We begin with a definition: 

Definition 5: Let A and 8 be square matrices. 

g~g~tg~_t~~n_~, denoted A ) 8, if A - 8 is positive definite. 

That is, I(T(A - 8)1( ) <) f.;)r all I( # O. II 

For convenience, we Will sometimes write A ) 0, which by 

Definition 5 means that A is positive definite. 

The generalization of Proposition 1 is then: 

Proposition 5: Let PCi) and iO be given and assume that tnere 

exists a k ~ 0 so that: 

(4.1) D(P;iO) - D(Zk;iO), 

(4.2) C(P;iO» CCZk;iO)' 

Then PCI) is locally immunized at time k on the yield vector iO. 

proof: As for the proof of Proposition 1, we require the result 
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of Prooositlon A.4 relating D and C for Pk(i) to the resoec~iye 

values for P(i) and Zk(i). In particular, from CA.13) we ~ee ~na~ 

(4.1) assures that: 

(4.3) D(Pk;iO) 0, 

while (4.2) and (4.1) together imply that: 

(4.4) 

Recalling the comments following (2.17) and (2.18), we see 

that the above conclusions regarding Pk(i) assure that iO lS a 

local minimum, and the result follows. II 

CI •• rly, th. conditions of Proposition ~ are equivalent to 

assuming that conditions (3.1) and (3.2) of Proposition 1 are 

satisfied for a fixed k, for all direction vectors N. A sinlllat' 

statement holds for the generalization of Proposition 2. 

regat'ding condition (3.7), we '.1tilize an alterr,a1:1ve yet 

equivalent representation. 

Proposition 6: Let P(i) and iO be given and assume that there 

exists a k ~ 0 so that: 

(4.5) D(P;iO) 

(4.6) C(P; i) - C(Zk; i) > 2D(Zld i) T CD(P; i) - D(Zk; i) J, 

for all feasible i. 

the yield vector iO. 

Then P(i) is globally immunized at time k on 

proof: Only (4.6) need be investigated, as the implication of 
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(4.S) follows as before. Using (A.14) of Propc<sitior, (A.4), it 1S 

clear that C(Pk;i) is positive defin1te if and o:>nly if: 

However, as a quadratic form, the right hand side of (4.7) is 

equivalent to the right hand side of (4.6) as a calculation shows. 

II 

B. Spot and Forward Rate Models 

It is clear from Proposition 5, that even ignoring the 

convaHity condition in (4.2), the restriction on the total 

duration vector D(P;iO) for local immunization is quite strong. 

For eHample, using the spot rate model in (3.12), we see that 

condition (4.1) requires that there is a k ~ 0 so that: 

r"(l-sl J [Ikl] 

(4.8) DJ(P;iO) kVks J [Ikl] + 1 

0 .:::ot herw i se • 

Similarly, using a forward rate model, the total duration vector 

must satisfy the following, where k = [Ikl] + s: 

J .i [Ikl] 

(4.9) J [Ikl] + 1 

J [Ikl] + 1 
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Consequently, given a portfolio for which local immunlzatlon 

is required at time k on the current yield vector, iO, a 

significant amount of trading may be necessary Just to satisfy tne 

above conditions. In theory, such a traoe may be impossidle. I I;: 

it is possible, it may be highly impractical to implement. 

For example, assume that we have m bonds {BJ }, where m equals 

the number of yield points on which partIal durations are 

calculated. If we trade ~J bonds, with aJ ) 0 representing a buy, 

aJ ( 0 a sale, the new portfolio value will be: 

(4.10) PliO) 

Similary, the new parti~l dur~tions will satisfy: 

(4.11) 

Setting the formulas obtained in (4.11) equal to the tar;eted 

partial dut-ati':Jns, denoted ck, the follc.wing syster'l emet-ges: 

(4.12) 1, ••• , rll • 

Naturally, the above system may be unsolvable, or oroouce 

impractically large trade values. If solvable, thet-e is n.:. 

assurance that I:aJBJ (i) = 0, so new fur,ds r,lay need t.:;. be invested 

or divested. Alternatively, a uniform percentage of the new 
,.. 

portfolio PliO) could be bought or sold to achieve the original 

portfolio v~lue PliO). Clearly, the entire trade could be 

difficult or impossible in practice, even if possible in theory. 

The convexity condition in (4.2) would then need to be 

investlgated. 
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An alternative approach would be one in which tne dura~iQ~a: 

cnaracteristics of P(l) are cnosen sufficiently "clo~e" to tno5e 

of Zk(ll), with the additi.:.nal constraints that the ,' esu,,';ir,g 

a 
K or ~ai ( K for some K. 

By assuming a probability structure for i, a linear programming or 

Lagrange multiplier problem emerges, with an objective function 

equal to the range, volatility or some other measure of the 

c. Returns on Investment: 

The results in Section 111.0. above readily generalize to 

this •• tting. 

following counterpart to (3.36), which follows from (2.7) and the 

observation that i - io 2 tN: 

(4.13) Ik(l) ::: J(k) + (1 + J(k»[D(Zk. ;iO) - D(P:iO)]'(i - iO'/"" 

Similarly, the second order term in (3.37) can be expressed 

as foll.:.ws, using (3. B) and (2. B) : 

wher. all terms are evaluated on iO. 

The comments made above in the directional immunization case 

regarding the competition between capital gains and losses and 

reinvestment losses and gains apply here as well. Here, hC1wever, 

the c:or,cept of P (i) being "lor'ger" ,:or "shorter" than Zk. ,'efers t,:. 
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the SIgn of the inner oroDuct in (4.13) being negative or 

positive, t'esoectlvely. 

Corresponding to the moments of Ik(i) in (3.38) and (3.39), 

we require the followIng notation. Let E(i - iOI correspond ~o 

the vector mean, and V(i - iO) correspond to the covariance Ma~rlX 

of i - iO, reflecting the underlying density function of i. Then: 

(4.14) 

(4.15) VarCIk(i») = 

(1 + J(k»2CD(Zk) - D(P)JV(i - iO)CD(Zk) - D(P)]T/k2 , 

wher. all total duration vectors are evaluated on iO. 

V. Yield Vector Transformations 

It is r,at~lral to ir,quit'e t'J what exter,t imm'.lr'lzati,:,n, as 

developed above, depends on the underlying yield vector basis 

used. For example, if a portfolio is locally immunized a~ ~lme k 

on the yield vector iO, what can be ~aid if tne analysis was to be 

done using yield basis JO? A similar question arises for 

directional immunization. The next proposition shows tnat the 

property of local immunization is independent of the yield basis. 

Proposition 7: Let P(i) be a price function which satisfies 

conditions (4.1) and (4.2) of Pr"Jposition 5, and hence is locally 

immunized at time k on the YIeld vector iO. Let A:i~J be a YIeld 

curve transformation, with a nonsingular JacobIan matrix, JCA(il) 
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at iO. Then PIJ) also satisfies tnose conaitions at JO = Aliai, 

and hence is also locally immunized at tIme ~ on t~e Ylela vec~or 

proof: By Proposition R.5, we have: 

D(Pk;JO)~(A(iO)J, 

and hence: 

(5.1) CD(P;10) - D(Zk;10)] ,. CD(P;JO) - D(Zk;JO)] ~[AliO)}. 

Consequently, since ~[A(iO] is nonsingular, Pli) satisfies (4.11 

at 10 if and only if it satisfies this constraint at JO. 

Similarly, we hava. 

where HCA(iO)] is the Hessian matrix of A at iO. Substi~uting for 

the t,:.tal cc,nvexity n1att'ices '-Isirlg IA. 14), ariel I.lslnq tne fact 

D(Pk;iO) = D(Pk;JOI = 0 by (5.11, we obtain: 

(5.2) C(P;iOI - C(Zk;iO) ,. ~[A(iO)]T(C(p;JO) - C(Z~dJO)]~CA(iO)J· 

Consequently, since ~[A(iO)] is nonsingular, C(P) satisfies (4.2) 

at 10 if and only if it satisfies this constraint at JO. II 

The implication of Proposition 7 is clear. Namely, that k, 

the time to which P(i) is immunized, is a coordinate invariate and 

intrinsic property of the portfolio. It does not depend on the 

yield curve basis one chooses. As for directional immunization, 

the situation is of necessity more yield curve dependent, since 
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the direc~ion vector N clearly reflects ~ne YIeld curve ~as!s. 

Transforming N by the Jacobian of tne transformatIon orOVlces a 

directIon vector" for wnich ImmunIzatIon is possible, ye~ 

unfortunately not assured without aaditional constraints as tne 

following result demonstrates. 

Propostion 8: Let PCl) be a price function and N ~ 0 a 

direction vector such that conditIons C3.1) and (3.2) of 

Proposition 1 are satisfied and hence, pel) is locally immunIzed 

at time k in the direction of N on the yield vector iO. 

given as above. Then PCJ) satisfies condition (3. 1) wi~n 

M ,. ,1CR(lO)JN and JO - R<iO). In addition, if 

Let R be 

OM' (P;JO) l. OM' (Zk;JO>, where M' ,. NTHCR(lO)]N, then P(J) also 

satisfies condition (3.2) and hence is also locally immunized at 

time ~ in the direction of M on the yield vector JO. 

proof: Using Corollary A.5, we have: 

(5.3) 

and hence P(J) satisfies condition (3.1) wIth Mana JO if and only 

if P(i) satisfies this condition with N ana iO. 

Using the corresponding result for directional conveXItIes, 

and simplifyirlg, Wli! obtain: 

(5.4) 

Consequently, if P(l) satisfies (3.2) with N arid 10, it does ("lot 

necessarily follow that P(J) satisfies this condition with" and 
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JO due to the last term on the rlght of (5.4l. H,:.wever, if 

DI"1' (P~.;JOl ,. DM' (P;JOl - DjYI' (ZklJO) .;;;. 0, local irl1rll~lrllzatl':'n 11'1 tOle 

direct i,;:,n of M is assl .. wed. : I 

Results on global immunization can be treated sim1larly. 

Unfortunately, as in Proposition a, while the duration results 

carry forward well, the convexity conditions are not preserveo 

without additional constraints. For example, for global 

immunization, we require 3CA(ilJ to be nonsingular everywhere, and 

D(Pk;J)HCA(ilJ positive definite for all i. Details are left to 

the interested reader. 

VI. Assat/LiAbility Management 

In this section, we translate the above immunization results 

to an asset/liability management setting. To this arid, we 

consider two objective functions: 

(6.1) P(i) "" A(i) - L(i), 

(6.2) R (il CA(i) - L<i)J/A(i), 

where A(i) and L(il denote the market values of assets and 

liabilities, respectively. Immunization in the context of (6.1) 

then provides a floor for the value of surplus at time k, wnile 

use of the objective function in (6.2) provides a floor for the 

ratio of surplus to assets, or net worth asset ratio. 
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A. Surpl'Js lrlHllunization 

We fir~s~ investiga"te local lMmunization in t he o i rsctl o n of 

N ". O. 8elow, we use the notation r S to reoresent the sur~l ~ s 

ratio on the current yield vector iO. That is, 

r S " CA(lO) - L<lO)]/A(lO)' 

Proposition 9: Let P(l) A(l) - L(l), 10 and N". 0 be giverl. 

Assume that there exists k ~ 0 so that: 

(6.3) 

(6.4) 

Then P(l) is lodally immunIzed at time k in the direction of N on 

the yield vector 10. 

proof: Consider first the case where r S ) O. 

we require: 

(6. :5) 

However, by Corollary A.1, 

By Proposition 1, 

and (6.5) follows from (6.3). A virtually identical argument 

demonst."ates that (6.4) is equivalent to CN(P;lO) ) CN(Z~diO). 
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For the case r S = 0, we work directly wIth tne dlrectionai 

derivatives .;,T PJ.<.Cll, witn the g.:.al that C2.15) ar,a (2.16) oe 

satisfied. The resulting conditions on the dIrectIonal 

derivatives of Act) and LCi) can then be translated to tne 

conditions in C6.3) and (6.14) with r S = O. II 

Note that for r S = 0, if conditions 16.3) ana (6.4) are 

satisfied, Pli) is locally immunized in the direction of N on tne 

yield vector io at all times k 2 0. Consequently, the local 

immunization boun~ary given by (3.9) with it iO for all k ~ 0. 

However, since rs 

hence: 

0, we nave that Pk(iO) = ° for all k, and 

For r S ) 0, we see that the directional duration of assets 

required for immunization reflects both the directional aurations 

of liabilities and the discount bond, ZkCi), corresponaing to the 

immunization horizon k. In some applications, k may be chosen 

small or equal to zero, providing snort term immunization as part 

of an active management strategy. 

inequalities become: 

(6.6) 

(6.7) 

For k = 0, the above 

For N = Cl, ••• ,l), the parallel shift direction vector, and a flat 

yield curve, the above conditions are equivalent to those in 
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Bierwag (1987) which are stated in terms of Macaulay duratlons and 

the portfolio "inertias" lA· This is because in tMis case: 

(1 + i,2C(A) 

and similarly for liabilities. In this special case, Wi! see from 

(6.3) and (6.4) that immunization at time k ) 0 requires more 

asset duration and conveKity as k increases, since tnen 

DN (Zk; iO' 

CN(Zk; iO) 

kv is an increasing function of k, as is 

k(k + l'v2 • 

Alti!rnativaly, k can ba chosen to ba consistent with the 

planning cycle of the organization. For eKample, k a 1 would be 

an immunization target consistent with stabilizing income over a 

one period interval, where income is defined as the change in net 

worth. Similarly, larger values of k can be chosen to reflect a 

multi-year business plan, or the maturity period of the last 

1 i a b iii t Y f I ow. This last assigr~ent would then be consistent 

with immunizing pricing margins over the life of a block of 

liabilities. 

For non-directional immunization, the above propositlon 

generalizes in the natural way. 

proof. 

We state the result without 

Proposition 10: Let pel) - A(l) - L(l) and 10 be given. Assume 

that there RKists k ~ 0 so that: 

(6.8) D(A;IO) a (1 - rS)D(L;iO) + rSD(Zk;iO), 
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(6. '3) C(A;iO) > (1 - t,S)C(LliO) + rSC(ZkliO). 

Then P(i) is ,locally lmmunized at time k on tne Yleld vector 

iO. II 

As for Proposition 9, the conclusion of Proposition 10 

remains valid when r S ~ O. The conditions (6.8) and (6.'3) then 

imply local immunization for all k ~ O. 

8. Relative SUt'plus Immunization 

Next, we investigate the immunization of the net worth asset 

rati,:), R(i) ~ CA(i> - L(i)]/A(i). Since R(i) is not really a 

by (2.19). However, we have: 

= R (i), 

since the forward values of A(i) and L(i) satisfy (2.19). 

Consequently, immunizing R(i) at time 0 ensures its immunization 

at all times k ~ o. 

Proposition 11: Let R(i) be defined as above, and let iO and 

N ~ 0 be given. Assume that: 

(6.10) DNCA;iO) ,. DNCL;iO), 
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Then R(il is locally immunized at alt times k ~ ° in the direc~iQn 

of N on the yield vector iO· 

proof: Assuming that R(iOI .. r S ) 0, we have from Corollaries 

A.4 and A.l1 

where c - L(iOI/S(iO). Consequently, (2.15) is s~tisfied due to 

(6.10). SimilarlYI 

ctCN(A;iO) - CN(L;iOIJ - 2cDN(A;iO) CDN(A;ic)1 - DN(L;ioIJ.I 

and (2.161 is sat isfied due to (6.10) and (6.111. 

For r S - 0, we proceed as in Proposition g, worKing directly 

with the directional derivatives of R(i). II 

For N - (1, ••• ,1) and a flat yield vector iO, the above 

conditions reduce to those in 8ierwag (1987) e~pressed in terms of 

Mac~ulay durations and inertias. Also, for general N, the local 

immunization boundary in (3.9) ia given with it .. iO for all 

k ~ 0, and hence, Rk(itl - rS. That is, 

IBN = {(k,rS ) I k~O}·. 
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Finally, we state without proof the nondirectional 

lmmuniza~ion result. 

Proposition 12: Let Rei) be defined as aoove, and 10 be glven. 

ASS1Jme that: 

(6.12) D(A;10) = D(L;10), 

(6. 13) e(A; 10) ) eeL; 10). 

Then R(I) is locally immunized at all times k ~ 0 on the yield 

vector 10. I I 
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Proposition A.l: Let pel) 

PI (i), P2 ( i ), P ( I ) ~ 0: 

(A. 1) 

(A.2) 

where aJ = PJ(I)/PCI). 

Aooendix 

proof: Let d J denote differentiation with respect to iJ' Then: 

Dividing by P<i) completes the proof. II 

Corollary A.l: Let P(i) = Pl(i) + P2(1) and N ~ 0 be given. 

Then for P1Ci), P2<i), P(i) ,. 0: 

(A.3) DN(P) 

(A.4) 

where aJ = PJel)/PCI). 

proof: Applying C2.7) "and (2.8) to Proposition A.l, the result 

follows. II 

PropoSition A.2: Let PCI) PIC I) P2 ( i ) . Then for P ( i) ,. I): 

(A. S) D(P) = DCP1) + DeP2), 

CA.6) 
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wher'e DT 1S the coltlmn ma1:ri>c trar,soose .~f the r'c.w r,lat\·'i>c D. 

proof: Let d j be oefined as above, then: 

Hence, 

Corollary A.21 Let pel) - Pl(I)P2(1) and N ~ 0 be given. Then 

for P<l)." 01 

(A.7) 

(A.8) 

proof: Applying (2.7) and (2.8) to Proposition A.a, tne result 

follows. II 

Proposition A.3: Let pel) 1/Q<I), Q<I) ~O. Then: 

(A. '31 D(P) -O((l) , 

(A.10) C(P) .. -C(Q) + 20«(;1> TOW). 

proof: As above, 

djP '" -d j Q/Q2, 

from which (A.9) foll.~ws. Similarly, 
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frorn which (A.10) f011,;:,ws. II 

Corollary A.3: Let P(l) = I/Q(l), Q(l) _ 0 and N _ 0 be 

given. Then: 

proof: Immediate. II 

Proposition A.4: Let P(l) ... Pl(1)/P2(1), Pa(l) _ O. Then 

(A. 13) 

(A. 14) 

O(P) - O(Pl) - 0(P2). 

C(P) • C(Pl) - C(P2) + O(Pa)TCO(Pa) - O(Pl)J 

+ [D(P2) - D(Pl)]TD(P2). 

proof: Combining Propositions A.2 and A.3; 

O(P) = O(Pl) + O(t/Pa) ~ D(Pl) - 0(P2), 

,. C(Pl) 

Corollary A.4: Let P(l) ~ Pl(l)/Pa(l), Pa(i) _ 0 and N _ 0 

be given. Then for P(l) _ 0: 

(A.15) 

(A.16) 

proof: Immediate. II 
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Pr.joositi.:.n A.5: Let A: l-J be a smooth trar,sf':'t'r,lation fr.:.m Rn1 

to Rn. Let Q(J) be a price f'Jncti.:.n and defir,e P(l) = Q,j:H). 

Ther,: 

(A.171 DIP;l) '" DIQ;Al).JeA(11l, 

(A.18) C(P;11 '" .JCA(1)lTC(Q;Al).JCA(11l - D(Q;Ai)·HeA(l)l, 

where .JCA(11]Jk :I dAJI Jik is the n )( m jacobian matrix .jf A. arId 

HCA(11l J kl'" )2AJ I di~J is the n x m )( m Hessian matt'ix .jf A. 

proof: Applying the chain rule: 

dkP(11 - ~ dJQIA11dkAJ(1) - dQ·dkA, 
J 

from which (A.17) follows. Taking second derivatives: 

d'I<.P(il = ~ diJQIAi)d,Aill)dkAJli) + I: dJQ(Ai)dll<.AJ(i) 
Ji J 

from which we '::lbtain IA. 18). II 

Corollary A.5: Let A, QCJl and PC11 be as in Propositlon A.5,and 

N ,a 0 b&! a given direction vector in Rm. Also, let /II arId JII' be 

defined in Rn by: 

(A.19) .. - .JCA(l) IN, 

CA.20) N' '" NTHCAC 1) IN. 

Then: 

CA.21> DN(P) DMCQ) , 

307 



proof: Using 12.7), IR.21) follows lmmediately from IA. 17). 

Similarly, 12.8) makes the first term on the right of IR.22) 

clear. For the second term, we have: 

-NTOIQ;AIIHCAII)JN 

- E dJQIAI) E dlkAJlllnlnk / QIAI) 
J !k 

= dQ·CNTHCAII)JNJ / QIAll 

• -OIQ)·M' 
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