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Abstract

Extending the general noriparallel shift approach to duration
analysis developed previcusly by the author, this paper explores
the immunization properties of that model. In particular, results
are developed regarding directional ihmunizatign, in which the
yield curve shift direction vector is Specified; as well ‘as for
nondirectibnal immunizat ion. Throughout, the goal of immﬁmization
at time k is seen to be intimately linked to the relationship
between the durational and convexity attributes of the portfolio
ard those of a k-periocd zero coupon bond. Applications to

asset/liability management are ther explored.
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L= Intraoguecticon

The concepts of guration and immunization have zeen tTne
;ubjects of an increasing amount of interest, bath from a
theoretical and an applied perspectivé. Originally discovered
over SO years ago, duration was defired to better reflect tne
length of a payment stream (Macaulay (/238)). A short time later
(Hicks (/?37)}, it was indeperdently derived in an investigation
into the elasticity of the price of a bond with respecf to the
discount factor v = (1 + i)—1,

Soon thereafter (Samuelson (/74§), Redington (/257)), duratiaon
was rediscovered in the context of the immunization of a firm's or
portfolic’s net worth. That }s, in pursuit of conditions under
which assets and liabilities would be equally besponsive to
chariges in an underlying interest rate. Redington®s approacn was
later adapted by Vanderhoof(/?72) and became what tao many actuaries
represerited an introduction to this fiela of thought ana ics
application to insurance company portfolios. Common to the aoove
investigations was the assumption of a sirngle interest rate for
all discountings of cash flows; that is, a flat yield curve.

Fischer and Weil (/?7/) first externded the Redirgton model to
reflect a non—-flat term séructure, and developed a corresponding
duration measure often dericted D2, to distinguish it from the
Maééglay duration, Dj. Thig measure reflected price sensitivity
to parallel shifts in the term structure. That is, shifts for
which each ;ield point moves by the same amount. Other

definitions of duration were then developed (BierwagU?W&,Khang
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{(/979), Brennan and Schwartz{(/7§1)) corresponding to cther megels of
yield curve dynamics, or the marmer in wnich the term structure
changed. Surveys of these models and related matters can oe found
in Bierwag, Kaufman and Toevs(l??.?J) and Bier*wag(/”?), the latter
reference also providing an excellent introduction to many aspects
of this theory and its applications. The importance of the
correct choice regarding yield curve dynamics was first notea in
Bierwag, Kaufman and ToeszﬂU&L which investigated stochastic
process risk.

Other extensiorns of Redington’s work include Grove(”7%ﬁ
which immunized a non—-zero initial net worth, Kaufman@u?y), which
ihvestiggted the immunization of the net worth asset ratio, ard
Bierwag,“Kaufman and Toevs(ﬁﬁabc) which introduced a methodology
for develeping an immunizing asset portfolio, and investigated tne
concept of an efficient frontier in this context.

More recent approaches have involved immunizing multiple
liabilities (Shiuﬂ?&ﬂ), tax adjusting the duratior measure (Stock
and Simonscon (/,’I?)), and utilizing a duration vector approach to
immunization (Chambers, Carleton and McEnallyOZﬂ?). This latter
approach defined a vector in which each component reflected a
"moment” of adjusted times—to-receipt of the underlying cashn
flows. In this context, traditional duration is closely related
to their first moment, while the concepts of “convexity" and
"inertia" (Bierwag(/?7) are closely related to their secord
moment. The adjustment made to the times-to-receipt of the cash
flows was the reduction by orne time unit.

A general nonparallel shift approach to duration analysis was
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develoged in Raitano(]}f}), and an application to measuring
potential yield curve risk exempliified in ReitanoU??D). For this
aralysis, a yield curve is identified with a “vector' of vaiues
representing yields at the c&mmonly quoted maturities. The
underlying technique employed was a gerneral multivariate aralysis.
While multivariate models are not in general new (BierwaguzKO),
the particular model utilized ;as found to provide great insignt
to the sensitivity to general yield curve shifts. In particular,
"partial"” durations were defined to reflect yield sensitivities
point by point along the yield curve. These measures cauld then
be sasily combined to produce "directional" duration measures
which reflected portfolio sensitivity to any yield curve shift.
The traditional duration measure, for example, reflecting
sensitivity in the parallel shift direction, is seen to be the sum
of the underlying partial durations.

The current article extends this theory to the ouestion of
immunization. The yield curve is again modelled as a vector of
quoted maturity yields, with other yields assumed to be
functionally dependent, such as via interpolation. Consequently,
all yield curve changes are identified with vector shifts, and
immunization pursued within this multivariate context.

This immunization model is introduced in Section II, along
with the necessary definitions from Reitano(ﬂ?i’. Section III
then develops an extension of Redington's approach to general

nonparallel yield curve shifts. Here, we define and explore
directional immunization and extend and exemplify the general

results within the context of spot rate and forward rate mcdels.
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In this context, as throughout the paper, the goal of
immunization at time Kk is seen to be intimately cornnectea witn tne
relatiorship of the portfolio's directiornal duration and convexity
attributes to those of a k pericd zero coupon bond. Naturaily,
immunization results for the special case of parallel shifts are
seen to be equivalent to well-known results. Alsoc in this
section, the concept of an immunization boundary is explored,
extending the idea of duration window (BierwagO}fﬂ), as is tne
return on investmenf, generalizing BabcockOﬁﬂo.

Section IV then develops immunization results in tne general
nondirectional context. That is, conditions under which portfolion
values at time k are preserved under all yield curve shifts. The
spot andvforward rate models are revisited, as are practical
issues related to implemenfing this appreach. Gerneral return on
investment results 2r2 then deveioped.

Section V investigates the relationship of earlier
immunization properties to the yield curve model employed.

Finally, Section VI applies the previous results to tne
context of asset/liability management. Surplus immunizaticon
conditions are developed in both the aosolute and asset ratio
contexts and the results translated to implications for the
immunization boundary.

A technical appendix is included and contains the proofs of

the duration theory underlying the immunization results.
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II. Multivariate Immunizationm
A. Multivariate Price Model

Let P(1l) denote a positive valued multivariate orice furction
which reflects the dependency of the price of a portfolio of
securities oan an underlying yield curve vector, i1 = (if,...,1p,).
This portfolio could equally well reflect assets, liabilities, or
a net worth or surplus position. The cash flows anticipated by
P(i) may be fixed or interest deperdent, with P{(i) correspordingly
representing a simple present value price function, or the price
values obtained vi? a model which incorporates the options or
other interest dependencies (for example, Clancy (/?#5), Ho, Lee
(/92¢), and Jacob, Lord and Tilley(/?87)).

The yield curve above is modelle& as a discrete vector,
representing as previously rioted, the guoted maturity points or
yield drivers im a given valuation model. This yield curve may
reflect any system of units (bond yields, spot or forward rates),
and any nomimal basis {(annual, semi-annual, etc.). In practice,
yield points at other maturities are typically derived from these
values via interpolation and/or other conversion, so it 1s
appreopriate to view the price of the portfolio, P(i), as a
function of this yield curve vector. For example, with i
corresponding to bond yields, pivotal yield values for maturities
.25, 1, 3, 5, 7, 10, 20 and 30 years are sufficiernt faor many
valuationg, and P(i) can be modelled as a furiction of these eight
observed values.

As in Reitanoﬁifﬂ y wWe make the following definiticns, which

/“q\
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gereralize the notions of duration and convexity to tnis yield
vector basis. Rccordingly, we assume throughout tnat B(i) 1is
twice differentiable, with continuous secona order partiai

derivatives.

Definition 1: Given P(1), the Jjth partial_ duration_furction,

denoted DJ(i), and the jkth partial_convexity furnction, cencted

Cyk (1), are defined for P(i) # O as follows:
(2. 1) Dy (i) = —d, Pi)/P (1), J = l,.004m
(2.2) Cyktl) = d P 1) /P, Jeok = 1y...,m

where de(i) and djkP(1) denote the corresponding partial
derivatives of P({).

(2.3 D(i) = (Dy(4)y...,Dmtid),

IC11¢d) . . . . Cim¢i)i
! H
(2. 4) Ci) = 1 I

1 1

IChu1(d) ¢« o« « « Cyptidl. i
Intuitively, Dy (1) reflects the sensitivity of P(1) to movements
in the jth yield point. For example, if jJ = 10 in the aoove bond
yield model, changes in this yield will affect the value of casn

flows at time 10 years, as well as those in the range from 7 to 20

years because of the interpolation of yielas at these maturities.
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Similarly, CJk(i) refiects a "second order" sensitivity of P(i) to
movements on the Jth and kth yiela points.

When aopropriate, D(i) will be interpreted as a row matrix.
Also, note that by the above continuity assumption that
Cyk (i) = Cyy(1), and hence, C({) is a symmetric matrix.
Definition 2: Given P(i), and yield curve directior vector

N = (ni,...,nm) with N # O, the directicnal_duration_function in

the direction of N, denoted Dn(i), and the directional convexity

R BN AL NS 5N B2

P(i) # O as follows:

2.9 Dn¢d) = —-dnP(d) /P (1),

(2.6) Cntd) = dnnPod) /7P (d),

where dyP(1) ang dynP (i) dencte the first and second directional
derivatives of P(i) in the direction of N. il

Intuitively, N equals the "direction" of the yield curve
shift in that it reflects the relative magnitude of the individual
shift amounts. R typical shift can then be modelled as
tN = (tny,...,tny), corresponding to each yield peint i; snifting
by the amount th. When all ny = 1, the classical parallel shift
model results.

As developed in Reitano (/7#?), the directional measures can be
easily obtained from the corresponding partial measures as

follows:
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(2.7 Dn(i) = D(i)*N = E n,D; i),

it

(2. 8) Cn (1) NTC(i)N = EL nyrCiu i,

where NT denotes the transpose of the column vector N.

When N = (1,...,1), the associated directional measures aoocve
reduce to the more traditional modified duration and convexity
measures, D(i) and C(i), calculated with respect to parallel yield
curve shifts. In addition, we have from (2.7) and (2.8), that
these traditional measures equal the sums of tne correspornding

partial measures:

(2.9 D(i) = £ D;(1),

(2. 10) C(i) = IX C (i),

When rnecessary for clarity, duration and convexity functions wiil

explicitly reflect P(i), such as DNn(P3i) for Dn(i).

B. Immunization Definitions

Let P (i) dernote the forward value of the portfolio at time
k 2 O, on the yield curve vector i, where it is assumed that no
securities are either added or removed from the portfolio. In
addition, we assume that the yield vector changes from ip to i
immediately after time O, and remains fixed at this level
throughout the period. Extending the classical rnotions of

imnunization, we have the following:
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(2. 1) P (i) 2 P ig),

for 4 sufficiently close to ig. That is, for i - igl ¢ r, wnere

r ) O and 1il denotes the standard Euclidean rorm:

(2.12) 1412 = Ei 2,

Similarly, P(1) is said to be glgbally immunized _at_time_k

on_the_yield_vector_4g if (2.11) is satisfied for all feasible

yield vectors {. 11
For the purposes of Definition 3, “feasibility" will not be

rigorously defined. Certainly, the restriction:

(2.13) 0 iy (1

is a minimal requirement for feasibility, though in practice cother

bounds may be more practical.

We analogously define local and global immunization in the

direction of N by:

(2. 14) Pritp + tN) 2 P (ig)

for 1t) ( r (local), and for all feasible t (global).

Note that for the purposes of directional immunization, we
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restrict our attention to yield curve shifts of a fixed type, N.
so only the amount of the shift:is variable. For example, N could
reflect the classical parallel spnift direction vectaor, or a snift
vector which changes the yield curve level and slope, or more

general types of shifts. In the nordirecticornal immunization

model, we consider all possible shift directions from ig.

For P(i) to be immunized at time k on ip, it is clear from
(2.11) and (2.14) that ip needs to be a relative minimum of Py (i)
in the local immunization case, and a global minimum in the glabal
immunization case. For the results below, we utilize tne well-
known sufficient conditions for a point to be minimum value. For
axampla,_a sufficient condition for xp to be a leocal minimum OfF

f(x) in the direction of N is that:
(2. 19) dnTixQ) = 0,
(2.16) dnnfixg) ) O.
A sufficient condition for xo to be a global minimum is tnat
(2.16) is satisfied for all x.

Similarly, a sufficient condition for xp to be a local
minimum of f(xg) is that (2.15) and (2.16) hold for all N. That

iss

(2.17) djfixg) = 0, J ' byeweatl
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(2.18) td ;F(xp) | is positive definite,

where Id;kf(xg) !l denotes tne second derivative matrix, or Hessian
matrix of f(x). A sufficient condition for xp to be a global
minimum is that (2.18) hold for all x.

The sufficiency of such conditions follows from the mean
value property of a Taylor series. Given x = %o + N, there exists

S satisfying O ¢ 5 { 1 so that:
Fex) = fixg) + E djfixging + BEE djufixg + & Nnjry
= fixQ) + dNFixg) + BdNNFixg + §N).

In other words, a function's value at u = xp9 + N can be expressed
in terms of a linear approximation 2t xg:
fixg) + dnFixg),

plus a correction term equal t%:éie second derivative evaluated
"somewhere" on the line segment joining %o and x.

Consequently, if conditions (2.15) and (2.16) are satisfied,.
X0 must be a local minimum of f(x) in the direction of N. This is
because (2.16) implies that dnN(X) > O for x “close" to xQ by
continuity. Similarly, conditions (2.17) and (2.18) imply a local

minimum relative to any direction, since:

duNixo + T N) = NTId fixg + § N)IN,

and by continuity, fd;kfOx)l is positive definite for x close to
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C. The Forward Price Function: Py (i)

Given the yield curve vector i, let Zy(i) denote the price of
a k~-periocd zero-coupon bond with maturity value of 1. Clearly,
1/Z, (1) then equals the forward value at time k of 1 invested row,

and consequently:

(2.19) Ppti) = P(i)/Z (1),

For example, if ij; = i for all ), then Zy(i) = (1 + i)~k and
Prti) = (1 + 1)KP(i).

We naxt investigate the immunization of P(i). As will be
seen, the durational and convexity properties of Zi(i) provide
insight to sufficiert conditions for immunization of P(i) at time
K. In particular, for local immunization we reqgquire tnat P(i)
have the '"same duration” as Zp (i), and to be "more convex," on tne
yield vector {0p. For global immunization, we also require
caonvexity relationships on other yield curves besides ig. The
concepts of "same duration" and "more convex" will be made precise

below, but will be seen to be natural generalizations of the

classical notions to this multivariate context.
III. Directional Immunization

A. General Results

In this section, gereral results are presented on directianal
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immunization. In this context, it 1s sufficient for P(i) to nave
the same directional duration as Zy (i), and greater directional
convexity, to be locally immunized at time k.

Proposition 1: Let P(i), igp and N # O be given and assume tnere

axists K 2 O so that:
(3. 1) DN(Ps;ig) = DN(Zkiig),
(3.2) CN(P310) > Cn(ZksiQ).
Then P(i) is locally immunized in the direction of N at time k on
the yield vector i9.
The proof of Proposition 1 is readily obtained from the

following result, proved in the Appendix (Corollary A.4):

Lemma 1: Let P(1) = Q1(1)/0Q2(1), where Qi (i), Qz(i) # 0.

Then:

Dn(Psi) = DN(Qpsd) - DN(Qzsi),

(3. 3) CN(P3i) = CN(Rps5i) - CN(Basd)

+ 2DN(Q2;1) [DN(Qasd) - DN(Qp3ddd.
proof of Proposition 1:

Applying Lemma 1 to Pp(i) in (2.13), we have from (3.1) and

(3.2) that:
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(3. 4) Dn(Prsig) = O,

(3.3 Cn(Prsi) ) Ol

Consequently, the respective directional derivatives of Py (i)

satisfy the conditions in (2.15) and (2.16) and the result

follows. 1!
For global immunization in the direction of N, we reguire a
convexity constraint on all feasible yield vectors i = ig + tN.

Y

(0]

While this constraint can be expressed directly in terms of (3.
wae instead chose an equivalent, more symmetric representation.
Proposition 2: Let P(4), 10 and N # O be given and assume that

there exists k 2 0 so that:
(3.6) Dn(Fs;ig) = DN(Zgs3ig),
(3.7) dnyDN(P3i) ( dNDN(Zk3i) + [DN(P3;i) — Dn(Zesd)lE,

for all feasible yield vectors i = ig + tN. Then P(i) 1s glabally
immunized in the direction of N at time k on the yield vector ip.
proof: By Definition 2, dnP(%) = -P(1)DN(1). Taking directional

derivatives and dividing.-by P(i) produces:

(3.8) 4Dy (Pid) = Ds(P;i) - cy (Pitd,

as well as a similar identity for dyDn(Zk3;i). Hence, using

Lemma 1, (3.7) assures that (3.5) is satisfied for all feasible is
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while (3.6} implies (3.4), and the result follows as before. HH
We rnote in passing that the convexity constraint (3.3) in

Proposition 1| can readily be expressed in terms of directicral

derivatives as in Proonesition 2. Specifically, due to (3.8) ara

(3.1), we can rewrite this constraint as:

dNDN(P3sdiQ) ¢ dNDN(Zkiio).

For fixed N # O, the pair (k,iQ) of the above Proocsitions
give rise to a "duration window" (k,Pi(ig)) as defined 1n Bierwag
(/98#7} Specifically, consider the graph of y = Py(i) in the
xy—-plane for each feasible 1 = ig + tN. All such graphs will
equal or exceed the value Pi(ip) when x = Kk in the case of glabal
immunization, while all graphs with It! ( r will have this
property in the local immunization case. That is, each will pass
through a "window" at x = k with lower bound equal to Ppiip).
Consequerntly, the value Pi(ig) alsoc gives rise to the minimum
annual return on investment over the interval [0, kl.

It is mnmatural to inquire into the existence of other such
duration windows. That is, given it = ip + tN, does there exist
k = k(t) so that P(i) is immunized at time k(t) on it? We rnext
consider all such pairs, (k(t),it) and the associated duraticon
windows, as forming an immunization boundary.

Definition 4: Given P(i) and N # O, let it = ig + tN denote the
yiald vector on which P(i) is locally (globally) immunized in tne
direction of N at time k = k(t) if such a k exists. Then the

local_(global) _immunization_boundary for P(i), in the directiocn of
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N, genoted IBN(Dy is gefined:
(2.3 IBN(R) = {(k,Pp(ig) 1 k= r(L))r 11

The immunization boundary then has the same property as aoes
the duration window, yet over a range of forward times k. That
is, the collection of graphs y = Py(i) for 1 = ig + sN will be
minimized at each such k(t) on the yield vector it in the global
case, and for more limited ranges of yield values in the local
immunization case. Therefore, Py(ig) reflects the minimum
portfolio value in this sense at each such time k(t), and
congsequently gives rise to the minimum annual return on

investment, i(k), over every such interval [0, kl, where:

1
(3.10) i(k) = [PR(ig)/PCig)lk - 1, K= k(t),

ard ig 1s tne initial yield vector. Nate that for t = O, the
minimum return given in (3.10) equals the k period return on tne
zaro coupon bond, Zi(ig), due to (2.13).

We next investigate the above concepts within the framework
of two common yield vector models: the spot rate and forward rate

models,

B. The Spot Rate Model
ARssume that 19 = (igyigyeseyipm) is given and reflects the
current spot rate structure. For example, iQ might be the

overnight rate, iy the 1 year spot rate, etc. For notational

278



simplicity, we assume tnat these values are alreaady carnvaertag o
the riominal basis consistent witn the pericg lerngth.
To have a continuonus discounting mocel, we interpolate soot

rates for other periocds as follows, where J is an integer:

1
]
I

i

ig+g = (1 - s8)i} + sipey, Q

Consequently, the zero coupon bond Zp (i) has value:

(3.11) Zg(i) = (1 + (1 ~ s)iy + si]+1)‘ﬂ,
where k = } + s. For notational convenience we set:
vig = (1 + i)~ = (1 + (1 - s)ig + sigs)LL

A calculation produces the following partial durations and
convexities where [1kl] derotes the greatest integer less thanm o

equal to k:

kv (1-s) 3 = Cikil
(3.12) Dj(Zysip) = kv s 3 = Cik1d + 1
o] otherwise
2 2
k{k+1) v (1-s) i =3 = Cikid
2
(3.13) Cij(Zusio) = k(k+1)v s(l-s) i = Cik1d, 3 = Cikid + 1

io=m CIRIT + 1, 3 = C1kid

2 2
kKik+1)v s i =3 = Cikid + 1
(o] oHervize
Hence, condition (3.1) in Proposition 1 that Dn(Rs;ip) = DN(ZrsiQ)

can be expressed as follows usinmg (2.7) and (3.12), where
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(3.14) ZnJDJ(P;io) = kv (ll-s)ng + sn‘+1).

Note that the right hand side of (3.14) is rnot necessarily
monotonic, so multiple solutions may exist. In addition, (3.14)
may fail to have a solution.

In the special case where N = (1,...,1), the parallel shift

direction vector, (3.14) reduces to:
(3.15) D(P3ig) = kvke.

When the spot rate vector is flat, ij; = i for all ), (3.15) is

readily solved for k, producing the classic result:
(3.16) Kk = (1+i)D(P3i) = DM(B31),

where DM denctes the Macaulay duration of P, In this case, the
immunization boundary is also easy to describe, subject to
convexity constraints. Specifically, for any feasible rate i, the
associated point is (k,Pp(i)) where k is given by (3.16). Subject
to a convexity test, this boundary then defires the minimum value
of Pr(i) at each time k so produced. That is, for all k in the
range of DM(P;i) considered as a function of i.

For spot rate vectors which are not flat, (3.13) can only be
solved with extra effort. Because kvy is continucus, it can first

be evaluated for integer k, producing bounds for the exact
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solution(s), For a decreasing spot rate yield curve, tha solution
will pbe unigue if it exists, since then kvi will be monotorically
increasing. Otherwise, multiple solutions are possible as rnoted
above. In any case, it 1s interesting to rnote that the sclution Kk

again appears to be a Macaulay-type duration, in that:
(3.17) k = (1 + i )D(P,1p).

To investigate the convexity constraint in (3.2), a
calculation using (2.8) armd (3.13) produces tne fallowing, wnere

k=1 + sz

(3.18) Cn(Zyidg) = kik+1IVE ((1-S)ny + snp, )&

(1 + 170 Ds(zk;io)

+ 3N, %

DN(Zk;iO)CDN(Z ;io) + Vk((l—S)nl 1+1

3

Consequent ly, because Dny(Zyijig) = DN(P3iQ), (3.2) becomes:
1 2n,

(3.1 CniPidg) > (1 + L/ 0Dy (Psig),

or an equivalent inequality using the last expression in (3.13).
For example if N = (1,...,1), this can be equivalently

rewritten:
(3._20) C(P3ip) > D(R3;iQ)ID(Psip) + vil.

When the yield curve is flat, a calculation below shows that

(3.20) is always satisfied when cash flows are fixed and positive.



That is, we always have:
(3.21) C(P,ig) > DM(P,ig) CDM(P,ig) + 11ve.

Hence, in this well-known case, the local Macaulay immunization

boundary is as noted above:

(3.22) IBM(P) = {(k, (1+i 0KP(i)) § k = DM(P,iy), iy feasiblel}.

In other words, for price functions with fixed positive cash
flows, such as those for noncallable bonds, the immunization
boundary exists for all k in the ranée of the Macaulay duration
function; That is, for each feasible yield rate i, we calculate
k = DM(P;i) and obtain the associated minimum value of the price

function at k, namely (1+i)Kp(i), In addition, the associated

mininum returns on investment, i(k), are given by:

1
(3.23) i(k) = (1 + i)EP(i)/P(io)JE -1,

where ig is the initial yield to maturity.

In the more general directional immunization case with fixed
cash flows, not necessarily all positive, we have the following
Proposgition, in which the convexity constraint is expressed in

terms of the last expression in (3.18).

Proposition 3: Let P(i) = taij be a price function with fixed
cash flows and P(i) # Q. A necessary and sufficient condition

for P(1) to satisfy:

Mo
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(3.24) Cn(P3i) > DN(P3i) CDN(P3i) + vI,

x-}&S,

where v = vi((l-s)np + snp+i),,1is that:

(3. 25) var(x;) ) ECX;1 - E0x§/31,

where Xy = gnjvy/v, and the implied "probabilities” oy are agefired

by py = ajvi/Pdi).

proof: A calculation using (2.7) and (2.8) shows tnat given 2 (1)

above:
D (i) = E J*1/p(4) = VE p X
N an,4,v3 VE B, Ky
Cyti) = E J(J+1)n§aJYf+2/p<1) = v@EF chxg + X371
Hence,

CN(d) = DN(D) (DN(E) + v)

fu

= v2Eix§ + x§7p - E2xyp - BExp,
and the result follows. ]

It should be noted that in the classical model with
N = (1,...,1), ij; = i and aj 20, (3.24) is always satisfied sirce
then X; = 3, p; 20, and the right hand side of (3.2 ) is 0. In
addition, Var(X;) is equal to the portfolio "inertia" in tnis
case, as defined in Biarwag(/#7).

In the most general case, a simple necessary condition for
(3.24) can be cited. Here, however, we express this convexity
constraint in terms of (3.13).

Proposition 4: Let P(i) be given. A necessary condition far



(3.19) to be satisfied is that:
(3.26) dnDN i) ¢ 0.

That is, DN(i) is a decreasing function at ig in the direction

of N.

proof: By (3.8), the above condition implies that

Cn(ig) ) Ds(io), which is clearly a necessary condition far

(3.19). LR ]

The above proposition provides an intuitive recessary condition
for immunization when the directional duration identity in (3.1)
is satisfied. Clearly, this condition can be sharpened to be

sufficient as well. Specifically, (3.19) is equivalent to:

d\Dyn(ip) ¢ - L Dty

X

Consequently, (3.26) is also a necessary condition if and anly 1

Dn(ig) = O.



C. The Forward Rate Moael

We assume nere that i9 = (if{4...yify) is givern and rerlects
the current forward rate structure. Corresponding to (3.1i1), we

have, for k. =  + 5, O £ 5§ £ t:

¢ =4 ~-q
(3.28) I (i) = 72;(1 i) Tl i) o,
J

Taking partial derivatives in (3.28) and aoplying (2.7), tne

condition in (3.1) that DnN(P3ip) = Dn(Zk3i0) becomes:

?
(3.29 L njDy(P3to) = K MyVy + NpeqVies,

where vj; = (1 + i;)7l, Clearly, the rignt hand side of (3.323) is
monatonic in k if and only if all n; have the same sian. In this
case, the solution for k 1s unigue when it exists. Otnerwise,

multiple soclutions are possible.

For the special case N = (1,...,1), (3.23) becomes:
(3.30 D(P;i0) = WVy,
where Vi is an "average" discount factor:

(3.31) (E vy + svp+1).
o

<!
x
(]

Xir

Consequently, in this case Kk is again seen to be a Macaulay—-type

duration as in (3.17):



(3.32) kK = (1 + T3)D(Psig),

where Tk 1s the interest rate associated with Vi 1n (3.31). Niote
that Vi reduces to v = (1 + 1) ~! when ij; = i Ffor all j and (2.23)
is identical to (3.16).

Taking secord partial derivatives in (3.28) and applying

(2.8), we have:

?
- . - n2¢7 - 2.2 2 2
(3. 33) CN(Zk,iO) DN(Zk,io) + f nJvJ + sn!+1v'+1.

Hance, given that DN(Zk;io) = DN(P;io), the corvexity constraint

in (3.2) becomes:

?
= = 2(p. 2,2 2 2
(3.34) CN(P,io) ) DN(p,io) + f va‘J + sn.+1v’+1.

Clearly, in order for (3.34) to be satisfied, 1t i1s recessary to

=
have Cn -~ DN YO. Consequently, Praoposition 4 apolies in tnis

context as well, as does the obvicus counterpart to (3.327).

D. Returns on Investment: 1*

As noted above, the immunization boundary gives rise to the
minimum return on investment, i(k), over every pericd [0,x3 for
which P(1) can be immunized at time k. The return on investment
over [Q,k] is in fact a random variable, Ik, the value of which
depends on the yield vector i. Here as before, we assume the
initial yield vector to be ig, ard that this value changes to i

immediately after time O, and remains fixed at this level
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throughout the period.
Similar to (3.10), which provided the minimum value of Iy (i).

we have:

1
(3.3%5) Ikti) = [PR(1)/P(ig)lIk - 1,

where 1 = 1o + tN. Following Babcock(/”y), we seek an
approximation for Ig(i), where the approximation reflects the
dependency on t. To this end, let @(t) denote the right hard
side of (3.35), expressed as a function of t, where i = ip + tN.
The first order Taylor series approximation is then
Por + YPreore.

By substitution, we have that y(O) = j(k), where j(k) is the

k period return on the zero coupon bond, Zi(iQ), due to (3.35).

To evaluate T (t), note that:
Y

dgPr(i) fe=g = dNPK(iQ) = ~Pr(iQ)DN(Priig).

Consequently, we obtain the approximation:
(3. 36) I(d) = (k) + (1 + J(R))IDN(ZRsio) — Dn(Psig)lt/k.

Note that if P(i) is immunized at time k, then the above lirear
approximation reduces tojIg(i) = j(k). In this context, however,
J(k) = i(k) as defined in (3.10). Since i(k) is the minimum value
of Ik(i), by definition, it is clear that the above formula is
somewhat crude in this case.

Taking the second derivative of q(t), we obtain the



follawing generalization of (3.36), where all durations are
evaluated on ig:

(3.37) Iptd) = J(k) + (1 + J(k))[DN(ZK) — Dn(PIYIE/k

+ (1 + J(k)){dNDN(Zk) - dnDN (P +é40N(zk) - DN(D))E}tE/Ex.

If P(i) is immunized at time k, we see from (3.7) that tne second

order term in (3.37) is positive, and hence I, (i) > (k) = 1(K)
as expected.

For other values of k, the lirear term in (3.36) will in
general be nonzerc. Specifically, if P(i) is “longer" than Zyi on
10 in the direction of N, then IK(i) will decrease with increases
in the yield structure in this direction. That is, the capital
loss due to the increase in yields cannot be made up by
reinvestment gains over the period ([0, kJ. Similarly, Ix(i) will
increase with decreases in the directiog of N. Orm tne other nand.
if P(i) is "shorter" than Zy on ig in this direction, tnen Igy(i)
will increase with yield increases in the direction of N, sirce
then reinvestment gains will overcome initial capital losses. In
all cases, the second order adjustment in (3.37) will be
independent of the “sign" of the yield curve movement, reflecting
only the magnitude;t. In general, however, the "sign" of this
adjustment will depend on k.

Naturally, either of the above approximations can be used to
estimate the mean and variance of I“ , given an-assumption as to
the probability density of &, or (i - ig) measured in units ofbthe

shift vector N. For example, from (3.36), we obtain:

N
88}
[eu]



(3.38) ECI(i)]

JOR) + (1 + J(K))ILDN(Zux) — Dn(PYIE(t) /K,

(3.39 VarfIp(idd = (1 + J(k))2 [DN(Zi) - Dn(R)I2 Var (8) 7k,

Iv. Non—Directionai Immunizatian

A. General Results

In this section, gerneral results on non-directional
immunization will be developed and seen to be natural
generalizations of the above results. For local immunizatiorn, for
example, we again require P(i) to have the "same duration” as
(i) on 19, and be "more convex." Here, however, the constraints
are stated in terms of the total duration vectors and total
convexity matrices. We begin with a definition:
Definition S: Let R and B be square matrices. We say that A_is
greater_than_B, denoted A » B, if A - B is pousitive definite.

That is, xT(A - B)x ) O for all x # 0. 13
For convenierce, we will sometimes write A ) O, which by
Definition S5 meanms that A is positive definite.
The generalization of Proposition 1 is then:
Proposition S: Let P(i) and ig be givern and assume that tnere

exists a k 2z O so that:
(4. 1) D(RP;ig) = D(Zisio),
(4.2) C(P;1g) » C(Zysip).

Then P(i) is locally immunized at time k on the yield vector 1iQ.

proof: Rs for the proof of Proposition 1, we reguire the result
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of Proposition A.4 relating D and € for Pr(i) to the respective
values for P(i) and Zp(1i). In particular, from (A.13) we s=2e Znat

(4, 1) assures that:

(4.3) D(Py3ig) = O,

while (4.2) and (4.1) together imply that:

(4. 4) C(Pr;ip) > O.

Recalling the comments following (2.17) and (2.18), we see
that the above conclusions regarding PR (i) assure that ig is a
local minimum, and the result follows. 11

Clearly, the conditions of Proposition 5 are equivalent to
assuming that conditions (3.1) and (3.2) of Proposition 1 are
satisfied for a fixed k, for all direction vectors N. A similar
statement holds for the generalization of Proposition &. However,
regarding condition (3.7), we utilize an alterrnative yet
equivalent representation.
Proposition 63 Let P(i) and ig be given and assume that there

exists a k 2 O so that:

(4.5) D(P;ig) = D(Zksiip),

(4.6) C(P3;i) - C(Zpsi) » aD(Zy; )T D(P3i) - D(Zp3id 7,

for all feasible i. Then P(i) is globally immunized at time k on
the yield vector ig.

proof: 0Only (4.6) need be investigated, as the implication of
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(4.3) follows as before. Using (R. 14) of Propcosition (R.4), it 1s

clear that C(Pk;i) is positive definite if and only if:

(4.7) C(P) = C(Zy) ¥ D(ZI0TID(ZY) - DA I + [D(Zp) - D(MITD(Z1).

However, as a quadratic form, the right hand side of (4.7) is
equivalent to the right hand side of (4.68) as a calculation shows.

B. Spot and Forward Rate Models

It is clear from Proposition 3, that even ignoring the
convexity condition in (4.2), the restriction on the total
duration vector D(P3;ig) for local immunization is quite strong.
For example, using the spot rate model in (3.12), we see that

candition (4.1) requires that there is a k = 0 so that:

kv {l=-5) J = Ciklil
(4.8) D;(P;ip) = kvis J = 0IkiT + 1
0 atherwise ,

Similarly, using a forward rate model, the total duration vector

must satisfy the following, where k = [lkil] + s:@

v J £ Ctkil
(4.93) D (R;i0) = sv J = [lkid] + 1
(o] J > ikl + 1
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Consequently, given a portfolio for which local immunization
is required at time k on the current yield vector, in, a
significant amount of trading may be recessary Just to satisty tn2
above conditioris. In theory, such a trade may be impossiolie. LiF
it is possible, it may be highly impractical to implement.

For example, assume that we have m bonds {BJ}, where m equals
the number of yield points on which partial durations are

calculated. If we trade a; bonds, with aj ) O representing a buy,

aj; ¢ 0 a sale, the rew portfolio value will be:

(4.10) Ftig) = P(ig) + L a;B;(ig).

Similary, the new partial durations will satisfy:

(4.11) Dr(P3;i0) = CP(iQ)D(PM + La;Dy(Bj)1/CP(ig) + EajB,(ip)i.

Setting the formulas obtained in (4.11) egual to the tarceted

partial durations, dencted ck, the following system emergss:
(4,12) E aj[DK(Bj) — ckBj(ig)]l = Plig) ley - DR(D)]/ K = lyasaygm,

Naturally, the above system may be urnsolvable, or proaguce
impractically large trade values. If solvable, there is no
assurance that Ea;B;(i) = 0, so new furds may need to be invested
or divested. Alternatively, a uniform percentage of the rew
portfolio S(io) could be bought or sold to achieve the original
portfolio value P(ig). Clearly, the entire trade could be
difficult or impossible in practice, even if possible in theory.
The convexity condition in (4.2) would then need to be

investigated.
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An alternative approach would be one in which tne duratioial
cnaracteristics of P(i) are cnosen surficiently “claosa” to fTnosa
of Zp(ig), with the additional constraints that the resuliting
trade satisfy Ea;B;(ip) = 0 and Elaji ( K or taﬁ ( K for saomne K.
By assuming a probability structure for i, a linear oprogramming or
Lagrange multiplier problem emerges, with an objective furction
equal to the range, volatility or some other measure of the

resulting Pi(i).

c. Returns on Investment: ]k

The results in Section 11I.D. above readily generalize to
this setting. Again defining I(i) as in (3.35), we have the
following counterpart to (3.36), which follows from (2.7) and the

observation that 1 - ip = tN:
(4.13) Ip(i) = J(K) + (1 + J(GR))ID(Zpsig) — DP:ig)I1=(i — i) /<.

Similarly, the second order term in (3.37) can be expressed

as follows, using (3.8) and (2.8):
(i - io)T{C(p) - C(ZK) + 2D TID(Z) - D(P)J}(i - i0) /3K,

where all terms are evaluated on igQ.

The comments made above in the directional immunization case
regarding the competition between capital gains ard losses and
reinvestmnent losses and gains apply here as well. Here, however,

the concept of P(i) being "longer" or "shorter! than Zy refers to
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the sign of the irner oraguct in (4.13) pbeing negative or
positive, respectively.

Corresponding to the moments of Ix(i) in (3.38) and (3.39),
we require the following notation. Let E(i - ip) corresaoond oo

the vector mean, arnd V(i - 1ip) correspond to the covariance matrix

of 1 - ip, reflecting the underlying density furction of i. Then:

(4. 14) EEIW(i)] = J(K) + (1 + 3(k)IID(ZE) ~ DM IE(L — i),

(4.15) VarlIg(i)l =

(1 + J(K)IZID(ZY) - D(PIIVIE - 1) ED(ZY) ~ DR IT/KE,

where all total duration vectors are evaluated on ig.

V. Yield Vector Transformations

It is natural to inguire to what extent immunizaticn, as
developed above, depends on the underlying yield vector basis
used. For example, if a portfolic is locally immunized at time k
on the yield vector ip, what can be said if tne analysis was to be
done using yield basis Jp? R similar question arises for
directional immunization. The next proposition shows tnat tne
property of local immunization is independent of the yield basis.
Proposition 7: Let P(i) be a price function which satisfies
conditions (4.1) and (4.2) of Proposition 5, and hence is locally
immunized at time k on the yield vector ipg. Let A:i-») be a yield

curve transformation, with a nonsingular Jacobian matrix, JLA(i)]
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at ip. Then P(J) also satisfias tnose coraitions at 3o = RGioy,
ard hence is also locally immunized at time k on thne yi2ig vactor
JO-

prosf: By Progosition R.S, we have:
D(Pr3;ig) = D(PK3;JO)JIAR(1in) 1,
and hence:
(5. 1) (D(P;40) — D(Zis3iQ)] = [DP330) — D(Zk;3001 JLAtig) 1.

Consequently, since J[A(igl is nonsingular, P(i) satisties (4. 1)
at 4o if and only if it satisfies this constraint at Jo.

Similarly, we have:

C(Pr;io) = JIA(I 1TC(PL3Jo) JIA(1p)1 - D(Py;Jo) HIAtiN) I,

where HLR(in)1l is the Hessian matrix of A at ig. Substituting for
the total convexity matrices using (A.14), arao using tne fact

D(Pr3;ig) = D(Pr3Jo) = O by (S.1), we cbtain:

(5.2) C(P3ig) — C(Zr;i0) = JIAI 1TIC(P;)0) — C(Zk;30)1JCACiG) 3.

Consequently, since J[A(ip)] is nonsingular, C(R) satisfies (4.2)
at ip if and only if it satisfies this constraint at Jg. il

The implication of Proposition 7 is clear. Namely, that Kk,
the time to which P(i) is immunized, is a coordinate invariate and
intrinsic property of the portfolio. It does not depend on the
yield curve basis one chooses. As for directional immunization,

the situation is of necessity more yield curve deperndent, since
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the directionn vector N clearly reflects tne yield curve Zasis.
Transforming N by the Jacobian of the transtformation grovides a
direction vector M for which immunizaticon is possible, yes
unfortunately mot assured without agditiornal constraints as tne
following result demonstrates.

Propostion 8: Let P(i) be a price function and N # 0 a
direction vector such that conditions (3.1) and (3.2) of
Proposition 1| are satisfied and hence, B(i) is locally immunized
at time K in the direction of N on the yield vector ig. Let A be
given as above. Then P(3) satisfies corndition (3.1) witn

M = JIR(ip)IN and Jo = Atip). In addition, if

Dms (P330) 2 Dm* {Zx3;J0), where M* = NTHCLAR(ig)IN, then P{(3) also
satisfies condition (3.2) and hence is also locally immunized at
time K in the direction of M on the yield vector Jo.

proof: Using Corollary A.S, we have:
(5.3 DNCPrsio) = Dm(Pr3Jo),
and hence P()) satisfies condition (3.1) with M anag jo if and aonly
if P(i) satisfies this condition with N anag ig.

Using the corresponding result for directicnal convexities,
and simplifyirg, we obtain:

(3.4) CN(P 340) = CN(Zk3i0) = CM(P 330) - CM(Zr3JO) — Dy (Pr:3o).

Conseguently, if P(i) satisfies (3.2) with N arnd ig, it does not

rnecessarily follow that P()) satisfies this condition with M and
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» Jo due to the last term on the right of (3.4). However, if
D (Pr3Jdo) = Dy (P3J0) — Dmpr (Zx3Jo?) 2 O, local immurization 1n tne
direction of M is assured. 1]

Results on global immunization can te treated similarlyv.
Unfortunately, as in Proposition 8, while the duration results
carry forward well, the convexity conditions are not preservea
without additioral constraints. For example, for global
immunization, we require J[A(i)] to be nonsingular everywnere, and

D(P;J)HLA(L)] positive definite for all i. Details are left to

the interested reader.

VI. ARasset/Liability Management

In this section, we translate the above immunization results
to an asset/liability management setting. To this end, we

consider two objective functions:

(6.1) P(i) = A(i) - L(i),

(6. 2) R(i) = [R(1) - L(i)1/A(1),

where A(1) and L(i) dencte the market values of assets and
liabilities, respectively. Immunization in the context of (6.1)
then provides a floor for the value of surplus at time k, wnile

use of the objective function in (6.2) provides a floor for the

ratio of surplus to assets, or net worth asset ratio.
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A. Surplus Immunization

we first investigate local 1mmunization in the agirecticn ofF

N # 0. Eelow, we use the notation rS to reoresent the sursius

ratio on the current yield vector io. That 1is,

+$ = [A(ig) - L(ig)I/A(ig).

Proposition 3: Let R(i) = A(i) - L(i), ip and N # O be given.

Assume that there exists k = O so that:
(6. 3) DN(R3i0) = (1 — rS)DN(L3ig) + rSDN(Z3iQ),

(6.4) CN(R3ig) > (1 = rS)CNn(L3ig) + rSCn(Ziiio).

Then P(i) is locally immunized at time k in the directicn of N an
the yield vector ig.

proaf: Consider first the case where rS ) 0. By Proposition i,
we require:

(6.95) DN(Psdp) = DN(ZgsigQ).

However, by Corollary A.1,

DN(P3;i0) = DN(A3ig)/rS — Dn(Ljig) (1 - rS)/rS,

and (6.3) follows from (6.3). A virtually identical argument

demonstrates that (6.4) is equivalent to CN(P3ig) ) CN(Zkiig).
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For the case rS = 0O, we work directly with tne directicnail
derivatives of PR (i), witn the goal that (2.15) ara (2.16) pe
satisfied. The resulting conditions on the directional
derivatives of A(i) and L(i) can theh be translated to tne
conditions in (6.3) and (6.14) with rS = 0, it

Note that for rS = 0, if conditions (6.3) ard (6.4%4) are

satisfied, P(i) is locally immunized in the direction of N on tre

yield vector ig at all times k 2 0. Consequently, the local

immunization boundary given by (3.3) with it = ip for all Wk 2 O.
However, since rg = 0, we have that Pyplig) = O for all k, and
hence:

IBy = {(k,0) | k 2 O}

For r$ ) O, we see that the directional duration of assets
required for immunization reflects both the directional durations
af liabilities and the discount bond, Zy(i), corresponding to the
immunization horizon k. In some applications, k may be chasen
small or egqual to zero, providing snort term immunization as part
of an active management strategy. For k = 0, the above

irequalities become:

(6.6) Dn(Rsig) = (1 - rS)DNn(L3ig),

(6.7) CnC(Rsig) > (1 — rS)CN(Ls3iQ).

For N = (1,...,1), the parallel shift direction vector, and a flat

yield curve, the above conditions are equivalent to those in
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‘Bierwag (1987) which are stated in terms of Macaulay durations and

the portfolio "irertias" Ipn. This is because in this case:

(1 + DECA = Igq + DM(DM - 1),

and similarly for liabilities. In this special case, we see from
(6.3) and (6.4) that immunization at time k ) O requires more
asset duration and convexity as k increases, since then

DN(Zriig) = kv is an increasing function of k, as is

Cn(Zr3io) = kik + 1)v2,

Alternatively, Kk can be chosen to be consistent with the
planning ;ycln of the organization. For example, k = 1 would be
an immunization target consistent with stabilizing income over a
one period interval, where income is defined as the change in net
worth. Similarly, larger values of Kk can be chosen to reflect a
multi-year business plan, or the maturity pericd of the last
liability flow. This last assigrment would then be consistent
with immunizing pricing margins over'the life of a block of
liabilities.

For ron—-directional immunization, the above proposition
generalizes in the natural way. We state the resuit without
proof.

Proposition 16: Let P(1) = A(i) - L(i) and ip be given. Assume

that there axist; k 2 0 so that:

(6.8) D(As1ip) = (1 - rS)D(Lsig) + rSD(Zk;3;i0),
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(6.3) CtAzig) » (1 - vS)C(Lsip) + rSC(Zisin).

Then P(4) is locally immunized at time k on tne yield vector

i0. !

As for Proposition 9, the conclusion of Propositicn 10

remains valid when rS = 0, The conditions (6.8) and (6.3) then

imply local immunization for all k 2 0.

B. Relative Surplus Immunization

Next, we investigate the immunization of the net worth asset
ratio, R(i) = [A(i) - L(1)1/A(i). Since R(i) is not really a
price function, its forward value at time k, Ri(i), is not given

by (2.19). However, we have:

R (i) = L[AR(i) = Ly (£)I/RK i)

= R(i),

since the forward values of RA(i) ard L (i) satisfy (2.13).

Cansequently, immunizing R(i) at time O ensures its immunization

at all times k 2 O.

Proposition 11: Let R(i) be defined as above, and let ip and

N # O be given. Assume that:

(6.10) Dn(Rsig) = Dn(Ls3io),



(6.11) CN(AsiQ) > Cnilsig).

Then R(i) is locally immunized at all times k 2 O in the direction
of N on the yield vector ipo.
proof: Assuming that R(ig) = rS ) 0, we have from Corollaries

A.4 and R. 13
DN(R3ig) = DN(R — Li3jio) - DN(AR3iQ)
= cl(DN(R3ig) - DNn(Lsig)d,

where c = IL(19)/S(ig). Consequantly, (2.13) is satisfied due to

(6.10). Similarly:
CN{(R3i0) = clCn(AR3;1Q) = CN(L;1i0)] - 2cDN(R;ig) [DN(AsiD) - DN(L;ioq,

and (2.16) 1is satisfied due to (6.10) and (6.11).

For rS = 0, we proceed as in Proposition 39, working directly
with the directional derivatives of R(i). 1t

For N = (1,...,1) and a flat yield vector ip, the above
conditiona reduce to those in Bierwag (1987) expressed in terms of
Macaulay durations and inertias. ARlso, for general N, the local
immunization boundary in (3.9) is given with it = ip for all

k 2 0, and hence, Rk(it) = rS. That is,

IBy = {(k,rS) 1| k 2 O
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Finally, we state without proof the nondirectional

immunization result.

Proposition 12: Let R(i) be defined as above, and ig be given.

Assume that:

(6.12) D(A;io) = D(L;ip),

(6.13) C(Asi0) » C(Lsip).

Then R{(i) is locally immunized at all times k & O on the yield

vector ig. 11
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Rpoendix

Proposition A.1: Let P(i) = Py(i) + Pz(i). Then for

Py (i), Pa(i), P(i) # O:
(A. 1) D(P) = aiD(Py1) + azD(P2),
(R.2) C(P = aiC(Py) + azC(P2),

where aj; = PJ(i)/P(i).

proof: Let d; denote differentiation with respect to i;. Thern:
djp = édpl + djP2,
djkP = d, Py + dykP2.

Diyiding by P(i) completes thé proof. it

Corollary A.1: Let P(1) = P1(d) + Pz(i) and N # O be given.

Then for P1(i), Pz2(1), P(i) # O:
(A. 3) DN(P) = aiDNn(Py) + agDN(P2),
(A. 4) CN(P) = aiCN(P1) + agCn(P2),

where aj; = DJ(i)/Pti).
proof: Applying (2.7) and (2.8) to Propositicon A.1, the result

follows. 1!
Proposition AR.2: Let P(1) = P1(i)Pa(1). Then for P(i) # O
(A. 5) D(P) = D(Py1) + D(Pp),

(A. 6) C(P) = C(Py) + C(Pz) + D(PTD(P2) + D(P2)TD(Py),
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where DT 1s the column matrix trarnsocse of the rcw matiix D.

praoof: Let dJ be defined as above, then:

djP = P1(d; P2} + (d;P1)P2,

djP = (djP1)P2 + P1(d;KP2) + (d;P1) (dPz) + (djP2) (dkP1).
Hence,

Dy(P) = Dy(Py) + Dy(P2),

Cak(P) = Cy(Py1) + Cyk(P2) + Dj(P1)DK(Pg) + Dy(Pz)DK(Py). H

Corollary A.2: Let P(1) = P1({)P2(4) and N # O be given. Then

for P(i).# O:
(A.7) Dn(P) = DnN(Py) + Dn(P2),
(A. 8) CN(P) = EN(Py) + CniP2) + EDN(PR1)Dn(PR).

proof: Applying (2.7) and (2.8) to Proposition A.2, the result
follows. i1

Proposition AR.3: Let P(i) = 1/Q(1), Qi) # O. Then:
(R.9) D(P) = -D<Q),

(R. 10) C(P) = -C(A) + D TD(Q).

proof: As above,

d4;P = -d,;0/62,

from which (AR.3) follows. Similarly,

djxP = —d;K0/Q2 + 2(d;d) (dxd) /03,
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from which (R.10) follows. 13

Corollary A.3: Let P(1) = 1/Q(), Qi) # O and N # O he

given.

(A.11)

(A. 12)

proof:

Then:

DN(P) = -Dn(@),

CN(P) = —Cn(@) + 2DR(@).

Immediate. it

Proposition A.4: Let P(1) = Py (1) /Pz(i), Pz(i) # O. Then

for P(i) # O:

(R. 13)

(A. 14)

proof:

D(P)

cp) =

D(P) = D(Py) - D(P2),

C(P) = C(Py) — C(Pa) + D(P2)TCD(P2) — D(P()]

+ [D(Pz) - D(PYITD(PZ).

(]

Combining Propositions A.2 and A.

D(Py) + D(1/Pz2) = D(P1) - D(Pz),

C(P1) + C(1/P2) + D(P1TD(1/P2) + D(1/P2) TD(RY)

C(Py) - C(P2) +2D(P2)TD(P2) — D(P1HTD(Pa) — D(P2)TD(Py).

Corollary A.4: Let P(1) = Py(1)/Pa(i), Pz(i) # O and N # O

be given. Then for P(i) # O:

(R. 15)

(A. 16)

proof:

DNn(P) = DN(P1) - DN(P2),

CN(P) = CN(P1) — Cn(P2) '+ 2DN(P2) [DN(P2) — Dn(Py)l.

Immediate. i1

w
(]
[8)]



Proposition R.S: Let R: i—) be a smooth transformation from RM

to RN, Let Q(3) be a price function and define P(i) = GAi).
Then:

(R.17) D(P;i) = D(Q;A1)JCA(1)1,

(A.18) CP;1) = JIA(L)1TC(@;AL) JCA(LI T ~ D(Q;Ai) “HLA(1) 1],

where JIR(1)] , = ‘)RJ/ Qik is the n x m Jacobian matrix of A, and

HLA(1) ) jup = ’)EQJ/ Diéhp is the n x m x m Hessian matrix of A.

proof: RApplying the chain rule:

digP(1) = E d;Q(Ri)dKA; (1) = dQ-dkRA,
J P

from whiéh (R.17) follows. Taking second derivatives:

dpP(1) = EX dj,@¢Ai)dpR; (i)dyAj (i) + L d;Q(Riddy A, (1)
Ji J

(dgR) TLd2R1dyR + dQ+dykA,

from which we obtain (A.18). it
Corollary AR.35: Let A, G(3) and P(i) be as in Proposition A.5, and
N # O be a given direction vector in RM. Also, let M ard M' be

defined in RN by:

(R.19) M = JCA(L)IN,
(A, 20) M* = NTHCA(i)IN.
Then:

(R.21) DNn(PY = Dm(a@y,
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(A.2&) Cn(P) = Cq(@) - Dm/<Q).

proaf: Using (2.7), (A.21) follows i1mmediately from (R.17).
Similarly, (2.8) makes the first term on the right oFf (R.IZ2)

clear. For the second termn, we have:

-NTD(Q;A1)HCA(1) IN

= L d;G(Ai) E dauR)(iingnk / QA1)
J ) 1

= dQ-CNTHCA(1)INI / Q(Ai)

= -D(Q) *M?

= -Dq’(Q). 1
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