actuarial research clearing house 1992 VOL. 2

VALUING FUTURE NEW BUSINESS
 IN VALUE-ADDED
 FINANCIAL
 REPORTING

May 22, 1992

By Douglas J. Knowling

Abstract

This paper examines inclusion of the value of future new business in value-added financial reporting. The objective of the paper is to develop methods to provide useful information to management that links the pricing, planning and reporting processes.

An overview of value-added financial reporting provides an introduction to methods currently used for in force business. Year end variance analysis is described as a means to compare actual to expected change in value.

A discussion of reasons generally given for not including the value of future new business in value-added financial reporting is followed by an argument why it should be included.

Assumptions needed to value future new business are described. The paper bases production estimates on projection of the number of agents and productivity per agent. This allows for a more valuable analysis of actual to expected results at year end.

The effects of various assumptions on the value of future new business are examined. Sample calculations are provided.

Finally, a method to analyze variances in actual to expected value added by future new business is developed. These variances are due to current year results and revisions in future new business assumptions.

Numerical results presented are illustrative only to show relative effects of various assumptions.

TABLE-OF CONTENTS

Chapter 1:	Introduction to Value-Added Financial Reporting Overview of Value-Added Financial Reporting Calculating Economic Value . Determining the Hurdle Rate Calculating Value Added Year-End Variance Analysis Questions Answered by Value-Added Financial Reporting Link of Pricing, Planning and Reporting Practical Aspects of Implementing Value-Added Financial Reporting Discussion of Other Measures
Chapter 2:	Why Future New Business is Often Not Valued \& Why it Should Be Why Furure New Business is Often Not Valued Why Funure New Business Should Be Valued Advannages of Valuing Future New Business
Chapter 3:	Assumptions Needed to Valve Future New Business Number of Years of Future Production Tool Amount of Production Production Per Agent Projected Number of Agents Sales Mix Cash Flow Projection Discouncing Cash Flows
Chapter 4:	Future New Business Value Calculation Descripion of Products Base Projection With Varying Years of Production Sales Mix Production Levels Augmented Recruiting Improving Agent Retenvion Increasing Productivity per Agent Simultaneous Improvements in Recruiting, Retention \& Productivity Annual Change in Value Conclusions
Chapter 5:	Analysis of Value Added by New Business Towal Value Added by New Business Future New Business Value Split into Current and Furure Years' Value Variance in Value Added by New Business Actually Sold in Current Year Expected Change in Furure New Business Value Effect of Actual vs. Expected Field Force Variance on Future New Business Value Revising Future New Business Assumpions Complete Analysis of Toul Change in Future New Business Value

Summary

Bibliography
Appendices A, B \& C

CHAPTER 1

INTRODUCTION TO VALUE-ADDED FINANCIAL REPORTING

Value-added financial reporting is emerging as a valuable internal reporting method throughout the insurance industry. It has its roots in actuarial appraisal methodology used for mergers and acquisitions. The basis of the method is the annual determination of the economic value of the organization. Change in economic value from beginning to end of year, the "value-added", measures the organization's performance over the year.

The chapter begins with an overview of value-added financial reporting including discussions on calculating economic value, determining the hurdle rate and calculating value added. A year-end analysis of variance similar to a source of profit analysis follows allowing results to be broken down to actual experience versus expected assumptions. Next, the link of pricing, planning and reporting through value-added financial reporting is presented as a major advantage of the system. Practical aspects of implementing value-added financial reporting are discussed. Finally, other measures such as statutory accounting practices and generally accepted accounting principles are discussed as compared to value-added financial reporting.

OVERVIEW OF VALUE-ADDED FINANCIAL REPORTING

Value-added financial reporting focuses on the economic value of the organization. It is based on the Anderson pricing method which many companies use in the pricing process[7]. Future cash flows are projected using most likely assumptions and discounted at the desired retum on capital to derive the economic value of the organization. Generally, only cash flows from business in force are considered in value-added financial reporting. The following discussion approaches value-added reporting from this perspective. Valuing future
new business will be examined later.

CALCULATING ECONOMIC YALUE

The economic value of an organization is free surplus plus the present value of future cash flows from in force business. Free surplus is stanutory capital and surplus plus items that are allocations of surplus (e.g. MSVR) and certain non-admitted assets less any required surplus.

Future cash flows are defined as distributable earnings. Recall that value-added financial reporting has its roots in appraisals of stock companies. Thus, distributable earnings are the amount that can be distributed to shareholders: statutory earnings less any increase in required surplus plus net investment income eamed on required surplus. In terms of mutual companies, distributable earnings may be considered as transfers to surplus.

Formulas to calculate the present value of distributable earnings are the same as would be used in pricing. Atkinson [2] presents a thorough discussion of pricing formulas.

While statutory earnings are not the best measure of financial performance, they recognize that statutory reserves and surplus must be set aside[12]. Maintaining a strong statutory surplus is not only required by state insurance departments, but also by rating agencies which have gained considerable influence in recent years.

DETERMINING THE HURDLE RATE

The rate used to discount distributable earnings is known as the hurdle rate. It is generally defined as the cost of capital for the organization. Merdian [11], provides a thorough discussion of the determination of the hurdle rate as follows:
"Whether a company is a stock or a mutual, company management has been entrusted with capital provided by the owners (stockholders and policyholders, respectively) and should seek to obtain returns on this capital commensurate with the risks undertaken.

To determine the hurdle rate, management can utilize the Capital Asset Pricing Model (CAPM) which is described elsewhere in the syllabus. Briefly, the CAPM breaks expected returns into three components -- the risk free rate of return, the rate of return on average equity investments and the business risk factor which identifies the variance in risks between different companies and industries. In formula terms, the CAPM can be represented as shown below:

$$
\mathrm{ROR}=\left(\mathrm{I}+\mathrm{R}_{\mathrm{T}}\right)+\mathrm{B}\left(\mathrm{R}_{\mathrm{m}}-\mathrm{I}-\mathrm{R}_{\mathrm{T}}\right)
$$

where
ROR = ownership rate of return
$\mathrm{I}=$ long-term inflation rate
$R_{T}=$ real rate of remum
B $=$ business risk adjustment factor
$R_{\text {m }}=$ rate of return on average equity investments

In the formula above, $\left(\mathrm{I}+\mathrm{R}_{\mathrm{T}}\right)$ represents the risk-free rate of retum available to investors. It has been suggested that rates of return on long-term U.S. Treasury bonds represent a reasonable proxy for this rate. The term $\left(R_{m}-I-R_{T}\right)$ represents the additional return over the risk-free rate that an investor, policyholder or stockholder, desires in an average equity-type investment. Historically, this additional desired retum has approximated 6%. The remaining factor, beta (B), adjusts expected yields for varying risks associated with different types of equity investments, and is quite subjective.

In addition to using the CAPM to determine an appropriate hurdle rate, management must also consider the company's capital structure which will have a significant impact on its cost of capital. Two sources of capital, debt and equity, are generally available. Certain company structures, however, permit access only to equity capital. For example, most mutual companies have access only to internally generated capital and are unable to tap either external debt or equity markets.

The CAPM as defined above can be used to determine a company's cost of equity capital. The cost of debt capital is typically the after-tax interest expense paid on debt. Equity capital tends to be more expensive than debt capital so that a company's overall mix of debt and equity will determine its cost of capital.

All of the considerations enumerated above often produce a hurdie rate currently in the range of $12-20 \%$ for companies writing primarily individual life insurance in the United States or Canada. Each company is unique in terms of its capital structure, markets and products, however, so that each company may bave a unique hurdle rate, and the range given above should be viewed only as a guide. In addition, large multi-line companies may find it appropriate to use different hurdle rates for different lines of business to reflect the underlying risks associated with each line."

Most companies develop hurdle rates even in the absence of value-added financial reporting. Pricing requires a hurdle rate to discount future book profits. Even GAAP reporting aims to achieve a target ROE or hurdle rate. Generally, the same hurdle rate should be used throughout pricing, planning and financial reporting to maintain consistency. The actual hurdle rate used depends on the financial goals of the organization.

CALCULATING VALUEADDED

Two methods are available to calculate value added. The first is a straight-forward comparison of beginning and ending economic value plus distributable earnings. The second breaks increase in value into pieces that allow for better analysis of value added. It should be noted that both methods produce the same total value added.

Under the first method, value added during the year equals distributable earnings plus net investment income on free surplus plus year-end in force value less beginning of year in force value. Example 1-1 demonstrates value added for a company with two lines of business with a 15% hurdle rate for Line A and a 12% hurdle rate for Line B.

Example 1-1:

	VAIUE ADDED FOR XYZ LIFE 1990			
	Line A	Line B	Free Surplus	Total
Beginning value	\$60	\$50	\$25	\$135
Ending Value	76	56	22	154
Increase in Value	\$16	\$ 6	\$ (3)	\$ 19
Distributable Earnings	(4)	(1)	$\underline{5}$	\bigcirc
Value Added	\$12	\$ 5	\$ 2	\$ 19

Beginning and ending value have been calculated as discussed previously. For each line of business, future expected distributable earnings are discounted to the valuation date at the hurdle rate. Free surplus is adjusted statutory surplus. The increase in value could be attributed to the addition of profitable new business, one less year of discounting, or extra value produced by more business in force at year end than projected due to, for example, less lapsation than expected.

Distributable eamings are the current year's statutory profits less increases in required surplus. Writing new business often involves a first year statutory loss. This example assumes such a loss. Free surplus bas been transferred to each line to support new business. The net result is no eamings that can be distributed to shareholders. If business in force at the beginning of the year had generated more statutory earnings or there had been less surplus strain from new business, net distributable earnings may have been positive.

Finally, free surplus can only add value to the organization by generating investment income. Any remaining change in the amount of free surplus is due to transfers into and out of the surplus account. Another way to reconcile the beginning and ending free surplus is to add investment income on free surplus to beginning free surplus and subtract (add) any transfers out of (into) free surplus.

A more useful view of value added during the year rearranges the above formula setting value added during the year equal to the sum of: the hurdle rate times the beginning of year in force value plus net investment income on free surplus plus value added by new business issued during the year plus variances between actual and expected experience[12]. Example 1-2 considers the results of Example 1-1 using this alternative viewpoint.

Example 1-2:

The hurdle rate times beginning value is the expected value added by in force business if actual experience equals that expected. The value of new sales is the present value of distributable earnings at issue. Variances are due to differences between actual and expected experience.

This view allows for a more valuable analysis than available in Example 1-1. The hurdle rate times the beginning value is attributable to actions of prior management. The value of new sales and variances are attributable to current year management. Through this analysis, management can focus on items that are more under their control.

Nicholson[12] provides clarification of the measurement of current management performance:
"It is easy to see why value added is a better measure of current management than any other system. The manager of a line of business should be expected to achieve a minimum ROE for the line equal to the hurdle rate. This is the rate that will be realized on business in force if actual experience is equal to that assumed. The manager can achieve higher return by writing new business on a profitable basis and by realizing actual experience better than assumed. On the other hand, unprofitable new business and experience worse then assumed will drive the rate of return below the hurdle rate."

In this example new sales are adding value in both lines. This indicates business priced at a retum greater than the hurdle rate. New sales priced at a retum lower than the hurdle rate would subtract value.

The positive variance in Line A is due to experience better than expected. The negative variance in Line B not only signifies experience worse than expected but also indicates that the value of new sales may be overstated. Further analysis of variances can provide insight into results.

YEAR-END VARIANCE ANALYSIS

To analyze variances, sources of gain are calculated on an actual and expected basis. The difference between actual and expected sources of gain equal the "sources of variance." Breaking down variances into these components reveals the underiying causes of the variances and demonstrates areas where performance can be improved[4].

Example 1-3 provides an illustration of variance analysis in the value-added format.

Example 1-3:

ANALYSIS OF VARIANCE - IINE B			
Interest Gain	EXPECTED	VARIANCE	
Mortalicy Gain	6	4	(2)
Withdrawal Gain	4	5	1
Bxpense Gain	3	1	(3)
Total Gain	11	7	(2)

Mortality experience has been better than expected, but interest, withdrawal and expenses have been worse. If these variations are considered one time fluctuations, future assumptions need not change. However, any trends should be recognized by altering future assumptions.

When assumptions are changed, the value of the organization changes accordingly. Changes in assumptions which are under the control of management, such as expenses, lapsation and interest margins, are usually included in the value added in the year of the change.

However, changes in assumptions not controllable by management, such as taxes, correction of errors and changes in methodology, are "midnight changes" and included in an extra value calculation after the regular year-end calculation. These types of changes do not affect the year-end value of the current year but racher the beginning of year value for the following year.

OUESTIONS ANSWERED BY VALUE-ADDED FINANCIAL REPORTING

Wenner and LeBer [16] discuss the concept of shareholder value analysis as is being used more frequently in industries other than insurance. The basic concepts are the same as described above for value-added financial reporting. Future cash flows are discounted to arrive at an economic value. The economic value is then used not only for financial reporting, but more importantly, during the decision process.

Four fundamental questions more easily answered through shareholder value analysis are:

1. How well has our portfolio been doing?
2. Do our plans make sense?
3. How much better could we do?
4. What should our priorities be?

LINK OF PRICING, PLANNING, AND REPORTING

A major advantage of value-added financial reporting is the natural link it provides from pricing, to planning, to reporting and back to pricing again. The present value of distributable eamings is key in all three areas so that a common "language" can be used throughout. The lack of a common "language" under other measures is often responsible for confusion as to the real meaning of numbers presented to management by actuaries. By definition, identical assumptions to pricing are required in value-added financial reporting. This is not the case under many other financial reporing systems currently used. Finally, variance analysis in value-added financial reporting provides the impetus for changing pricing assumptions as well as reporting assumptions. Actual to expected variances may provide more timely information about appropriateness of assumptions than a formal study.

Goford [5] describes the natural link between pricing and reporting as well as the use of variance analysis to update assumptions. Figure 1-1 best describes the control cycle.

Figure 1-1:

Lnitial assumptions are used to test profitability of individual products. These same assumptions are used in a model office to determine total value. Analysis of variance is used to compare actual and expected changes in value. Monitoring variances allows for expeditious updating of assumptions which are used to reprice individual products and the cycle is complete. The efficient use of the control cycle may be the most significant advantage of valueadded financial reporting.

PRACTICALASFECTS OF IMPLEMENYING YALUE-ADDED FINANCLAL REPORTING

Value-added financial reporting requires model office projection techniques. Model office projection is described by Atkinson[2]. Model cells are created to represent blocks of business. Blocks of business may be split into groups such as plan of insurance, underwriting status, issue age and average size band. Models are validated to closely reproduce actual policy counts, insurance amounts, premiums and reserves.

Experience assumptions are developed based on recent company experience and expected trends. Industry data is available where company data is insufficient. Such assumptions include mortality, lapsation, premium continuance, policy loan activity and expenses. Pricing and plaming generally require development of these same assumptions.

The model office is projected forward using experience assumptions and pricing formulas for each cell individually. Each cell's results are aggregated to arrive at the total results for the model office. The total present value of distributable earnings is used to derive economic value.

Special reports are needed to determine value added during the year and examine variances between actual and expected results. These reports would be similar to examples given previously in this chapter and could be maintained in a spreadsheet.

Model office projections are currently employed by many companies not already using value-added financial reporting. The planning process is enhanced by the use of detailed models that more accurately project future results of the organization. Most companies will soon be required to perform model office projections as state insurance departments implement proposed changes to the Standard Valuation Law.

Other than model office projections and reports detailing the value added, no additional bookkeeping is required as future statutory values are used to determine economic value. Since many companies currently are, or soon will be, performing model office projections, value-added financial reporting is merely an offshoot of these annual projections.

DISCUSSION OF OTHER MEASURES

While the purpose of the paper is not to argue for the use of value-added financial reporting, a brief discussion of other measures as compared to value-added follows. Financial reporting methods widely used include statutory accounting practices (SAP), and generally accepted accounting principles (GAAP). Both methods are required by external audiences and consequently are designed to meet the primary needs of those audiences.

SAP is required for annual reporting to state insurance departments. The primary goal of SAP is maintaining solvency with focus on the balance sheet. Conservative reserving assumptions are required and acquisition expenses are charged fully in the year of issue[11]. Since individual life insurance products generally produce a first year loss, a year of high sales can produce an overall loss for the company even if the new business is priced profitably. Further, a year of low sales or high lapsation can produce a sizable gain.

GAAP is required for annual reporting of stock companies to the SEC. The primary goal is protection of investors with focus on timing of revenue and matching to expenses. Acquisition expenses are deferred and amortized to match revenues over the life of the contract. Under SFAS 60 reserving assumptions must provide margins for adverse deviations and are "locked in" until such time as a loss is recognized. SFAS 97 removes the provision for adverse deviations and subsequent "lock in" for products defined as universal life. Like SAP, GAAP may also produce a first year loss.

Both SAP and GAAP may not accurately reflect the results of management's actions over the current year. The bulk of current year earnings may be generated by business sold many years ago and not the result of actions taken by current management[12]. For the purpose of internal reporting, management may want to focus more on results of their actions.

Value-added financial reporting is used almost exclusively for internal reporting to management. It is occasionally used externally in Europe. The primary goal is measurement of change in the economic value of the organization with focus on changes due to management's actions over the current year. Profitably priced new business adds value in the year of issue.

SAP and GAAP provide a retrospective view of past performance as is appropriate when reporting to external audiences. Value-added is more prospective, concentrating on future cash flows, which may prove more useful to internal audiences. The trade-off is the introduction of some subjectivity as to the assumptions used to project future cash flows. However, these same assumptions are used in pricing and planning so all financial processes are tied more closely together.

An example may help clarify the differences between value-added financial reporting and other measures. Assume management has authorized a special one-time bonus to agents linked to a high volume of total sales in the current year. In the planning process, the cost of the bonus was weighed against future profits generated by increased sales and total long-term profitablility will be enhanced.

At year-end SAP and GAAP most likely will have produced a first-year loss for the current year on the extra new business, a negative affect on total current year results. On the other hand, assuming the extra new business was priced profitably, value-added financial reporting will show an increase in value due to the extra new business sold, a positive affect on value-added results. While it may not be appropriate to report future profits to external audiences, the total value added may best help management measure the long-term effects of their actions.

In conclusion, while SAP focuses on solvency maintenance and GAAP focuses on matching revenues to expenses for the current year, value-added financial reporting focuses on matching actions by management in the current year to change in the economic value of the organization.

The balance of the paper assumes an organization has decided that value-added financial reporting is appropriate for internal measurement of its actions and results. With this assumption, the paper proceeds to discuss various aspects of including future new business in value-added financial reporting.

CHAPTER 2

WHY FUTURE NEW BUSINESS IS OFTEN NOT VALUED AND WHY IT SHOULD BE

As mentioned previously, new business issued in future years is often not included in value-added financial reporting. This chapter discusses reasons why future new business is not valued. An argument for valuing future new business is presented. Finally, advantages of valuing future new business will be discussed.

WHY FUTURE NEW BUSINESS IS OFTEN NOT VALUED

Future new business is often not valued because it requires many subjective assumptions be made including future production levels and sales mix. Such assumptions are not usually required by traditional pricing and reporting. Consequently, actuaries as well as marketing people may not be comfortable projecting future production. Further, the subjectivity of these assumptions can leave the process open to manipulation and error.

Projecting future production levels may be particularly difficult for organizations with sales concentrated in highly competitive markets. Sales volume can be cyclical depending on the organization's response to market cycles. Accurately predicting market cycles only compounds the subjectivity of new business assumptions.

For an organization that does not market its products through a captive agent force, projecting sales may be equally difficult. Total sales volume is often best estimated by first projecting the field force. Sales from a noncaptive field force may also be cyclical.

If future production is expected to be level from year to year, the value of future new business can be relatively stable. The resulting small change in value of future new business has an even smaller effect on total value added. Therefore there is little utility in valuing future new business.

LeBlanc and Warnock [7] argue:

"Although actuarial appraisals of economic value usually include a component for the value of future new business, it is convenient to omit this component from value-based financial measurement since its determination involves a high degree of subjectivity, and the utility of the value-based approach is not significantly diminished by omitting future new business from the economic values."

WHY FUTURE NEW BUSINESS SHOULD BE VALUED

For a company making material investments in its field force, the value added by future new business can have a significant impact on total value added. Material investments could include agent retention programs, increased commissions, agent recruiting programs and agent financing programs. Value-added measures can be quite beneficial in determining the benefits of making such investments. Including future new business in the reporting process provides tighter surveiliance of these programs.

Introduction of new products that significantly change expected profitability and sales mix also affect the value of future new business. As product shelf-life gets shorter and profitability margins are squeezed by increased competition, such shifts in profitability and sales mix seem likely. Including shifts in expected profitability and sales mix in reporting allows management to better react to changing business conditions.

While subjective assumptions about future production are not required by traditional pricing and reporting, they are often utilized in the planning process. These future production assumptions are often sales goals based on "gut" decisions or extrapolation of previous years' results. Including future new business in reporting allows for closer scrutiny of these assumptions, improving the planning process.

Future production assumptions are generally made implicitly in traditional pricing. Chalke proposes a pricing method that explicitly uses such subjective assumptions to arrive at optimal decisions[3]. The result is required future production that optimizes profit at a given price. Expected profit is measured in total dollars rather than a unit measure.

Valuing future new business in value-added financial reporting completes the pricing, planning and reporting cycle. Future production assumptions are used explicitly in planning and either implicitly or explicitly in pricing. Actual to expected variance analysis similar to that described in Chapter One provides a means to verify and adjust these assumptions on a regular and timely basis.

Consider again the example of the organization providing a bonus to agents for increased production. Assume, instead, management authorizes a special one-time bonus to agency managers who recruit a certain number of new agents. In the planning process, the cost of the bonus was weighed against the value of future business generated by the new agents. If the value of future new business is not included in the reporting process, economic value may actually be reported as lost since the cost of the bonus and new agent financing may be greater than the value of new business sold by new agents in the current year. However, management's actions have increased the long-term economic value of the organization. Therefore, the basic value-added financial reporting concept of matching actions by management in the current year to change in economic value of the organization suggests including the value of future new business.

ADVANTAGES OF VALUING FUTURE NEW BUSINESS

A major problem with most measures of field force performance is that too much emphasis is placed on current year sales rather than profitability of those sales. Typical value-added financial reporting improves on this by valuing current year new business. However, actions which improve profitability of future new business, such as improving agent retention or increased recruiting of new agents, go unmeasured. Valuing future new business accounts for such actions by increasing the total value of the organization. The net effect is field force goals tied more closely to those of the home office.

Life and health insurance is generally long-term in nature. Often the results of investments in new business are not known for many years. Similarly, investments in the field force do not produce positive results for several years. Increased competition and falling profit margins intensify the need to know the results of such investments earlier. Valuing future new business, while only an estimate, conveys the results of such investments more quickly.

As stated earlier, one of the advantages of value-added financial reporting is the link of pricing, planning and reporting. Valuing future new business strengthens this link. Much management effort is directed towards improving sales in both the current and future years. Including the value of future new business in the control cycle provides more timely measurement of the results of management decisions directed towards future new business.

CHAPTER 3

ASSUMPIIONS NEEDED TO VALUE FUTURE NEW BUSINESS

This chapter examines assumptions needed to value future new business. The number of years of future production to be projected has a major impact on the value of future new business. Estimating future production requires determination of both total amount of production and sales mix (the distribution of total production by product, sex, smoker status and age).

Once future production estimates are known, cash flows from that production are projected via a model office. Cash flow projection assumptions are briefly discussed.

Finally, cash flows from future production must be discounted. The chapter concludes with a discussion of the selection of an appropriate hurdle rate when valuing future new business.

NUMBER OF YEARS OF FUTURE FRODUCTION

The number of years of future production has a substantial impact on the value of future new business. Assuming new products add value, the more years of future production, the higher the value of that production. However, the effect on change in value from year to year is more important than the absolute value.

Selecting too few years of production may not allow the effects of long-term programs to emerge. Too many years of production leave room for too much subjectivity at best and outright manipulation at worst. Overly optimistic production assumptions in later years can greatly increase value without having to be realized in the near term. Close scrutiny of production assumptions based on annual variance analysis can help keep this problem in check.

The number of years of future production should be the shortest period that allows the effects of long-term programs to emerge. The effects of this assumption will be examined further in a later section.

TOTAL AMOUNT OF PRODUCTION

"An Agency Planning Model" provides a method for projecting future sales that can be adapted for use on a company-wide basis[9]. The total amount of production in a year is the production per agent multiplied by the projected number of agents. Formulas for production projection and sample projections are provided in Appendix A.

It is not necessary to project production this way to value future new business. Production could be projected by extrapolating sales from recent years. However, the usefulness of valuing future new business is enhanced through more extensive year-end variance analysis with this method. Not only can variances in total production be analyzed, but the components of production can also be examined.

This paper assumes a captive agency force in all future production estimates. Estimating production from other sources such as brokerage or direct business will be left as future research.

PRODUCTION PER AGENT

Production per agent is the amount of sales expected from each agent. This paper uses units of insurance per agent but other measures such as anoualized premium or policy count could also be used. Sales performance in recent years as well as company goals should be
incorporated into projected production per agent. In addition, industry-wide trends should be considered.

Production per agent should be estimated from company data and broken down by agent class. This paper defines agent class by calendar year of service but it could also include distinctions such as professional designations (i.e., CLU's and non-CLU's). Industry production averages are available in LIMRA's annual "Agent Production and Survival"[8].

PROJECTED NUMBER OF AGENTS

The projected number of agents is the current number of agents and future recruits projected forward with retention. Agent recruiting should be based on past experience and internal goals. Agent retention should be estimated from company experience if available. LIMRA's annual "Agent Production and Survival" provides industry retention experience. The effects of company programs designed to build the sales force by either augmenting recruiting efforts or improving retention should be included in the respective assumptions.

SALES MIX

Production should be further split by sales mix as profitability may vary by product, sex, smoker status and age. The splitting is most easily performed by applying percentages of each classification to the total production. The percentages are derived from company sales records and can be adjusted for expected changes in the future.

The application of percentages to total production allows production to be distributed to model cells for model office projection. Production is first split by product then by the distribution of sex/smoker status and age within that product. Table 3-1 shows distribution of production over a cross section of model cells.

Table 3-1:

TOTAL PRODUCTION SPLIT BY PRODUCT		WL PRODUCTION SPLIT BY SEX/SMOKER		F/NS WL PRODUCTION SPLIT BY AGE	
Product	Percent	Sex/Smoker	Percent	Age	Percent
WL	40.00%	F/NS	32.00%	25	31.00%
ARTIO	60.00\%	F/SM	13.004	35	35.00\%
		M/NS	35.00%	45	23.00\%
		M/SM	20.007	55	11.00%

If total production is $10,000,000$ units, then production for the WL female nonsmoker age 25 cell is 446,400 units, or $10,000,000$ times .40 times .32 times .31 . Production for other cells would be determined by applying the appropriate percentages.

Production could further be split by different average sizes, premium modes and issue months. The number of cells increases rapidly as production is split more finely, improving accuracy but complicating the model and increasing run time.

CASH FLOW PROJECTION

Once production is distributed across the model cells, a model office can be run to project future cash flows. Premium and investment income, benefits, expenses and reserves are projected for each cell. Selection of assumptions needed to project cell cash flows is crucial to an accurate assessment of value.

Cash flow projection assumptions are described by Atkinson [2]. These assumptions include interest, mortality, lapse rates, expenses and income tax. Industry experience for morality and lapsation is available in SOA reports but company experience is more valuable. Greater year-end variances could result from using industry experience. Expenses are best derived from company experience. Interest and income tax should reflect current economic and regulatory outlooks. Finally, expected future changes and trends should be factored into the cash flow projection assumptions.

Formulas for a simplistic cash flow projection as well as sample projections are provided in Appendix B. In practice, more sophisticated projections would be used. The reader should refer to Atkinson [2] for further detail.

DISCOUNTING CASH FLOWS

Economic appraisals often use a dual-interest method for discounting cash flows from future new business. The pricing hurdle rate is used to discount cash flows to issue and a higher rate is used to discount to the appraisal date. This higher rate reflects uncertainty about future new business. Turner [15] and the Actuarial Standard of Practice No. 19, "Actuarial Appraisals" [1], suggest this method.

In the context of value-added financial reporting, the hurdle rate represents the desired rate of return. Discounting at a higher rate from issue to valuation date would imply a higher desired rate of return during this period. Also, varying interest rates could distort the change in value. Since the aim of value-added financial reporting is measuring the change in value rather than a sale price, using a level hurdle rate removes any distortions and inconsistencies. Generally, the hurdle rate for future new business should be the same as that for in force business.

CHAPTER 4

FUTURE NEW BUSINESS VALUE CALCULATIONS

This chapter examines the effects of various assumptions on the value of future new business. Assumptions examined include years of production, sales mix, agent recruiting, agent retention and productivity per agent. Further, the annual change in value is examined over sets of assumptions.

DESCRIPTION OF PRODUCTS

Two sample products are used to illustrate the effects on value of varying sales mix and projection periods: nonparticipating whole life and ten-year annual renewable term. A single cell for each product, a 35 year old male nonsmoker, is used to simplify models as the purpose of the research is to demonstrate relative effects of various assumptions. Actual models would incorporate cells over a full range of ages and sex/smoker classes.

The sample cells have been intentionally designed to produce different rates of return and break-even years so as to magnify the effects of varying sales mixes. Table 4-1 summarizes present value of profits per unit discounted at $10 \%, 12 \%$ and 15%. Formulas, assumptions and calculations are available in Appendix B.

Table 4-1:

PROFITABILITY MRASURES OF TWO SAMPLE CELLS								
PRODOCT	SEX/SMK	AVG SIIES	present value DISC 10\%		```OF PROFITS PER DISC © 10%```		UNIT ISSUEDDISC 0 15\%	
WL	35 MNS	50,000	\$	5.99848	\$	3.92782	\$	1.70537
ARTIO	35 MNS	150,000		0.23858		0.16770		0.07714

BASE PROJECTION WITZ VARYING YEARS OF PRODUCTION

Level production is assumed in the base projection so that the effects of varying production assumptions can be seen later. Retention and recruiting assumptions were selected to generate a level number of agents each year. Further, production per agent is held level. Production Projection One in Table A-1 in Appendix A projects level production. Sales are mixed across the cells as follows: 40% WL and 60% ART10. Remember that these cells have been designed to produce different rates of return. Further projections will vary sales mix.

Formulas for present value of profits are available in Appendix C. Table 4-2 summarizes the present values of profits calculated in Table C-1 of Appendix C at $10 \%, 12 \%$ and 15% hurdle rates for projections incorporating 1, 3,5 and 10 years of production.

```
Table 4-2:
```

YEARS OF PRODUCTION	PV OF PROFITS - 1/1/91 - BASE SALES MIX LEVEL PRODUCTION		
	PV PROFITS DISC © 10t	pV PROFITS DISC. 127	PV PROFITS DISC 15\%
1	\$ 9,727,977	\$ 6,396,252	\$ 2,787,043
3	26,611,242	17,206,243	7,317,965
5	40,564,354	25,823,902	10,743,992
10	65,751,626	40,477,078	16,085,655

The economic value of future new business is cleariy sensitive to the hurdle rate and the number of years of production projected. Note that five years of production does not produce five times the present value of profits as one year of production. This is due to further discounting of profits from point of issue.

SALESMIX

The base projection distributed sales across two products 40% WL and 60% ART10. Tables 4-3 and 4-4 summarize present values of profits calculated in Tables C-2 and C-3 of Appendix C for projections with 100% of sales in WL and ART10 respectively.

Table 4-3:

YEARS OF PRODDCTION	\qquad		
	PV PROFITS DISC © 10\%	PV PROFITS DISC © 127	PV PROFITS DISC 1 154
1	\$ 22,950,700	\$15,028,177	\$ 6,524,892
3	62,782,494	40,426,563	17,132,468
5	95,701,332	60,674,001	25,153,319
10	155,124,330	95,102,059	37,658,963

Table 4-4:

YEARS OF PRODUCTION	PV OF PROFITS - 1/1/91 - 100\% ART10 \qquad LEVEL PRODUCTION					
		PV PROFITS DISC 10\%		$\begin{aligned} & \text { PV PROFITS } \\ & \text { DISC } 124 \end{aligned}$		V PROFITS rsc 0. 25\%
1	§	912,828	\$	641,635	\$	295,144
3		2,497,074		1,726,030		774,963
5		3,805,368		2,590,503		1,137,775
10		6,169,823		4,060,424		1,703.450

While extreme, these tables demonstrate the effect that sales mix can have on the value of future new business. The mix of sales among them can have a significant impact on the value of future new business, particularly if a shift in sales mix occurs such as what might happen with the introduction of a new product.

Sales mix includes more than distribution of sales among products. The distribution of sales by sex, smoker status, age, average size and premium mode for each product may also be desirable. The importance of this further distribution depends on the balance of profitablility across these statuses.

PRODUCTION LEVELS

So far projections have assumed level production. Assuming level production, constant sales mix and pricing assumptions produce constant present value of profits and no value will be added from one year to the next.

Value can be added by improving profitability of products, adjusting sales mix or increasing production. Product profitability is constrained by competitive requirements. Sales mix may be difficult to influence. However, management has much greater control of production. Recall the example in Chapter Two of the organization whose management authorized a special bonus to increase agent recruiting.

Production growth is possible by increasing the number of agents or productivity per agent. The number of agents can be increased by augmenting recruiting efforts or improving agent retention. The following discussions incorporate each method of production growth individually and finally all together.

AUGMENTED RECRUTITING

Possibly the easiest way to increase production is by augmenting recruiting efforts. While new recruits will have lower productivity and retention than seasoned agents, they have an immediate impact on total production.

Production Projection Two in Table A-2 assumes an increase in recruits from 350 per year in Production Projection One to 450 per year. Such an increase may be possible through a recruiting bonus as described in the example in Chapter Two. Retention and productivity are as in Production Projection One. Table 4-5 summarizes the present values of profits calculated in Table C-4 in Appendix C at 10\%, 12\% and 15% hurdle rates for projections incorporating 1, 3,5 and 10 years of production.

Table 4-5:

YEARS OF PRODUCTION	PV OF PROFITS - $1 / 1 / 91$ - BASE SALES MIXAUGMENIED RECRUITING			
		PV PROFITS	PV PROFITS	pv Profits
		DISC © 10\%	DISC © 12\%	DISC © 15t
1	\$	10,097,492	\$ 6,632,637	\$ 2,890,044
3		28,936,928	18,699,866	7,946,907
5		45,204,155	28,746,007	11,940,403
10		75,796,289	46,537,849	18,423,190

Of course augmenting recruiting is not without cost. The initial cost of selection and training should be included in projections as an overhead expense. Also, increasing the number of recruits may result in reduced agent quality overall if standards are lowered to achieve growth. The net result may be lower retention and productivity per agent, an undesirable long term effect.

IMPRQVNG AGENT RETENTION

Great expense is incurred selecting and training agents. Much of this expense could be avoided by retaining current agents. Improving agent retention will enlarge the field force given the same recruiting levels, or require less recruiting to maintain the same field force size. Also, improved retention should result in a more seasoned field force with higher average productivity per agent.

Production Projection Three in Table A-3 assumes an improvement in retention of 1% per year for five years. Recruiting and productivity are as in Production Projection One. Table 4-6 summarizes the present values of profits calculated in Table C-5 of Appendix C at $10 \%, 12 \%$ and 15% hurdle rates for projections incorporating $1,3,5$ and 10 years of production.

```
Table 4-6:
```

	PV OF PROFITS - 1/1/91 - BASE SALES MIX IMPROVED RETEEVTION		
YEARS OF PRODUCTION	PV PROFITS DISC 10%	PV PROFITS DISC (12\%	PV PROEITS DISC 15?
1	\$ 9,727,977	\$ 6,396,252	\$ 2,787,043
3	26,995,584	17,451,299	7,420,045
5	42,081,335	26,767,071	11,122,785
10	72.490 .647	44,441,240	17,556,660

INCREASING PRODUCTIVITY PER AGENT

Increasing productivity per agent allows for higher overall production with a level field force. Some increase in productivity may naturally occur with inflation. Changes in productivity may or may not be uniform across agent classes.

Production Projection Four in Table A-4 assumes an increase in productivity per agent of 4\% per year. Recruiting and productivity are as in Production Projection One. Table 4-7 summarizes the present values of profits calculated in Table C-6 of Appendix C at $10 \%, 12 \%$ and 15% hurdle rates for projections incorporating 1,3,5 and 10 years of production.

```
Table 4-7:
```

YEARS OF PRODOCTION	PV OF PROFITS - I/1/91 - BASE SALES MIX INCREASED PRODUCTIVITY		
	PV PROFITS	PV PROFITS	PV PROFITS
	DISC 10\%	DISC (4) 2\%	DISC 15\%
1	\$ 9,727,977	\$ 6,396,252	\$ 2,787,043
3	27,621,022	17,850,763	7,586,870
5	43,615,333	27,727,357	11,512,383
10	76,564,350	46,869,258	18,476,126

SIMULTANEOUS MPRRYEMENTS IN BECRUTIANG, RETENTION AND PRODUCTIVITY

Recruiting, retention and productivity per agent will likely be changing simultaneously. These are not independent variables. Rather, they are interrelated to varying degrees.

Production Projection Five in Table A-5 assumes all three production improvements: an increase in recruiting to 450 per year, an improvement in retention of 1% per year for five years and an increase in productivity per agent of 4% per year. Table 4-8 summarizes the present values of profits calculated in Table C-7 in Appendix C at 10\%, 12% and 15% hurdle rates for projections incorporating 1, 3,5 and 10 years of production.

```
    Table 4-8:
```

PV OF PROFITS - $1 / 1 / 91$ - BASE SALES MIX
IMPROVED RECRUITING, RETENTION AND PRODOCTIVITY

YEARS OF PRODOCTION	PV PROFITS DISC @10\%	$\begin{aligned} & \text { PV PROFITS } \\ & \text { DISC } 12 t \end{aligned}$	$\begin{aligned} & \text { PV PROFITS } \\ & \text { DISC } 0.158 \end{aligned}$
1	\$10,087,492	\$ 6, 632,637	\$ 2,890,044
3	30,519,100	19,709,258	8,367,752
5	50, 549,693	32,137,258	13,305,721
10	90,904,333	60,135,245	23,472,220

ANNUAL CBANGE IN VALUE

Present values of profits at $1 / 1 / 91$ have been calculated for the five production
projections. More important than the value of future production is the change in value from year to year. To derive the change in value, present values of profits are needed for projections beginning at $1 / 1 / 92$. Tables 4-9, 4-10, 4-11, 4-12 and 4-13 summarize the present values of future profits calculated in Tables C-8, C-9, C-10, C-11 and C-12 at 10\%, 12% and 15% hurdle rates for projections incorporating $1,3,5$ and 10 years of production beginning at $1 / 1 / 92$. The actual numbers presented are illustrative only. However, they do demonstrate the effect each assumption can have on value added by future new business.

Table 4-9:

	PV OF PROFITS - 1/1/92 - BASE SALES MIX\qquad		
YEARS OF	PV PROFITS	PV PROFITS	PV PROFITS
PRODUCTION	DISC © 10\%	DISC 12t	DISC 0.15%
1	\$ 9,727.977	S 6,396,252	\$ 2,787,043
3	26,611,242	17,206,243	7,317,965
5	40,564,354	25,823,902	10,743,992
20	65,751,626	40,477,078	16,085,655

```
Table 4-10:
```

PV OF PROFITS - 1/1/92 - BASE SALES MIX AEGMENTED RECRUITING

YEARS OF	PV PROFITS	PV PROFITS	PV PROFITS
PRODOCTION	DISC 10才	DISC © 12\%	DISC © 15\%
1	\$10,702,553	\$ 7,037,046	\$ 3,066,257
3	30,033,100	19,412,899	8,252,833
5	46,555,956	29,617,009	12,309,182
10	77,409,347	47,561,740	18,848,182

Table 4-11:

PV OF PROFITS - $1 / 1 / 92$ - BASE SALESS MIX IMPROVED RETENTION

YEARS OF	PV PROFITS	PV PROFITS	PV PROFITS
PRODOCTION	DISCQ IOt	DISCQ 124	DISC © 15\%
1	$\$ 9,851,142$	$\$ 6,477,234$	$\$ 2,822,330$
3	$27,545,964$	$17,805,401$	$7,569,552$
5	$43,197,056$	$27,470,029$	$11,410,804$
10	$74,402,854$	$45,609,253$	$18,015,105$

Table 4-12:

PV OF PROFITS - 1/1/92 - bASE SALES MIX
INCREASED PRODUCTIVITY

YEARS OF PRODUCTION	PV PROFITS	PV PRORITS DTSC © 12\%	PV PROFITS DTSC 254
1	\$10,117,095	\$ 6,652,101	\$ 2,898,525
3	2日,725,862	18,564,793	7,890,344
5	45,359,946	28,836,451	11,972,879
10	79,626,924	48,744,028	19,215,171

YEARS OF	PV PROFITS	PV PROFITS	pV PROFITS
PRODUCTION	DISC © 10\%	DISC 127	DISC 15\%
1	\$ 11,267,164	\$ 7,408,284	\$ 3,228,017
3	33,582,556	21,690,798	9,211,009
5	55,617,525	35,294,307	14,615,926
10	107,514,008	65,410,575	25,554,394

The increase in value for 1991 is derived by subtracting $1 / 1 / 91$ present value of profits from 1/1/92 present value of profits. Tables 4-14 through 4-23 contain the dollar increase in value as well as percentage increase.

Table 4-14:

Table 4-15:

DOLLAR INCREASE IN VALUE - bASE SALES MIX ADGMENTED RECRUITING

YEARS OF PRODUCTION		pv gROFITS ISC © 10:		V PROFITS ISC 12%	PV PROFITS DISC © 25\%	
1	\$	615,061	\$	404,409	\$	176,213
3		1,096,172		713,033		305,926
5		1,351,801		871,002		368,779
10		1,513,058		1,023,891		424,992

```
Table 4-16:
```

yEARS OF RRODECTION	DOLLAR INCREASE IN VALUE - BASE SALES MIX\qquad IMPROVED RETENTION					
		PV PROFITS DISC (4) 10\%		$\begin{aligned} & \text { PV PROFITS } \\ & \text { DISC Q } 128 \end{aligned}$		$\begin{aligned} & \text { PROFITS } \\ & \text { C } 15 \% \\ & \hline \end{aligned}$
1	\$	123,165	\$	80,982	\$	35,287
3		550,380		354,102		149,507
5		1,115,721		702,958		288,019
10		1,912,207		1,168,013		458,445

Table 4-17:

yEARS OF PRODUCTION	DOLLAR INCREASE IN VALUE - BASE SALES MIX\qquad INCREASED PRODUCTIVITY					
		PV PROFITS DISC (104		PV PROFITS DISC@12\&		$\begin{aligned} & \text { PROFITS } \\ & \text { SC } 158 \\ & \hline \end{aligned}$
1	\$	389,118	\$	255,849	\$	111,482
3		1,104,840		714,030		303,474
5		1,744,613		1,109,094		460,496
10		3,062,574		1,874,770		739,045

Table 4-18:

DOLTAR INCREASE IN VALUE - BASE SALES MIX
IMPROVED RECRUITING, RETENTION AND PRODOCTIVITY

YEARS OF PRODOCTION		PV PROFITS DISC_ 104		V PROFITS ISC © 12t	PV PROFITS DISC © 157	
1	\$	1,179,672	\$	775,647	\$	337,973
3		3,063,456		1,981,540		843,257
5		4,967,832		3,157,049		1,310,205
10		8,609,675		5,275,330		2,082,174

Table 4-19:

PERCBNTAGE INCREASE IN VALUE - BASE SALES MIXLEVEL PRODUCTION			
YEARS OF PRODOCTION	PV PROFITS DISC 10 10\%	$\begin{aligned} & \text { PV PROFITS } \\ & \text { DISC } 12 t \end{aligned}$	PV PROFITS DISC © 15\%
1	0.00%	0.00%	0.00%
3	0.008	0.00%	0.004
5	0.00%	0.00%	0.008
10	0.00%	0.00%	0.008

Table 4-20:
percentiag increase in vaiue - base saies mix
AUGMRNTED RECRUITING

YEARS OF PRODUCTION	PV PROFITS DISC O 10\%	FV PROFITS DISC 127	PV PROFITS DISC 15\%
1	6.10\%	6.10%	6.10\%
3	3.79\%	3.81\%	3.857
5	2.99\%	3.03%	3.097
10	2.134	2.20%	2.31 \%

Table 4-21:
percemtage increase in value - base sales mix IMPROVED RETENTION

YEARS OP PRODDCTION	PV PROFITS DISC 0 20\%	PV PROFITS DISC (12\%	PV PROFITS DISC 15 15
1	1.27%	1.27\%	1.27\%
3	2.04%	2.037	2.01\%
5	2.65%	2.63\%	2.59%
10	2.644	2.63\%	2.61\%

Table 4-22:

YEARS OF PRODOCTION	PERCENTAGE INCREASE IN VALUE - BASE SALES MIXINCREASED PRODUCTIVITY		
	PV PROFITS DISC (8) 10\%	PV PROFITS DISC (12\%	PV PROFITS DISC 15\%
1	4.00%	4.007	4.00%
3	4.00%	4.007	4.008
5	4.00%	4.00%	4.00%
10	4.007	4.00%	4.00%

Table 4-23:

percentage increase in value - base sales mix IMPROVED RECRUITING, RETENTION AND PRODTCTIVITX			
YEARS OF PRODUCTION	PV PROFITS DISC 10\%	pV PROFITS DISC. 12\%	PV PROFITS DISC © 15\%
1	11.69\%	11.69\%	11.69\%
3	10.04\%	10.05\%	10.08\%
5	9.81\%	9.82 t	9.85\%
10	8.71\%	8.77t	8.87\%

The percentage increases in value vary by production projection and years of production.
The number of years of production can have a significant impact on change in value depending on the production assumptions used. This is an area that opens the valuation of future new business to manipulation. However, carefui analysis of variances and subsequent adjustment in assumptions should keep this potential problem in check.

CONCLUSIONS

The hurdle rate chosen has a significant impact on the value of future new business and the dollar increase in value from year to year. However, the percentage increase in value is not
affected as strongly. Since the future new business will eventually become in force business, the hurdle rate should be consistent with the rate used for the in force block of business. This removes any discontinuities when future new business value becomes in force value.

The significance of sales mix on the value of future new business depends on the balance of profitablility by product, sex, smoker status, age, average size and premium mode. The sales mix used should be consistent with what is actually expected based on past experience and trends. The development of new products may have a major impact on sales mix and the value of future new business as sales are shifted to the new product. Variance analysis should be used to regularly update expected sales mix.

The value of future new business and annual increase in value depend heavily on production assumptions. Programs to augment recruiting, improve retention and increase productivity can have long term effects on the value of future new business. Expenses associated with such programs should be recognized. Production assumptions should be consistent with past experience and reasonable expectations. Annual variance analysis will aid in the detection of faulty assumptions.

The years of production to be used depends on how much weight management wishes to put on the value of future new business. If special programs are in place to increase the value of future new business, the years of production should be sufficient to recognize the effects of such programs. However, a lengthy production period could lead to manipulation especially if production increases sharply in later years.

The reasonableness of assumptions can be checked through annual actual to expected variance analysis. Results consistently different than expected may indicate invalid assumptions.

Variance analysis is presented in the next chapter.

CHAPTER 5

ANALYSIS OF VALUE ADDED BY NEW BUSINESS

This chapter discusses analysis of change in future new business value as well as variances between projected and actual value added. Finally, revision of future new business assumptions is examined.

TOTAL VALUE ADDED BY NEW BUSINESS

At year-end value is added by new business in two ways, the value added by new business actually sold during the year and the change in future new business value. New business sold during the current year adds value to the in force component. The total value added by new business sold during the year is the sum of projected value added and any variances from that projection.

> | Projected value of current year new business |
| :--- |
| $+\quad$ Variance between projected and actual sales |
| $+\quad$ Variances in experience assumptions |

Total value added by new business sold in current year

The change in future new business value is due to expected change in future new business value, field force variance and change in value due to assumption revisions.

$$
\begin{array}{ll}
& \text { Expected change in future new business value } \\
+\quad & \text { Field force variance } \\
+\quad \text { Change in value due to assumption revisions }
\end{array}
$$

Total value added by change in future new business value

EUIURE NEW BUSINESS YAIUE SPLIT INTO CURRENT AND FUTURE YEARS' YALUE

Future new business value can be split into value of new business to be sold in the current year and new business to be sold in future years. The advantage is easy comparison at year-end of projected and actual value added by current year sales. Further, differences can be broken into variances by assumption.

Production Projection Five with five years of production is used as a base projection. The value of current year new business is the value of one year of production. The value of future years' new business is the difference between the value of five years of production and one year of production.

Table 5-1 splits the present value of profits from five years of production into current year new business value and future years' new business value. Profits projected from 1/1/91 are discounted at 12%.

Table 5-1:

PV OF PROFITS - DISC 12t - BASE SAUES MIX IMPROVED RECTRITTING, RETENTION AND PRODUCTIVITY				
	PV PROFITS	PV PROFITS	CUR YEAR	FUT YEARS
DATE	1 YR PROD	5 YRS PROD	NEW BUS VAL	NEW BUS VAI
1/1/91	\$6,632,637	\$32,137,258	\$ 6,632,637	\$25,504,621

Current year new business value at $1 / 1 / 91$ is the present value of profits provided by sales in 1991. Future years' new business value at $1 / 1 / 91$ is the present value of profits provided by projected sales in 1992 through 1995.

YARIANCE IN VALUE ADDED BY NEW BUSINESS ACTUALLY SOLD IN CURRENT YEAR

Assume actual value added by new business sold in 1991 was only $\$ 5,219,272$ instead of $\$ 6,632,637$ as projected. Upon examination it is discovered that production goals were exceeded, $4,028,038$ units of insurance were sold compared to $3,967,486$ projected. This variance in production was due to a combination of fewer agents recruited but higher productivity per agent.

Further examination showed that sales mix varied considerably from projected. Projected sales mix was 40% WL and 60% ART10. Actual sales mix was 30% WL and 70% ART10. Recall that ARTIO is a less profitable product than WI. Therefore while production was higher than projected, sale of less profitable business resulted in less value added overall.

As a side note, sales have been mixed across only two sample cells for simplification. In reality sales would be mixed more finely as profitability can vary by categories other than product type, age and sex, for example. Thus sales could be as expected for each product, but value added could still vary from projected due to the mix of sales among each product class.

So far this discussion has centered on variances in the components of value rather than yariances in value. By changing one component at a time and calculating value, variances in value due to variances in components can be analyzed.

By changing projected number of agents to the actual number, the variance due to actual to expected number of agents is isolated. Table $5-2$ projects 1991 production with the actual number of agents and projected productivity per agent.

```
Table 5-2:
```


The projected production is then spread across the projected sales mix. The resulting value of 1991 production is $\$ 6,514,443$ as calculated in Table 5-3. The variance due to number of agents other than projected is $-\$ 118,194(\$ 6,514,443-\$ 6,632,637)$.

Table 5-3:

TOTAL VALUE CALCULATION - TOIAL PRODUCTION OF 3,896, 786 UNITS

	\% PRODUCTION	TOTAL UNITS	PVE per UNIT	TOTAL PVP
CELL \#1	40%	$1,558,714$	$\$ 3.92782$	$\$ 6,122,348$
CELL \#2	60%	$\underline{2,338,072}$	$\$ 0.16770$	$\frac{392,095}{3,896,786}$
TOTAL				$\$ 5,514,443$

Next, changing projected productivity per agent to the amount actually realized results in the change in value due to variance in actual to expected productivity per agent. Table 5-4 projects 1991 production with the actual number of agents and productivity per agent.

Table 5-4:

The projected production is again spread across the projected sales mix. The resulting value of 1991 production is $\$ 6,733,864$ calculated in Table 5-5. The variance due to productivity per agent other than projected is $\$ 219,421(\$ 6,733,864-\$ 6,514,443)$.

Table 5-5:

TOTAL VALUB CALCULATION - TOTAL PRODUCTION OF $4,028,038$ UNITS

	\% PRODUCTION	TOTAL UNITS	PVP per UNIT	TOTAL PVP
CELL \#1	407	1,611,215	\$3.92782	\$6,328,563
CELL \#2	60%	2,416,823	\$0.16770	405,301
TOTAL		4,028,038		\$6,733,864

Finally, actual production is spread across actual sales mix. The resulting value of 1991 production is $\$ 5,219,272$ as calculated in Table 5-6. The variance due to sales mix other than projected is $-\$ 1,514,592(\$ 5,219,272-\$ 6,733,864)$.

	\% PRODJCTION	TOTAL UNITS	PVP per UNIT	TOTAL PVP
CELL \#	30\%	1,208,411	\$3.92782	\$4,746.421
CELU \#2	70\%	2,819,627	\$0.16770	472,851
TOTAL		4,028,038		\$5,219,272

Total variance between projected and actual value added by current year sales is the sum of variances due to number of agents, productivity per agent and sales mix. Table 5-7 reconciles projected and actual value added by current year sales.

```
Table 5-7:
```

Projected Value Added			\$	6,632,637
+ Var - No. of Agents	(6, 514, 443	- 6,632,637)	+	$(118,194)$
+ Var - Prod. per Agent	$(6,733,864$	- 6,514,443)	+	219,421
+ Var - Sales Mix	(5, 219, 272	- 6,733,864)	\pm	$(1,514,592)$
Actual Value Added			\$	5,219,272

Variances in experience assumptions also affect the value added by new business sold during the year. This example did not address these variances due to interest, mortality, withdrawal and expenses. However, the concept is the same as is discussed in Chapter One.

Variance analysis may reveal necessary revisions in assumptions. For example, the variance due to the number of agents may be viewed as a random fluctuation, but the variances in productivity per agent and sales mix may indicate a major shift in sales. Variance analysis also calls attention to sensitivity of new business value to each assumption. The effects of revising future new business assumptions are examined in a later section.

EXPECTED CHANGE N FUTURE NEW BUSINESS VALUE

At the end of 1991, current year new business value is added to in force value. The present value of profits provided by 1992 sales move from future years' new business value to current year new business value. Profits from 1996 production are added to future years' new business value. All values are discounted to $1 / 1 / 92$. Table 5-8 contains future new business values for $1 / 1 / 91$ and $1 / 1 / 92$ and the expected change in value. New business value at $1 / 1 / 91$ and 1/1/92 are calculated in Tables C-7 and C-12, respectively, in Appendix C.

```
Table 5-8:
```

DATE	FUIURE NEW BUSINESS VALUE - 1/1/91 AND 1/1/92		
	CUR YEAR	FOT YEARS	TOTAL
	NEN BUS VAL	NEW BUS VAL	NEW BUS VAL
1/1/91	\$ 6,632,637	\$25,504,621	\$32,137,258
1/1/92	7,408,284	27,886,023	35,294,307
CHANGE	775,647	2,381,402	3,157,049

The expected change in future new business value utilizes the same projections and assumptions as were used to calculate value at the beginning of the year. Any change is due to projected assumptions with annual improvement or growth. Variations from these projections also change value and are examined in the following sections.

Variances in current year recruiting and retention will affect future new business value without assumption revisions. If the number of agents at the beginning of the year differs from previous projections, the projected number of agents in all future years will also differ. Consequently, production will deviate from previous projections as will new business value.

Assume actual 1991 recruiting and retention deviated from expected as described earlier. Production Projection Six in Table A-6 combines the actual production data for 1991 with future production assumptions consistent with Production Projection Five. The field force at the beginning of 1992 numbers 1400 instead of the 1419 projected in Production Projection Five. Resulting 1992 proctuction is $4,371,460$ units of insurance rather than $4,431,895$ as originally projected.

Production in future years is similarly affected. More importantly, future new business value is affected by the number of agents differing from the original projection. Table 5-9 compares 1/1/92 future new business value originally projected to that projected given the actual number of agents. 1/1/92 future new business value resulting from actual field force is calculated in Table C-13 in Appendix C.

Table 5-9:

PROTECTIEN		CUR YEAR BW BDS VAI	FUT YEARS NTH BOS VAL	TOTAL HEM BTS VAL
Expected Field Porce	\$	7,408,284	\$27,886,023	\$35,294,307
Actual Field Force		7,308,707	27,765,643	35,074,350
Field Porce Variance		(99,577)	$(120,380)$	$(219,957)$

The change in the current year new business value is almost as great as the change in the new business value of the subsequent four years. Besides the usual effects of discounting, agent retention is a factor. The difference in projected agents becomes smaller as future recruits become a greater share of the field force. In fact, by 2001 the number of agents is the same under both projections (a small difference is removed due to rounding).

The number of agents deviating from projection will have the greatest effect on the immediate year's new business value. The effect the deviation will have on future years' new business values depends on magnitude of the deviation and future years' recruiting and retention projections.

REVISING FUTURE NEW BUSINESS ASSUMPTIONS

Future new business values change further by revising assumptions. Assumptions may require modification due to actions of management. Such actions could include implementation of programs to increase production or introduction of new products. Annual variance analysis may indicate the need to revise assumptions associated with existing programs. Exogenous factors not under control of management may also require assumption changes.

Recall from Chapter Four that under Production Projection Five, agent productivity was assumed to increase at a rate of 4.00% per year. Given the experience of 1991 , productivity projections are revised to increase 4.50% annually. Production Projection Seven in Table A-7 includes actual 1991 recruiting and retention and 4.50% annual increase in agent productivity in future years. Sales mix is revised to that experienced in 1991: 30\% WL and 70\% ART10. Table 5-10 compares 1/1/92 new business value projected given the current number of agents to that projected given further revisions in productivity and sales mix. Future new business value resulting from actual field force and revised productivity is calculated in Table C-14
in Appendix C. Future new business value resulting from actual field force, revised productivity and revised sales mix is calculated in Table C-15 in Appendix C.

```
Table 5-10:
```

1/1/92 FUTURE NEW BUSINESS VAUJE - REVISED UAL NUMBER OF AGENTS, PRODOCTIVITY \& SAIES MIX			
PROJECTION	CUR YEAR NEW BUS VAL	FUT YEARS NEW BUS VAI	TOTAL NEW BIUS VAU
Actual Field Force	\$ 7,308,707	\$27, 765,643	\$35,074,350
Actual Field Force Revised Productivity	7,573,649	29,094,317	36,667,966
Actual Field Force Revised Productivity and Sales Mix	5,870,173	22,550,380	28,420,553
Change due to Productivity Revision	264,942	1,328,674	1,593,616
Change due to Sales Mix Revision	$(1,703,476)$	(6,543,937)	(8,247, 413)
Change due to Assumption Revision.	\$(1,438,534)	\$ $515,215,263)$	\$ $(6,653,797)$

The effect of the revised projections on future new business value is considerable. The increase in projected productivity per agent produced an increase in future new business value. However, the drastic shift in sales mix to a less profitable product has decreased value by a large margin.

In reality, such a large sudden shift in sales mix would probably only occur with the introduction of a new product. If so, management has subtracted value by developing a less profitable product without a compensating increase in production. Overly optimistic production assumptions would be revealed through annual variance analysis of new business sold.

Further possible assumption revisions not illustrated above would include recruiting and retention projections. Also, revisions to pricing assumptions such as interest, mortality, withdrawal and expenses would be included.

Revisions to future new business assumption should be backed up by recent experience as well as reasonably expected trends. Further, assumptions should be developed independently of value calculations to reduce the possibility of manipulation.

Finally, assumptions revisions not under the control of management are considered "midnight changes" as described in Chapter One. These revisions should be separated out and not included in value added by future new business.

COMPLETE ANALYSIS OF TOTAL CEANGE IN FUTURE NEW BUSINESS VALUE

Change in future new business value from $1 / 1 / 91$ to $1 / 1 / 92$ is the sum of the pieces presented above: expected change, change due to current number of agents and change due to assumption revisions. Table 5-11 reconciles 1/1/91 new business value to $1 / 1 / 92$ new business value.

```
Table 5-11:
```

	CUR YEAR NEW BUS VAL	FUT YEARS NEW BUS VAL	TOTAL NEW BUS VAL
2/1/92 FUTURE NEW BUSINESS VALUE	\$ 6,632,637	\$25,504,621	\$32,137,258
EXFECTED CHANGE	775,647	2,381,402	3,157,049
FISID FORCE VARIANCE	(99,577)	(120,380)	$(219,957)$
CHANGE DUE TO ASSUMPTION REVISION	$(1,438,534)$	($5,215,263)$	$(6,653,797)$
Total Change	S (762, 464)	S $(2,954,241)$	S(3,716,705)
1/1/92 FUTURE NEW EUSINESS VALUE	\$ 5,870,173	\$22,550,380	\$28,420,553

Analyzing change in value this way allows for better understanding of how value is added, or in this case, subtracted. The expected change is due to projection of assumptions in place. The change due to field force variance is a direct result of the previous year's experience. Finally, change due to assumption revision is due to revisions based on recent experience and current management decisions such as the development of a new product.

Presenting the components of future new business value added helps management better understand the ramifications of their decisions. Decisions made during the pricing and planning processes directly affect change in future new business value. Analysis of change in future new business value allows a clearer view of the effects of such decisions.

Under traditional value-added reporting, future new business only added in force value through current year sales. By including the value of future new business, the impact of management decisions is felt more quickly. New business now adds in force value by expected sales in the current year plus variances. Future new business value is added by expected changes due to assumptions already in place, field force variance and in assumption revisions. Such assumption revisions are the result of management actions or failure to achieve goals made in the pricing and planning processes.

Monitoring assumptions in the reporting process improves and validates assumptions used in pricing and planning. Including the value of future new business allows direct recognition in value of management decisions made in pricing and planning. The link between pricing, planning and reporting is complete.

SUMMARY

Abstract

Value-added financial reporting provides a natural link between pricing, planning and reporting so that management can understand the impact of their decisions more accurately and quickly. Identical assumptions and a common "language" are used throughout. Valuing future new business strengthens this link as much management effort is directed towards producing new business.

Assumptions needed to value future new business include the number of years of production, total production amount, sales mix, cash flow projections and a hurdle rate. Total production is best projected through the use of recruiting, agent retention and productivity per agent assumptions. Careful consideration should be given to assumption selection as they can have a major impact on value added. Company experience should be used whenever possible. Finally, annual variance analysis will help detect assumptions in need of revision.

Value is added by new business in two ways, the value added by new business actually sold during the year and the change in future new business value. The total value added by new business sold during the year is the sum of projected value added and any variances from that projection. The actual change in future new business value is due to expected change in future new business value, field force variance and change in value due to assumption revisions.

Further research could incorporate use of multiple economic scenarios stochastically generated. New business production could vary with the relationship of credited interest rates and competitor rates. The range of results could be analyzed by examining the median value. Additionally, various percentiles might be examined with an objective of minimizing the magnitude and frequency of detrimental scenarios.

BIBLIOGRAPAY

ACTUARIAI STANDARDS BOARD (1991). Exposure Draft Actuarial Standard of Practice Actuarial Appraisals of Insurance Companies, Segments of Insurance Companies, and/or Blocks of Insurance Companies.

ATKINSON, D.B. (1990). Introduction to Pricing and Asset Shares, Society of Actuaries Study Note 210-25-90.

CHALKE, S.A. (1990). Macro Pricing: Toward a Comprehensive Product Development Process, Society of Actuaries Study Note 210-26-90.

COLIINS, S.A. and TAYLOR-GOOBY, S.P. (1991). "Information, Please," Emphasis 1993/3.

GOFORD, J. (1985). "The Control Cycle, Financial Control of a Life Assurance Company," Institute of Actuaries Students' Society.

JACOBS, G.D. (1986). "Sources of Profit Analysis," RSA 12 4B: 2845-2864.
LeBLANC, S.A. and WARNOCK, R.L. (1986). "Closing the Gap in Mutual GAAP," Best's Review November.

LIMRA (1990). Agent Production and Survival.
LIMRA (1988). An Agency Planning Model.
LOMA (1988). Measuring Life Iosurance Profitability in Today's Environment, Financial Planning and Control Report No. 69.
MERDIAN, C.A. (1989). Value-Based Financial Measurement, Society of Actuaries Sudy Note 443-23-89.
NICHOLSON, B.J. (1990). "The Value of Value Added," Emphasis 1990/3.
NICHOLSON, B.J. (1989). "Value-Added Financial Statements," RSA 15 \#2: 870-873.
PORTER, J.T. (1988). "Corporate Planaing/Projections, " TSA. 14 \#3: 1140-1144.
TURNER, S.H. (1978). "Actuarial Appraisal Valuations of Life Insurance Companies," TSA XXX: 139-160.

WENNER, D.L. and LEBER, R.W. (1989). "Managing for Shareholder Value - From Top to Botrom," Harvard Business Review November-December.

APPENDIXA

PRODUCTION PROJECTION

TotalProduction $(t)=\sum_{y=1}^{s}$ ProductionPerAgent $(y, t) \times$ NumberOfAgents (y, t)
where:
y is the calendar year of service for an agent. A value of y equal to 5 includes all agents in calendar year of service 5 or greater.

ProductionPerAgent(y,t) is the assumed production in year t per agent in calendar year of service y
NumberOfAgents $(y, t)=\left\{\begin{array}{ll}\text { Recruits(t) } & \text { for } y=1 \\ \text { NumberOfAgents }(y-1,8-1) \times \operatorname{Retention}(y-1, t-1) \\ \text { NumberOfAgents }(4, t-1) \times \text { Retention }(4, t-1) \\ \text { NumberOfAgents }(5,1-1) \times \text { Retention }(5, t-1)\end{array}\right.$ for $y=2,3,4$

Recruts(t) is the expected number of recruits at the beginning of year t.

Retention (y, t) is the probability an agent in calendar year of sevice y. under contract at the beginning of year t, will still be under contract at the beginning of year $t+1$. All tumover is assumed at the end of the year for simplicity.

	\#******** RECRUこTS	calendar SECOND	YEAR OF THIRO	$\begin{aligned} & \text { ICE *** } \\ & \text { FOURTH } \end{aligned}$	FIFTH +	TOTAL
2991						
RETENTION	$76.00 *$	50.008	64.00\%	72.001	84.50:	
AGENTS	350	266	133	85	395	1,229
PROD / AGT	1,414	3,183	3,441	3,547	4,368	
TOT PROD	494,400	846,678	457,653	301,495	1,725,360	3,826,086
1992						
RETENTION	76.00\%	50.008	64.00\%	72.008	84.503	
AGENTS	350	266	133	85	395	1,229
PROD/AGT	1,414	3.183	3.441	3,547	4,368	
TOT PROD	494,400	846,678	457,653	301,495	1,725,360	3,826,086
1993						
RETENTION	76.008	50.004	64.004	72.004	84.504	
AGENTS	350	266	133	85	395	1.229
PROD/AGT	1.414	3, 183	3,441	3.547	4.368	
TOT PROD	494,400	846,678	457,653	301.495	1,725,360	3,826,OB6
1994						
RETENTION	76.004	50.004	64.00:	72.00 :	84.504	
AGENTS	350	266	133	85	395	2.229
PROD / AGT	1,414	3.183	3,441	3,547	4.368	
TOT PROD	494,400	846,678	457,653	301,495	1,725,360	3,826,086
2995						
RETENTION	76.008	50.008	64.00%	72.004	84.508	
AGENTS	350	266	133	85	395	1.229
PROD/AGT	1.414	3,183	3.441	3.547	4,368	
TOT PROD	494,400	846,678	457,653	301.495	1,725,360	3,826.086
1996						
RETENTION	76.008	50.004	64.004	72.004	84.504	
AGENTS	350	266	133	85	395	1,229
PROD/AGT	1,414	3,183	3.441	3,547	4.368	
TOT PROD	494,400	846,678	457,653	301.495	1,725,360	3,826,086
1997						
RETENTION	76.004	50.004	64.008	72.004	84.504	
AGENTS	350	266	133	85	395	1.229
PROD/AGT	1.434	3,183	3,441	3,547	4.368	
TOT PROD	494,400	846,678	457,653	301.495	1,725,360	3,826,086
1998						
RETENTION	76.008	50.001	64.008	72.008	84.50\%	
AGENTS	350	266	133	85	395	1,229
PROD /AGT	2.414	.3.183	3.441	3,547	4,368	
TOT FROD	494,400	846,678	457,653	301,495	1,725,360	3,826,086
1999						
RETENTION	76.004	50.008	64.004	72.004	84.508	
AGENTS	350	266	133	85	395	1.229
PROD/AGT	1.414	3.183	3,441	3,547	4,368	
TOT PROD	494,400	846,678	457,653	301,495	1,725,360	3,826.086
2000						
RETENTION	76.008	50.004	64.007	72.004	84.508	
AEENIS	, 350	266	133	85	395	1,229
PROD/AGT	1.414	3,183	3,441	3,547	4.368	
TOT PROD	494,400	846,678	457,653	301.495	1,725,360	3,826,086
2001						
RETENTION	76.001	50.008	64.008	72.004	84.508	
AGENTS	350	266	133	85	395	1.229
PROD / AGT	1,414	3,183	3.441	3,547	4,368	
TOT PROD	494,400	846,678	457,653	301,495	1,725,360	3,826,086

TABLE A-2
PRODUCTION PRONECTION TWO
AUGMENTED RECRUITING

	RECRUITS	$\begin{aligned} & \text { CALENDAR } \\ & \text { SECOND } \end{aligned}$	YEAR OF 5 THIRD	エCE *** FOURTH	FIFTH +	TOTA
1991						
RETERTION	76.001	50.008	64.008	72.003	84.504	
RGENTS	450	266	133	85	395	1,329
PROD/AGT	1.414	3.183	3,441	3,547	4,368	
TOT PROD	636,300	846,678	457,653	301,495	2,725,360	3,967,486
1992						
RETENTION	76.008	50.004	64.00*	72.008	84.504	
RGENTS	450	342	233	85	395	1.405
PROD/AGT	1,414	1,088.183	3,441	3,547	, 4,368	
TOT PROD	636,300	1,088,586	457,653	301,495	2,725,360	4,209,394
1993						
RETENTION	76.004	50.008	64.00:	72.004	84.504	
RGENTS	450	342	171	85	395	1,443
PROD/AGT	1.414	3.183	3,441	3,547	4,368	
TOT PROD	636,300	1,088,586	588,411	301.495	1,725,360	4,340,152
1994						
RETENTION AGENTS	76.004	50.004 342	$\begin{gathered} 64.008 \\ 171 \end{gathered}$	72.004 109	$\begin{array}{r} 84.504 \\ 395 \end{array}$	1,467
PROD/ACT	1.414	3.183	3.441	3,547	4,368	1,467
TOT PROD	636.300	1,088,586	588,411	386,623	1,725,360	4,425,280
1995						
RETENTION	76.008	50.004	64.004	72.008	84.504	
AGENTS	450	342	171	109	412	1,484
PROD/AGT	1,414	3,183	3,442	3,547	4,368	
TOI PROD	636.300	1,088,586	588,411	386,623	1,799,616	4,499.536
1996						
RETENEION	76.00%	50.00\%	64.008	72.008	84.504	
AGENTS	450	342	171	109	427	1,499
PROD/AG	1.414	3,183	3,441	3,547	4,368	
TOT PROD	636,300	1,088,586	588,411	386,623	1,865,136	4,565,056
1997						
RETENTION	76.004	50.004	64.004	72.004	B4. 509	
AGENTS	+ 450	+342	171	109	439	1,512
BROD/AGT	6, 1,414	2, ${ }_{2}, 183$	588,441	30,547	, 4,368	
TOT PROD	636,300	2,088,586	588,411	386,623	1,917,552	4,617,472
1998						
RETENTION	76.004	50.008	64.004	72.008	84.504	
AGENT5	450	342	271	109	449	1,521
PROD/AGT	2,414	3,183	3.442	3,547	4.368	
TOT PROD	636,300	1,088,586	588,411	386,623	1,961.232	4,661,252
1999						
RETENTION	76.00t	50.008	64.004	72.004	84.50*	
AGENTS	450	342	171	309	458	1,530
PROD / ACT	1.414	3,183	3.441	3,547	4,368	
TOT PROD	636.300	1,086,586	588,411	386,623	2,000,544	4.700.464
2000						
RETENTION	76.008	50.008	64.00\%	72.008	84.50\%	
AGENTS	450	, 342	371	109	455	1,537
PROD/AGT	1,414	3,183	3,441	3,547	4.368	1.53
TOT PROD	636,300	1,088,586	588,411	386,623	2.031.120	4,731,040
2001						
RETENTION	76.008	50.008	64.004	72.008	84.50\%	
AGENTS	450	342	171	109	471	1.543
PROD/AGT	1,414	3, 183	3,441	3.547	4.368	
TOT PROD	636,300	1,088,586	588,411	386,623	2,057,328	4,757,248

TABLE A-3
PRODUCTION PROJECTION THREE IMPROVED RETENTION

	RECRUITS	$\begin{aligned} & \text { * CALENDAR } \\ & \text { SECOND } \end{aligned}$	$\begin{aligned} & \text { YEAR OF } \\ & \text { THIRD } \end{aligned}$	SERVICE **** FOURTH	********* FIFTH +	TOTAL
1991						
RETENTION	77.004	51.008	65.008	73.004	85.50*	
RGENTS	350	266	133	85	395	1,229
PROD /AGT	2,414	3,183	3,441	3,547	4,368	
TOT PROD	494.900	846,678	457,653	301,495	1,725,360	3,826,086
2992						
RETENTION	78.008	52.008	66.004	74.001	86.504	
RGENTS	, 350	270	136	86	400	1.242
PROD / AGT	1,414	3,283	3.441	3,547	4.368	
TOT PROD	494,900	859,410	467.976	305,042	1.747.200	3,874,528
1993						
RETENTION	79.00\%	53.004	67.004	75.008	87.508	
AGENTS	350	273	140	90	410	1,263
PROD/AGT	1.414	3,183	3.441	3,547	4,368	
TOT PROD	494,900	868,959	481,740	319,230	1,790,880	3,955,709
2994						
RETENTION	80.004	54.004	68.00\%	76.004	88.501	
AGENTS	350	277	145	94	426	1,292
PROD/ACT	1,414	3,183	3,441	3,547	4.368	
TOT PROD	494,900	e81,691	498,945	333,428	1,860,768	4,069,722
1995						
REEENIION	81.00\%	55.00%	69.004	77.001	89.504	
AGENTS	350	280	150	99	448	1,327
PROD/AGT	1.414	3,183	3,441	3,547	4,368	
TOT PROD	494,900	891,240	516,150	351,153	1,956,864	4,210,307
1996						
RETENTION	81.00\%	55.00%	69.004	77.002	89.504	
AGENTS	350	284	154	104	477	1,369
PROD/AGT	1,414	3.183	3.441	3,547	4,368	
TOT PROD	494,900	903.972	529,914	368,888	2,083,536	4,361.210
1997						
RETENSION	82.008	55.004	69.00\%	77.004	89.50\%	
AGENTS	350	284	156	106	507	1,403
PROD/AGT	1,414	3,283	23,441	3,547	4,368	
TOT PROD	494,900	903.972	536,796	375,982	2,214,576	4,526,226
1998						
RETENTION	81.00\%	55.008	69.008	77.001		
AGENTS	350	284	256	108	535	1,433
PROD/AGT	1,414	3,283	3,441	3.547	4.368	
TOT PROD	494.900	903,972	536,796	383.076	2,336,880	4,655,624
1999						
RETENTION	81.004	55.004	69.00\%	77.004	89.504	
AGENTS	350	284	. 256	, 100	562	1,460
PROD/AET	1.414	3,283	3.441	3,547	4.368	
SOT PROD	494,900	903,972	536,796	383,076	2,454,826	4,773,560
2000						
RETENTION	11.004	55.008	69.004	77.008	89.504	
AGENTS	350	284	156	108	586	1,484
PRDD/AGT	1.414	3,183	3,441	3,547	4.368	
TOT PROD	494,900	903,972	536,796	383,076	2,559.648	4.878.392
2001						
RETENTION	81.00\%	55.001	69.008	77.001	89.50\%	
AGENTS	, 350	. 284	. 156	+ 108	608	1,506
PROD/AGT	1.414	3.183	3.441	3.547	4.368	
TOT PROD	494,900	903.972	536,796	383,076	2,655,744	4,974,48B

	TABLE A-4 PRODUCTION PROJECTION FOUR INCRERSED PRODUCTIVITY					TOTAL
	RECRUITS	$\begin{gathered} \text { CALENDAR } \\ \text { SECOND } \end{gathered}$	YEAR OF SE THIRD	ICE *** FOURTH	$\begin{gathered} * * \# \# \# \# \# \# \# \\ \text { FIFTH }+~ \end{gathered}$	
1991						
RETENTION	76.008	50.008	64.008	72.008	84.504	
AGENTS	350	266	133	85	395	2,229
PROD/AET	1.414	3.183	3.441	3,547	4.368	
TOT PROD	494,400	846,678	457,653	301,495	2,725,360	3,826,086
1992						
RETENTION	76.008	50.008	64.003	72.008	84.504	
AGENTS	350	266	133	85	395	1,229
PROD/AGT	1.471	3.310	3,579	3.689	4,543	
TOT PROD	514,696	880,545	475,959	313,555	1,794,374	3,979,129
2993						
RETENTION	76.008	50.00\%	64.008	72.00\%	84.50\%	
AGENTS	350	266	133	85	395	1,229
PROD/ACT	1.529	3.443	3.722.	3,836	4.724	
TOT PROD	535.284	915,767	494,997	326,097	1,866,149	4.138.295
2994						
RETENTION	76.008	50.008	64.008	72.002	84.504	
AGENTS	350	266	133	85	395	1,229
PROD/AGT	1.591	3.580	3,871	3,990	4.913	
TOT PROD	556,695	952,398	514,797	339,141	1.940 .795	4.303.825
2995						
RETENTION	76.004	50.004	64.004	72.004	84.504	
AGENTS	350	266	133	85	395	1,229
PROD/AGT	1.654	3,724	4,025	4,149	5,110	
TOT PROD	578,963	990.494	535,389	352,707	2.018.427	4,475,979
1996						
RETENTION	76.008	50.00\%	64.008	72.004	84.508	
AGENTS	350	266	133	85	395	1,229
PROD/AGT	1,720	3,873	4,187	4,315	5,314	
TOT PROD	602,122	1,030,113	556,805	366,815	2,099,164	4,655,029
1997						
RETENTION	76.008	50.008	64.001	72.008	84.501	
AGERTS	1350	266	133	85	+395	1,229
PROD/RGT	1,789	4,028	4,354	4,488	5,527	
TOT PROD	626,206	1,071,318	579,077	381,487	2,183.131	4,842,219
1998						
RETENTION	76.008	50.008	64.008	72.008	84.501	
AGENTS	350	266	133 4	85	5.395	1,229
PROD/AET	1.861	4.189	4,528	4,669	5,748	
TOT PROD	651,255	1,114,170	602,240	396,747	2,270,456	5,034,868
1999						
RETENTION	76.001	50.001	64.00\%	72.008	84.504	
AGENTS	. 350	. 266	+133	85	395	1.229
PROD/AGT	1,935	4,356	4,709	4,854	5,978	
TOT PROD	677,305	1,158,737	626,330	412,617	2,361,274	5,236,263
2000						
RETENTION	76.008	50.008	64.008	72.004	84.502	
AGENTS	+350	+266	$\begin{array}{r}133 \\ \hline 898\end{array}$	5.85	6395	1,229
PROD/AGT	2.013	4.530	4.898	5,048	6,217	
TOT PROD	704,397	1,205,087	651,383	429,121	2,455,725	5,445,713
2001						
RETENIION	76.008	50.008	64.004	72.004	84.504	
AGENTS	350	266	133	85	395	1. 229
PROD/AGT	2.093	4,712	5,094	5,250	6,466	
TOT PROD	732,573	1,253,290	677,438	446,286	2,553,954	5,663,542

TABLE A-5
PRODUCTION PROJECTION FIVE IMPROVED RECRUITING, RETENTION RND PRODUCTIVITY

	RECRUITS	$\begin{gathered} \text { C* CALENDAR } \\ \text { SECOND } \end{gathered}$	$\begin{gathered} \text { YEAR OF } \\ \text { FHIRD } \end{gathered}$	SERVICE **** FOURTH	FIFTH +	TOTAL
1991						
RETENTION	77.008	51.00\%	65.008	73.004	85.501	
AGENTS	450	266	133	85	395	1,329
PROD/AGT	1.414	3.183	3,441	3,547	4,368	
TOT PROD	636,300	846,678	457,653	301,495	$1.725,360$	3,967,486
1992						
RETENTION	78.004	52.004	66.008	4 74.001	86.508	
AGENTS	450	347	136	86	400	1,419
PROD/AGT	661.471	3.310	3,579	$3,689$	$4,543$	1,419
TOT PROD	661,752	1,148,681	486,695	$317,244$	$1,827,088$	4,431,460
1993						
RETEATION	79.008	53.001	67.003	175.00\%	87.50\%	
AGENTS	450	351	180	90	410	1,481
PROD/AGT	1.529	3,443	3,722	3,836	4.724	
SOT PROD	688,222	2,208,399	669,921	345,279	1,937,016	4,848,838
1994						
RETENTION	80.008	54.004	68.004	-76.008	88.504	
AGENTS	+450	. 356	186	121	426	1,539
PROD/AGT	1,591	3,580	3.871	3,990	4,913	1,539
TOT PROD	715,751	1,274,637	719,942	482,777	2,093,112	5,286,219
1995						
RETENTION	81.008	55.004	69.004	177.001	89.504	
AGENTS	+ 450	360	192	126	469	1,597
PROD/AGT	7,1.654	, 3,724	4.025	4,149	5,110	
TOT PROD	744,381	1,340,528	772.893	522,836	2,396,563	5,777,190
1996						
PETENTION	81.008	55.008	69.008	77.004	89.504	
AGENTS	+450	, 365	198	132	517	2,662
PROD/AGT	1.720	3.873	4.187	4,315	5,314	
TOT PROD	774,156	1,413.501	828,928	569,642	2,747,514	6,333,740
1997						
RETENTION	81.003	55.004	69.004	177.004	89.50\%	
AGENTS	450	365	201	137	564	1.717
PROD/AGT	1.789	4,028	4.354	4.488	5,527	
TOT PROD	805,122	1,470,041	875,147	614,868	3,117,179	6,882,357
1998						
RETENEION	81.008	55.00\%	69.008	77.001		
AGENTS	450	365	201	139	610	1.765
PROD/AGT	2,861	4.189	4,528	4.668	5,748	1.765
TOT PROD	837,327	1,528,843	910.152	64B,798	3,506,274	7.431.394
1999						
RETENTION	81.003	55.00\%	69.004	77.00s	89.508	
AGENTS	450	365	201	139	653	1,808
PROD/AGT	1.935	4.356	4.709	4,854	, 5,978	
TOT EROD	870,820	1,589.997	946,558	674,750	3,903,575	7,985,700
2000						
RETENTION			69.002	77.00t	89.508	
AGENTS	450	365	201	-139	691	1,846
PROD/AGT	2,013	4,530	4,898	5,040	6,217	
TOT PROD	905,653	1,653,597	984,421	701,740	4,295,965	8,541,376
2001						
RETENTION	82.008	55.00t	69.004	77.001	89.507	
AGENTS	450	365	201	139	725	1,880
PROD/AGT	2.093	4,712	5.094	5.250	6.466	
TOT PROD	941,879	1.719,740	1,023,798	729,809	4,687,63B	9,102,864

TABLE A-6
PRODUCTION PROJECTION SIX
PRODUCTION PROJECTION FIVE WITH ACTUAL 1991 VAIUES

	RECRUITS	$\begin{aligned} & \text { : CALENDAR } \\ & \text { SECOND } \end{aligned}$	YEAR OF S THIRD	SERVICE ** FOURTH	********** FIFTH +	TOTAL
1992						
RETENTION	80.00\%	53.008	66.00\%	72.008	84.50\%	
AGENTS	400	266	133	. 85	395	1.279
PROD/AGI	1.508	3.056	3,499	3,645	4.650	1.279
TOT PROD	603,200	812,896	465,367	309,825	1,836,750	4,028,038
1992						
RETENTION	78.008	52.00%	66.00\%	74.001	86.504	
AGENTS	450	320	141	88	401	1.400
PROD/AGT	1.471	3.310	3,579	3.689	4.543	
TOT PROD	661,752	1.059,302	504,588	324,621	1,821,631	4,371,895
1993						
RETENTION	79.008	53.00\%	67.00\%	75.008	87.508	
AGENTS	450	. 351	166	+ 93	412	1,472
PROD/AGT	1,529	3,443	3.722	3,836	4.724	
TOT PROD	688,222	1,208,399	617.816	356,788	1,946,465	4,817,691
1994						
RETENTION	80.00\%	54.00\%	68.00\%	76.001	88.50\%	
AGENTS	450	356 3	186	111	430	1,533
PROD / AGT	1.591	3,580	3,871	3.990	4,913	
TOT PROD	715,751	1,274,637	719,942	442,878	2,112,765	5,265,973
1995						
RETENTION	82.008	55.00%	69.00\%	77.008	89.50\%	
AGENTS	450	360	192	226	465	1,593
PROD / AGT	1.654	3.724	4,025	4.149	5.120	
TOT PROD	744,381	1,340,518	772.893	522,836	2,376,123	5,756,750
1996						
RETENTION	81.00\%	55.008	69.00\%	77.00\%	89.50\%	
RGENTS	, 450	+365	198	132	513	1,658
PROD / AGI	1.720	3,873	4.287	4.315	5.314	1,658
TOT PROD	774,256	1,413,501	826,928	569.642	2,726,256	6,312,483
1997						
RETENTION	81.008	55.00%	69.00\%	77.008	89.50\%	
AGENTS	450	365	201	137	561	1,714
PROD / AGT	1.7.789	4,4,028	4,354	4,488	5,527	
TOT PROD	805,122	2,470,041	875,147	614,868	3,100,598	6,865,777
1998						
RETENTION	81.008	55.008	69.008	7 77.008	89.50\%	
AGENTS	450	365	201	139	608	1,763
PROD / AGT	1.851	4.189	4.528	4,668	5,748	
TOT PROD	837,327	2,528,843	910,152	648,798	3,494,778	7,419,898
1999						
RETENTION	81.008	55.008	69.004	77.008	89.50\%	
AGENTS	$\begin{array}{r}450 \\ \hline 135\end{array}$	$\begin{array}{r}365 \\ \hline 356\end{array}$	+201	139	651	1,806
PROD / AGT	1.935	4.356	4.709	4.854	5,978	1.806
TOT PROD	870,820	1,589,997	946,558	674,750	3,891,619	7,973,744
2000						
RETENTION	81.008	55.00\%	69.00\%	77.004	89.50\%	
AGENTS	450	365	201	139	690	1,845
PROD / AGT	2.013	4,530	4.898	5,048	6.217	
TOT PROD	905,653	1,653,597	984.421	701,740	4,289,748	8,535,158
2001						
RETENTION	81.008	55.008	69.008	77.008	89.508	
AGENTS	+450	365	201	+139	725	1.880
PROD / AGT	2.093	4.712	5,094	5,250	6,465	
TOT PROD	942,879	1,719,740	1.023.798	729,809	4,687,638	9,102,864

TABLE A-7
PRODUCTION PROSECTION SEVEN
PRODUCTION PROJECTION FIVE WITH ACTUAL 1991 VALUES AND REVISED PRODUCTIVITY

	********** RECRUITS	$\begin{aligned} & \text { CALENDRR } \\ & \text { SECOND } \end{aligned}$	YEAR OF SEX THIRD	$\begin{aligned} & \text { RVICE } \\ & \text { FOURTH } \end{aligned}$	******* FIFTH +	TOTAL
2991						
RETENTION	80.001	53.003	66.008	72.005	86.001	
AGERTS	400	266	233	85	395	1,279
PROD/AGT	$1,508$	$3,056$	$3,499$	$3,645$	$4,650$	
TOT PRDD	603,200	822,896	465,367	$309,825$	2,836,750	4,028,038
2992						
RETENTION	78.008	52.004	66.008	74.004	86.50t	
AGENTS	$\begin{array}{r}450 \\ \hline 156\end{array}$	320	${ }^{2} 141$	88	401	1,400
PROD/AGT	1,576	3.194	3,656	3.809	$4,859$	
TOT PROD	709,137	1,021,926	515,560	335,294	1,948,559	4,530,377
1993						
RETENTION	79.003	53.001	67.00\%	75.004	87.504	
AGENTS	450	351	166	93	412	1,472
PROD/AGT	1.647	3,337	3,821	3,980	5,078	
TOT PROD	741,038	1,171,367	634,285	370,180	2.092.101	5,008,982
2994						
RETENTION	80.008	54.004	68.00\%	76.00\%	88.504	
AGENTS	+450	356	186	111	430	1.533
PROD/AGT	1.721	3.487	3.993	4.160	5,306	
TOT PROD	774,395	1,241,516	742,687	461,710	2,281,762	5,502,070
1995						
RETENTION	81.00\%	55.008	69.004	77.004	89.507	
AGENTS	450	360	192	126	465	2.593
PROD/AGT	1,798	3,644	4.173	4.347	5,545	
TOT PROD	809,243	1,311,961	801,144	547,688	2,578,523	6,048,559
1996						
RETENTION	81.00\%	55.001	69.00\%	77.004	89.504	
AGENTS	450	365	198	132	513	1,658
PROD/AGT	1,879	3,808	4,360	4.542	5,795	
TOT PROD	845,659	2,390,041	863,357	599,588	2,972,705	6,671,350
2997						
RETENTION	82.008	55.004	69.008	77.007	89.504	
AGENTS	, 450	365	201	137	561	1,714
PROD/AGT	2,964	3,980	4.557	4,747	6.056	
TOT PROD	883,714	1,452,593	915, B7B	650,303	3,397,141	7,299,629
1998						
RETENTION	81.008	55.008	69.004	77.008	89.504	
AGENTS	$\begin{array}{r}450 \\ \hline 850\end{array}$	365 4	201	+139	6 608	2,763
PROD/AGT	2, 2.052	4.4.159	4.762	4,960	6.328	
TOT PROD	923.481	1,517,960	957.093	689.487	3,847,429	7,935,449
1999						
RETENTION	81.001	55.004	69.00t	77.004	89.50\%	
AGENTS	450	+365	201	139	651	1,806
PROD / ACT	2,145	4,346	4,976	5.184	6.613	
TOT PROD	965.037	2,586,268	1.000.162	720.514	4,304,912	8,576,894
2000						
RETENTION	81.004	55.00*	69.004	77.004	89.50\%	
AGENTS	450	365	201	139	690	1,845
PROD/AGT	2,241	4,542	5,200	5,417	6.910	
TOT PROD	1,008,464	2,657,650	1,045,169	752,938	4.768,136	9,232,357
2001						
RETENTION	81.001	55.004	69.004	77.008	89.502	
AGENTS	+ 450	365	201	5 139	725	1,880
PROD/AGT	2,342	4,746	5,434	5,661	7.221	
TOT PROD	1,053,845	2,732,244	1.092,202	786,820	5,235,448	9,900,559

APPENDIXB

PRESENT VALUE OF PROFIT PER UNIT ISSUED

Two simplistic cells were selected to demonstrate the value of future new business: an ART-10 issued to a 35 year old male nonsmoker and a nonparticipating whole life issued to a 35 year old male nonsmoker. Simplistic formulas for present value of profits per unit follow.

```
\(p(x, t)=1-q d(x, t)-q w(x, t)\)
\(D(x, 0)=1\)
\(D(x, t)=D(x, t-1) \times p(x, t) /(1+j(t))\)
expenses \((x, t)=\operatorname{exppol}(x, t) / \operatorname{avgsize}(x)+\operatorname{expprem}(x, t) \times \operatorname{premium}(x, t)\)
polben \((x, t)=D B(x, t) \times q d(x, t) \times i(t) /\) defta \((t)+C V(x, t) \times \operatorname{qw}(x, t)\)
\(\operatorname{proft}(x, t)=(N(x, 1-1)+\operatorname{premium}(x, t)-\operatorname{expenses}(x, t)) x(1+i(t))-\operatorname{polben}(x, t)) / p(x, t)-V(x, t)\)
\(\operatorname{PVProfit}(x)=\sum_{t=1}^{\frac{T}{2}} D(x, t) \times \operatorname{profit}(x, t)\)
```

where:
$q d(x, t)$ is the probability that a unit entering policy year t will die during the year.
$q w(x, t)$ is the probability that a unit entering policy year t will lapse at the end of the year.
$i(t)$ is the interest rate eamed in policy year t.
detta(t) is the force of interest during policy year t. equal to $\ln (1+i(t))$.
$j(t)$ is the hurdle rate for policy year t used for discounting profits.
avgsize (x) is the average number of units per policy.
exppol (x, t) is the expense per policy for policy year t.
expprem (x, t) is the expense per doliar of premium collected in policy year t.
$\mathrm{DB}(\mathrm{x}, \mathrm{t})$ is the death benefit per unit payable to those who die in policy year t .
$C V(x, t)$ is the cash value per unit payable to those who lapse at the end of policy year t.
$V(x, y)$ is the reserve per unit in force at the end of policy year t.

TABLE 日-1

present value of profil per unit - ten year renemate term

K	35
avgsize(x)	150.000
l(t)	0.09
delte(t)	0.08618
l(t)	0.10

TAGLE 8-2
present value of profit per uwit - tem year remewable tern

x	35
avgsize(x)	150.000
l(t)	0.09
delta(t)	0.08618
j(t)	0.12

	t	$1000 \mathrm{gd}(\mathrm{x}, \mathrm{t})$	$\underline{M}(x, 1)$	$p(x, t)$	$0\left(x_{1}, 1\right)$	Prem($x, t)$	$08\left(x_{1} t\right)$	$V\left(x_{1} t\right)$	$\operatorname{cV}(x, t)$	exppol (x_{1} l $)$	exppren (x, t)	expenses (x, t)	polben($\mathrm{x}, \mathrm{t})$	oftern,t	(e) $x, 1)$
	0			1.00000	1.00000										
	1	0.63	0.20	0.79937	0.71372	1.45	1000	0	0	125	0.75	1.92083	0.65793	-1.46507	-1.04566
	2	0.76	0.20	0.79984	0.50952	1.55	1000	0	0	10	0.09	0.20617	0.79369	0.03966	0.42765
	3	0.99	0.20	0.79901	0.36355	1.66	1000	0	0	10	0.09	0.21607	1.03398	0.67584	0.24557
	4	1.16	0.20	0.79086	0.25916	1.78	1000	0	0	10	0.09	0.22687	1.19053	0.62888	0.16298
	5	1.28	0.20	0.79072	0.18402	1.92	1000	0	0	10	0.09	0.23947	1.33676	0.61980	$0.114 \$ 5$
	6	1.40	0.20	0.79060	0.13178	2.09	1000	0	0	10	0.09	0.25477	1.46206	0.67611	0.08804
	7	1.58	0.20	0.79662	0.09395	2.29	1000	0	0	10	0.08	0.27277	1.65003	0.68729	0.06457
	8	1.78	0.20	0.79022	0.06695	2.53	1000	0	0	10	0.09	0.29437	1.85890	0.72404	0.04840
$\stackrel{\rightharpoonup}{\omega}$	9	2.01	0.20	0.70709	0.04770	2.78	1000	0	0	10	0.09	0.31687	2.09909	0.73399	0.03501
0	10	2.24	0.20	0.70776	0.03398	3.04	1000	0	0	10	0.09	0.34027	2.33029	0.75639	0.02570
	Sum														0.16770

table 0-3
present value of profit per unit - iem year renemable term

n	35
avgsize(x)	150.000
i(t)	0.09
delta(t)	0.08618
l(t)	0.15

	1	1000gd($x, 0$	$\underline{M(x, t)}$	$p(x, t)$	$0(x, t)$	Prem($\left.x_{2}, t\right)$	OP($x, t)$	$V\left(x_{1} t\right)$	CV(x, t)	exppol (x, t)	expprem($x_{0}(t)$	expenses (x, t)	polben ($x, 0$)	ofitint	uprofit (x, t)
	0			1.00000	1.00000										cherti(x)
	1	0.63	0.20	0.70937	0.69510	1.45	1000	0	0	125	0.75	1.92083	0.65793	-1.46507	-1.01838
	2	0.76	0.20	0.79924	0.40309	1.55	1000	0	0	10	0.09	0.20617	0.79369	0.03966	0.40563
	3	0.99	0.20	0.79001	0.33565	1.66	1000	0	0	10	0.09	0.21607	1.03388	0.67584	0.22684
	4	1.16	0.20	0.7986	0.23316	1.78	1000	0	0	10	0.09	0.22607	1.19053	0.62888	0.14663
	5	1.28	0.20	0.79872	0.16196	1.92	1000	0	0	10	0.09	0.23947	1.33674	0.61980	0.10037
	6	1.40	0.20	0.79860	0.11246	2.09	1000	0	0	10	0.09	0.25477	1.46208	0.67411	0.07581
	7	1.50	0.20	0.7942	0.07808	2.29	1000	0	0	10	0.09	0.27277	1.65003	0.66729	0.05366
	8	1.78	0.20	0.79022	0.05419	2.53	1000	0	0	10	0.09	0.29437	1.85890	0.72406	0.03926
	9	2.01	0.20	0.79790	0.03760	2.78	1000	0	0	10	0.09	0.31687	2.09909	0.73399	0.02760
\sim	10	2.24	0.20	0.79776	0.02609	3.04	1000	0	0	10	0.09	0.34027	2.33929	0.75639	0.01973
ω	Sun														0.07714

tagle e-4
presewt value of phofit per unit - mompha mole life

x	35
evelize($x)$	50.000
l(t)	0.09
de(te(t)	0.08610
(et)	0.10

	t	1000gat \times, t$)$	$g(x, t)$	P(4, 8)	$0(1,8)$	Pramex, ${ }^{\text {a }}$	OA($x, 0$)	$v(x, 1)$	$\mathrm{CV}\left(\mathrm{n}_{1} \mathrm{t}\right)$	exppol (1,0)	expprem($x, 8)$	expenses(x, t)	polben(E , t)	rofit(E, l)	it ($\mathrm{x}, \mathrm{t})$
	0			1.00900	1.09090										
	1	0.63	0.20	0.7 men 7	0.72670	12.15	1000	0.00	0.00	100	1.40	19.01000	0.65793	- 90.17717	-7.39575
	2	0.76	0.15	0.84924	0.58106	12.15	1000	11.07	0.00	15	0.10	1.51500	0.79369	1.64544	0.92316
	3	0.99	0.10	0.00901	0.4833	12.15	1000	22.50	0.47	15	0.10	1.51500	1.0006	1.72394	0.79047
	4	1.14	0.10	0.temas	0.3741	12.15	1000	34.27	20.17	15	0.10	1.51500	3.20733	2.34262	0.87774
	5	1.28	0.10	0.80072	0.30612	12.15	1000	46.40	32.23	15	0.10	1.51500	4.35074	2.90091	0.914%
	6	1.40	0.10	0.0960	0.25007	12.15	1000	58.07	44.63	15	0.10	1.51500	5.92506	3.71969	0.93020
	7	1.58	0.10	0.09042	0.20425	12.15	1000	71.72	57.40	15	0.10	1.51500	7.39003	4.38073	0.89473
	8	1.78	0.10	0.89222	0.16678	12.15	1000	64.93	70.53	15	0.10	1.51500	8.91190	5.08698	0.84841
	\bigcirc	2.01	0.10	0.89790	0.13615	12.15	1000	96.51	6.03	15	0.10	1.51500	10.50209	5.79378	0.78364
	10	2.24	0.10	0.89776	0.11112	12.15	1000	112.46	97.90	15	0.10	1.51500	12.12929	6.54593	0.72730
N	11	2.53	0.10	0.89747	0.00066	12.15	1000	126.79	112.14	15	0.02	0.54300	13.85614	8.45339	0.76638
	12	2.00	0.10	0.09720	0.07395	12.15	1000	141.49	126.76	15	0.02	0.54300	15.60011	9.25969	0.69472
	13	3.13	0.10	0.89687	0.06029	12.15	1000	156.58	141.76	15	0.02	0.54300	17.46474	10.03388	0.60495
	14	3.52	0.10	0.8944	0.04914	12.15	1000	172.06	157.15	15	0.02	0.56300	19.39103	10.60776	0.53084
	15	3.94	0.10	0.09606	0.05003	12.15	1000	187.92	172.92	15	0.02	0.54300	21.40664	11.60948	0.46468
	16	4.45	0.10	0.09535	0.03759	12.15	1000	204.17	189.07	15	0.012	0.54300	21.55425	12.37869	0.60338
	17	4.92	0.10	0.80508	0.02652	12.15	1000	220.77	205.88	15	0.02	0.54300	25.49608	13.2482	0.35235
	18	5.44	0.10	0.0958	0.02156	12.15	1000	237.71	222.42	15	0.02	0.56300	27.92313	16.22145	0.30667
	19	6.00	0.10	0.89400	0.01733	12.15	1000	254.96	239.56	15	0.02	0.54300	30.22195	15.21178	0.26660
	20	6.81	0.10	0.89339	0.01423	12.15	1000	272.50	237.00	15	0.02	0.56300	32.60299	16.23732	0.23112
	21	7.27	0.10	0.82273	0.01455	12.15	1000	290.31	274.71	13	0.02	0.54300	35.06325	17.30079	0.19066
	22	8.01	0.10	0.89198	0.00937	12.15	1000	300.38	292.68	15	0.02	0.56300	37.63105	18.36040	0.97207
	23	8.82	0.10	0.89118	0.00759	12.15	1000	326.73	310.91	15	0.02	0.54300	40.30195	19.42215	0.14740
	24	9.75	0.10	0.89027	0.00616	12.15	1000	343.33	329.41	15	0.02	0.54300	43.10229	20.49727	0.12590
	23	10.73	0.10	0.80925	0.00697	12.15	1000	386.16	345.13	15	0.02	0.54300	46.03950	21.50255	0.10717
	26	11.69	0.10	0.08811	0.00401	12.15	1000	383.17	367.03	45	0.02	0.54300	49.12003	22.70090	0.09104
	27	13.17	0.10	0.88683	0.00323	12.15	1000	402.35	306.10	15	0.02	0.54300	52.3637	23.82318	0.07700
	28	14.57	0.10	0.88543	0.00260	12.15	1000	421.63	405.27	15	0.02	0.56300	55.74283	25.01209	0.06507
	29	16.07	0.10	0.88393	0.00209	12.15	1000	440.96	424.48	15	0.02	0.54300	59.23032	26.20032	0.05492
	30	17.71	0.10	0.82279	0.00160	12.15	1000	460.28	463.68	15	0.02	0.54300	62.86301	27.58116	0.06425
	Sum														5.09040

Tatle e-5
presemt value of profit per unat - mompan muole life

*	35
avgife(x)	50.000
(${ }^{\text {(1) }}$	0.09
deltast)	0.00614
Ifi)	0.12

	t	$1000 q 0(x, t)$	$\underline{M}(x, t)$	P(x, 0)	B(n,t)		DE (x, t)	$v(x, t)$	CV(x,t)	exppot (x, l)	expprem(k,t)	expensen(X, t)	nolthen(x,t)	rofle(x	profit(k,t)
	0			1.00000	\$.00000										
	1	0.63	0.20	0.79937	0.71372	12.15	1000	0.00	0.00	100	1.60	19.01000	0.65793	-10.1717	-7.26368
	2	0.76	0.15	0.04926	0.56118	12.15	1000	11.07	0.00	15	0.10	1.51500	0.79360	1.64344	0.89048
	3	0.99	0.10	0.6991	0.63940	12.15	1000	22.50	8.67	15	0.10	1.51500	1.88008	1.72304	0.74888
	4	1.14	0.10	0.09086	0.3463	12.15	1000	34.27	20.17	15	0.10	1.51500	3.20153	2.34262	0.81670
	5	1.28	0.10	0.89872	0.27975	12.15	1000	46.40	32.28	15	0.10	1.51500	4.55974	2.pese1	0.83612
	6	1.40	0.10	0.89660	0.22445	12.15	1000	58.87	44.63	15	0.10	1.51500	5.92506	3.71969	0.83488
	7	1.58	0.10	0.89042	0.18004	12.15	1000	71.72	57.40	45	0.10	1.54500	7.39003	4.30073	0.78872
	8	1.78	0.10	0.09422	0.16439	12.15	1000	84.93	70.53	15	0.70	1.51500	8.91100	5.00690	0.73452
	9	2.09	0.10	0.99799	0.11577	12.15	1000	98.51	4.03	15	0.10	1.51500	10.50209	5.79378	0.67075
	10	2.26	0.10	0.99776	0.09240	12.15	1000	112.46	97.90	15	0.10	1.54500	12.12929	6.54593	0.60745
w	11	2.53	0.10	0.89747	0.07436	12.15	1000	126.79	112.14	15	0.02	0.54300	13.85814	8.45339	0.62860
	12	2.00	0.10	0.69720	0.05957	12.15	1000	141.49	126.76	15	0.02	0.54300	15.60011	9.25969	0.55158
	13	3.13	0.10	0.0968	0.06770	12.15	1000	156.58	141.76	15	0.02	0.54300	17.44474	10.03383	0.47862
	14	3.52	0.10	0.80940	0.03818	12.15	1000	172.06	157.15	15	0.02	0.54300	19.39103	10.00276	0.41246
	15	3.94	0.10	0.8960	0.03055	12.15	1000	187.92	172.92	15	0.02	0.56300	21.40664	11.60968	0.35463
	16	4.45	0.10	0.09355	0.02463	12.15	8000	204.17	189.07	15	0.02	0.54300	23.58423	12.37869	0.30235
	17	4.92	0.10	0.00500	0.01952	12.15	1000	220.77	205.58	15	0.02	0.54300	25.69608	13.28324	0.25939
	18	5.46	0.10	0.00956	0.01550	12.15	1000	237.71	222.42	15	0.02	0.54300	27.92313	16.22145	0.22173
	19	6.00	0.10	0.89500	0.01244	12.15	1000	254.9	239.56	15	0.02	0.54300	30.22195	15.21178	0.18931
	20	6.61	0.10	0.09339	0.00993	12.15	1000	272.50	257.00	15	0.02	0.56300	32.60×9	16.23732	0.16119
	21	7.27	0.10	0.89273	0.00791	12.15	1000	290.31	274.71	15	0.02	0.54300	35.06325	17.30979	0.13609
	22	8.01	0.10	0.69199	0.00630	12.15	1000	308.30	292.68	13	0.02	0.54300	37.63305	18.36060	0.11575
	23	0.62	0.10	0.80118	0.00501	12.15	1000	326.73	310.91	15	0.02	0.54300	40.30195	19.42215	0.09739
	24	9.73	0.10	0.89027	0.00399	12.15	1000	34.33	329.41	15	0.02	0.54300	43.10229	20.49727	0.08170
	25	10.75	0.10	0.49925	0.00316	12.15	1000	364.16	340.13	15	0.02	0.54300	46.03050	21.58285	0.06830
	26	14.80	0.10	0.68811	0.00251	12.15	1000	383.17	567.03	15	0.02	0.54500	49.12005	22.70900	0.05699
	27	13.17	0.10	0.80663	0.00198	12.15	1000	402.35	306.10	15	0.02	0.54300	\$2.36377	21.42318	0.04736
	28	14.57	0.10	0.80543	0.00157	12.15	1000	421.63	405.27	15	0.02	0.56300	55.74283	25.01209	0.03929
	29	16.07	0.10	0.88393	0.00124	12.15	1000	440.96	424.48	15	0.02	0.54300	59.23032	26.26932	0.03257
	30	17.71	0.10	0.80239	0.00098	12.15	1000	460.28	463.68	15	0.02	0.54300	42,86301	27.50176	0.02006
	SUN														3.92782

TABLE B-6
present value of profit per umit - mompar more life

x	35
ovgsife(x)	50.000
i(t)	0.09
delta(t)	0.04618
j(t)	0.15

	t	1000qd($x, t)$	($\mathrm{E}, \mathrm{t})$	$0(2,0)$	$0(x, t)$	Pram($x, t)$	O. ${ }^{(x, 1)}$	$V(x, t)$	$\underline{C V}(2,0)$	exppol(x, t)	expprean (1,0)	expensea($\mathrm{x}, 1$)	$1 \operatorname{ben}(x, t)$	oflt (x, t)	roflt (x, y)
	0			1.00000	1.00000										
	1	0.63	0.20	0.79937	0.69510	12.15	1000	0.00	0.00	100	1.40	19.01000	0.65793	-10.17717	-7.07420
	2	0.76	0.15	0.85984	0.51331	12.15	1000	11.07	0.00	15	0.10	1.51500	0.79560	1.64544	0.84663
	3	0.99	0.10	0.0901	0.40128	12.15	1000	22.50	0.67	15	0.10	1.51500	1.89038	1.72394	0.69179
	6	1.6	0.10	0.09066	0.31365	12.15	1000	34.27	20.17	15	0.10	1.51500	3.20738	2.34262	0.73476
	5	1.28	0.10	0.8987	0.26512	12.15	1000	46.40	32.23	45	0.10	1.51500	4.55974	2.98881	0.73280
	6	1.40	0.10	0.89060	0.19153	12.15	1000	50.87	44.63	15	0.10	1.51500	5.92506	3.71869	0.71243
	7	1.58	0.10	0.09062	$0.14 \% 3$	12.15	1600	11.72	57.40	45	0.10	1.51500	7.39003	4.38073	0.65569
	8	1.78	0.10	0.07822	0.11687	12.15	1000	84.93	r0.53	15	0.10	1.51500	8.91190	5.00698	0.59452
	9	2.01	0.10	0.0979	0.09126	12.15	1000	98.51	6.03	15	0.10	1.51500	10.50209	5.79378	0.52874
\rightarrow	10	2.24	0.10	0.89776	0.07126	12.15	1000	112.46	97.90	15	0.10	1.51500	12.12929	6.54593	0.46635
$\underset{\sim}{\omega}$	11	2.53	0.10	0.89747	0.05560	12.15	1000	126.79	112.14	15	0.02	0.54300	13.85614	8.45330	0.47000
+	12	2.60	0.10	0.89720	0.04338	12.15	1000	141.49	126.76	15	0.02	0.54300	15.60011	9. $25 \% 9$	0.40165
	13	3.13	0.10	0.89687	0.01383	12.15	1000	156.58	141.76	15	0.02	0.54300	17.44674	10.03888	0.35943
	14	3.52	0.10	0.09648	0.02637	12.15	1000	17.06	157.15	15	0.02	0.54300	19.39103	10.80276	0.28480
	15	3.9	0.10	0.0960	0.02055	12.15	1000	187.92	17.92	15	0.02	0.54300	21.4064	11.60948	0.23855
	16	4.65	0.10	0.09555	0.01600	12.15	1000	206.17	189.07	15	0.02	0.54300	23.55425	12.3746	0.19800
	17	4.92	0.10	0.09504	0.01265	12.15	1000	220.77	205.50	15	0.02	0.54300	25.80604	13.20924	0.16550
	18	5.44	0.10	0.09456	0.00989	12.15	1000	237.71	222.42	15	0.02	0.54300	27.9213	14.22145	0.13776
	19	6.00	0.10	0.80400	0.00753	12.15	1000	254.96	239.56	15	0.02	0.54300	30.22195	15.21178	0.11457
	20	6.61	0.10	0.00359	0.00585	12.15	1000	272.50	257.00	15	0.02	0.54300	32.60299	16.23732	0.00500
	21	7.27	0.10	0.89273	0.00454	12.15	1000	290.31	274.71	15	0.02	0.54300	35.06325	17.30079	0.07858
	22	8.01	0.10	0.89199	0.00352	12.15	1000	308.38	292.68	15	0.02	0.54300	37.63305	te. 36060	0.06671
	23	8.02	0.10	0.89118	0.00273	12.15	1000	326.73	310.91	15	0.02	0.54300	40.30195	19.42215	0.05302
	24	9.73	0.10	0.89027	0.00211	12.15	1000	345.33	329.41	15	0.02	0.54300	43.10229	20.49727	0.04332
	25	10.75	0.10	0.88925	0.00163	12.15	1000	364.16	348.13	15	0.02	0.54300	46.03980	21.58205	0.03527
	26	11.89	0.10	0.88811	0.00126	12.15	1000	388.17	367.03	15	0.02	0.54300	49.12003	22.70990	0.02866
	27	13.17	0.10	0.88685	0.00097	12.15	1000	402.35	368.10	15	0.02	0.54300	52.36177	23.82318	0.02319
	20	14.57	0.10	0.88543	0.00075	12.15	1000	421.63	405.27	15	0.02	0.54300	55.74283	25.01209	0.01874
	29	16.07	0.10	0.80393	0.00058	12.15	1000	440.96	424.40	15	0.02	0.54300	59.23032	26.260312	0.01513
	30	17.71	0.10	0.88229	0.00044	12.15	1000	460.28	443.68	15	0.02	0.54300	62.86301	27.58186	0.01219
	STM														1.70537

APPENDIXC

TOTAL VALUE CALCULATION

TOTAL VALUE $=\sum_{n=1}^{N} \sum_{c=1}^{c} \operatorname{Vol}(n) \times \operatorname{Mix}(n, c) \times \operatorname{PVPUnit}(c, h) /(1+h)^{n-1}$ where:
$\operatorname{Vol}(\mathrm{n})$ is the total units to be issued in year n .
Mix (n, c) is the percent of business issued to cell c in year n .
PVPUnit(c, h) is the present value of proft per unit at hurdie rate h for cell c.
h is the hurdle rate.

TABLE C-I
TOTAL FALUE CALCULATION - PRODOCTION PROTEGION ONE BRGINNING 1/1/91

$\begin{aligned} & \text { MODE! } \\ & \text { CELI } \end{aligned}$	PRESEMT VALUE DF Pmofit Pen unil		
	a 108	2128	2 15\%
CELL	\$5.99448	3.92722	\$1.70537
CEL 2	0.23 .88	0.16770	0.07716

Prouncticm TOTALs.					
$\begin{aligned} & \text { ISSVE } \\ & \text { YEAB } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { walls } \end{aligned}$	CELL PCI.	CEL PGELE	CE16 1 amits	CEL 12 ymiss
,	3,826,086	402	608	1,530,436	2,295,652
2	3,826,086	408	60%	1,530,436	2,295,652
3	3,826,086	408	605	1.530,436	2.295,652
4	3,826,086	408	608	1,530,436	2,295,652
5	3,826,086	408	605	1,530,436	2,295,652
6	3,826,006	40 K	60x	1,530,434	2,295,652
7	3,826,086	40x	60\%	1,530,436	2,295,652
8	3,826,086	408	608	1,530,436	2,295,652
9	3,826,006	40x	608	1,530,436	2,295,652
10	3,826,086	40x	608	1,530,636	2,295,652

$\begin{aligned} & \text { ISSUE } \\ & \text { YERR } \end{aligned}$	AT 198E			at stapt	coumlateo
	C516 11	CF46 ${ }^{\text {a }}$	Torab	of peot,	TOPAL
!	39,180.200	\$567.697	59,727,977	99,727,977	59.727.977
2	9,180,260	347,697	9,727,977	0,863,615	
3	9,180,280	567,697	9.727.977	8,059,650	26,614.262
4	9,180,200	567,697	9,727,977	7,308,773	
5	9,180, 280	547,697	9.727 .977	6,644,339	40,566,354
6	9,180,280	547,607	9,727,977	6,040,308	
7	9,180,200	567,607	9,727,977	5,491,189	
8	9,180,280	547,697	9.727.977	4.991,990	
9	9,180,280	547,607	9,727.977	4,537, 173	
10	9,180,280	547,697	9, 227,977	6,125,612	65,751,626

TOTAL PRESEMT VALUE Of PROFITS AT 122					
$\begin{aligned} & \text { ISSUE } \\ & \text { PEAR } \end{aligned}$	AT ISSJE			A] START	ACCIMAATED
	CELL 1	CELL 2	TOTAL	of prod.	total
1	86.011.271	5384,901	\$6,396,232	36,396,252	16,396,252
2	6.011 .271	386,901	6,396,252	5,710,939	
3	6,011.271	306,981	6,396,252	5,099,053	17,206,263
4	6,019.271	384,981	6,3\%6,252	6,552,726	
5	6.011,271	386,981	6,396,252	6,064,934	25,823,902
6	6.011 .271	384,981	6,396,252	3,629,405	
7	6,011.271	384,981	6,396,252	3,240,540	
8	6,011,271	394,981	6,396,252	2,803,339	
9	6,011,271	384,981	6,396,252	2,543,339	
10	6,011,271	380.981	$6,386,252$	2.306 .552.	40.677.076

$\begin{aligned} & \text { ISTE } \\ & \text { YEAN } \end{aligned}$	AT TSEE			$\begin{aligned} & \text { AI STATT } \\ & \text { OF PROS. } \end{aligned}$	ACOMLLATED Total
	CELL 1	C61. 12	TOTAL		
1	32,609,957	8177,087	\$2,787,043	22,767,043	82,767,043
2	2,609,957	177,087	2,787,043	2,42,516	
3	2,609,957	177,087	2,707,043	2,107,405	7.317,965
6	2,609,957	177,087	2,747,063	1,832,526	
5	2,609,557	177,087	2,787,063	1,593,501	10,763,992
6	2,609,957	177,087	2,787,043	1,303,653	
7	2,609,957	177,087	2,787,043	1,206,916	
8	2,609,987	177,067	2,787,063	1,067,753	
9	2,609,957	177,087	2,787,043	911.009	
10	2,609,957	177.087	2,787,043	792,252	16, 008.653

 Cell th is a $\$ 950,000$ ten-rear arrublly renemble tore policy faend to 35 yeer old mie nonmoker.

TABLE C-2
TOTAL VALDE CALCULATION - PRODOCTION PROJECTION ONE BEGINNING 1/1/91

$\begin{aligned} & \text { MODE1 } \\ & \text { ㅌLㄴ } \end{aligned}$	PRESEMT VALUE OF PROFIT PER UNIT		
	a 108	a 123	3158
CELL ${ }^{\text {a }}$	85.99048	\$3.92722	\$1.70337
CE1 2	0.23858	0.16770	0.07716

Patopuctiom Totals					
$\begin{aligned} & \text { ISSYE } \\ & \mathrm{rEA} \\ & \hline \end{aligned}$	rotal. puls	$\begin{array}{r} \text { CELL } \\ \text { PCI } \\ \hline \end{array}$	$\begin{gathered} \text { CELL } R \\ \text { PEI } \end{gathered}$	$\begin{gathered} \text { CELL } \\ \text { ancts } \\ \hline \end{gathered}$	$\begin{gathered} \text { CIL } 12 \\ \text { YMIIS } \end{gathered}$
1	3,826,086	1008	08	3,826,086	0
2	3,826,086	1008	08	3,826,086	0
3	3,526,086	100x	$0 \times$	3,326,086	0
6	3, 226,086	1008	08	3,826,086	0
5	3,826,086	100\%	08	3,825,086	0
6	3,826,086	100%	08	3,826,086	0
7	3,826,086	$100 x$	08	3,826,086	0
- 8	3,426,086	100\%	$0 \times$	3,826,086	0
9	3,826,086	100\%	(2)	3,26,046	0
10	3,826,088	1008	U8	3,826,006	0

$\begin{gathered} \text { ISSUE } \\ \text { YEAR } \\ \hline \end{gathered}$	AT 1 S S EE			$\begin{aligned} & \text { AI START } \\ & \text { of PACH. } \end{aligned}$	$\begin{gathered} \hline \text { Acamunateo } \\ \text { TgTA! } \\ \hline \end{gathered}$
	Cribl 1		Torab		
1	\$22,950,700	30	122,950,700	\$22,950,700	922,950,700
2	22,950,700	0	22,950,700	20,864,273	
3	22,950,700	0	22,950,700	18,967,521	42,76,406
4	22,950,700	0	22,950,700	17,243,201	
5	22,950,700	0	22,550,700	15,675,637	95.701 .332
6	22,950,700	0	22,950,700	14,250,579	
7	22,950,700	0	22,950,700	12,955,072	
8	22,550,700	0	22,930,700	11.77, 538	
9	22,950,700	0	22,950,700	10,706,671	
10	23,950,700	0	22,930,700	9,73, 37	159, 526,30

$\begin{aligned} & \text { ISSLE } \\ & \text { YEAR } \end{aligned}$	AT ISSuE			$\begin{aligned} & \text { AT START } \\ & \text { of phos. } \end{aligned}$	$\begin{gathered} \text { ACCINLLATED } \\ \text { POTAL } \end{gathered}$
	CELL 11	CELL 22	TOTAL		
1	815,028, 177	so	315,028,177	\$15,028,177	515,026, 177
2	15,028,177	0	15,023,177	13,418,015	
3	15,028,177	0	15,028, 177	11,900,371	40,426,563
4	15,028,177	0	15,028,177	10,6\%, 760	
5	15,028, 177	0	15,028, 177	9,550,678	60,674,00t
6	15,023, 177	0	15.028, 177	8,527.391	
7	15,024, 177	0	15,024, 17	7,613,742	
8	15,023, 177	0	15,023,177	6,797,904	
9	15,023, 177	0	15,023, 177	6,069,629	
10	35.929,177	0	15,024, 177	5,619.311	98, 1920.95\%

$\begin{aligned} & \text { 18ser } \\ & \text { rean } \end{aligned}$	AT [SSE			$\begin{aligned} & \text { AI stant } \\ & \text { of prow. } \end{aligned}$	$\begin{gathered} \text { ACOMDLATED } \\ \text { TOTAL } \end{gathered}$
	CELL	CELL 2	ratal		
1	S6,524,402	50	26,524,892	\$6,524,892	\$6,530,852
2	6,526,802	0	6,524,092	5,673,818	
3	6,526,892	0	6,526,092	4,933,736	17,43,168
4	6,524,892	0	6,524,892	4,290,225	
5	6,526,092	0	6,526,892	3,730,625	25,153,319
6	6,524,092	0	6,524,072	3,244,025	
7	6,526,892	0	6,524,872	2,020,801	
8	6,524,092	0	6,526,092	2,452,969	
9	6,524,892	0	6,526,892	2,132,909	
10.	6,526.892	0	6,526,892	1, 034.78	

Mcoel Cll	PRESEIT VALUE OF PROFIT PER UIT		
	a 108	a 128	a 15\%
CELL 1	\$5.90048	83.92702	\$1.70537
C616 2	0.23858	0.16770	0.07714

Peoxuction torals					
$\begin{aligned} & \text { ISEE } \\ & \text { YEAK } \end{aligned}$	$\begin{aligned} & 707 \mu \mathrm{~L} \\ & \text { CuIIs } \end{aligned}$	$\begin{gathered} \text { CELI } \\ \text { PEI } \\ \hline \end{gathered}$	$\begin{gathered} \text { CELL } \boldsymbol{R} \\ \text { QI. } \\ \hline \end{gathered}$	EELL 11 بW15:	CELL 12 4.1IT
1	3,26,086	08	1008	0	3,824,086
2	3,826,086	02	1008	0	3,826,006
3	3,206,086	02	100\%	0	3,825,006
4	3,826,086	08	1008	0	3,826,086
5	3,826,086	08	100\%	0	3,826.096
6	3,826,086	08	1008	0	3,826,006
7	3,826,086	08	1008	0	3,826.096
8	3,826,086	$0 \times$	1002	0	3,826,086
9	3,826,066	08	1008	0	3,826,006
10	3,826,084	08	100\%	0	3,226,086

$\begin{gathered} \text { ISSUE } \\ \text { YEAR } \end{gathered}$	TOTAL PRESEMT VALUF Of PMOfits at 108				
	CEL 1	C54. 82	Poral	of pach,	Poral
1	50	5912,823	3912,828	5912,828	\$912,824
2	0	912,828	912.826	829,853	
3	0	-912,828	912,828	754.403	2,497,074
4	0	912,828	912,820	645,821	
5	0	912,823	912,828	623.474	3,806,368
6	0	912,375	912,826	566,794	
7	0	912,823	912,825	515,267	
8	0	912,82t	912,820	488,485	
9	0	912, 320	912,426		
10	0	912,823	912.823	387,128	6.169, 22

$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \end{aligned}$	AT ISSLE			AT START of mos.	ACOTULAIED TOTAL
	CEL6 1	CEL6 82	POPAL		
1	so	\$661.635	3661,635	2641.635	3647.635
2	0	641,635	641,635	572,880	
3	0	641,635	641,635	511,507	1.726,030
6	0	661,635	661.655	456,703	
5	0	641.635	641,653	407.770	2,550,500
6	0	641,635	641,635	36, 001	
7	0	641,635	661,635	323.072	
8	0	641.635	661.655	290,263	
9	0	641.633	61.653	289.145	
10.	0	661.635	061.635	211.380	4.060 .424

IS8E	AT ISSLE			At STA	ACOMUATEO
Yeat	CELL ${ }^{\text {E1 }}$	CELL 2	TOPAL	of Pras.	roral
1	30	\$295,144	\$295,144	325, 166	289, 144
2	0	295, 164	295.146	236.667	
3	0	295,166	295,144	223,171	774,963
4	0	295,944	293.144	194,062	
5	0	295, 165	295.146	168,730	1.357,775
6	0	255,146	295,146	146,739	
7	0	295.144	295,144	127.599	
8	0	255,146	295.144	110.956	
9	0	295.144	295.144	9.485	
10	0	295,145	295,144	85, 89	1.705.650

vooet CHL	PResemy Valt of puofit Per unit		
	a 108	-123	- 158
튼	\$5.99408	83.92702	\$1.70537
탄	0.24838	0.16770	0.07714

PRCOUCTIOM TOTALS					
$\begin{aligned} & 1 \text { SYVE } \\ & \text { YEAQ } \end{aligned}$	total 10115	CELL 11 pet.	$\text { CELB } B$	CEL 11 Luliss	CEL6 2 MIIIS
1	3,967,486	403	605	1,586,994	2,380,492
2	4.209.3\%	408	608	1.683,738	2,525,636
3	4,340, 152	408	608	1,760,061	2,605,091
4	4,425,280	408	605	1,770,112	2,655,168
5	4,499,536	408	608	1,799,814	2,699,722
6	4,565,056	408	608	1,826,022	2,739,034
7	4,617,672	40\%	608	1,846,909	2,770,403
8	4,661,152	408	608	1,864,461	2,796,691
9	4,700.464	408	608	1,880,186	2,820,275
10	4,731,060	608	608	1.802,616	2,830,626

TOTAL PRESEMT VALUE Of MEDFITS AT 108					
$\begin{aligned} & \hline \text { ISSUE } \\ & \text { YEAR } \end{aligned}$				af start	accimalateo
	CELL 11	CFlt ${ }^{\text {R }}$	Total.	of May.	TOTAL
1	\$9,519,554	\$567,038	\$10,087,492	810,087.492	310,007.492
2	10,099,986	602,566	10,702,553	$9,729,593$	
3	10,413,726	, 621,266	11.035,010	9,119,84	24,936,923
4	10,617.981	633.470	11.231.451	8,453,382	
5	10,796, 451	46, 100	11,460,250	7,513,845	45,204, 555
6	10.953.359	653,479	11,606,807	7,206,933	
7	11,079,125	660,982	11.760, 107	6,626,904	
8	11.183.931	667,235	11,851,165	6,081,522	
9	11,278.26	672,862	11.931.118	5,575,285	
10	11,351,820	677,239	12,028,858	$5.101, \$ 10$	73,76, 209

ISSUE	AT ISEXE			Af STARI	ACOEILATED
YEAR	CELL ${ }^{1} 1$	CELL 8	TOTAL	of pear.	TOTAL
1	\$6.233.628	539,208	16,632,637	56,632,437	36,472,657
2	6,613,697	423.549	7,037.046	6,203,077	
3	6,818,934	436.706	7,235,640	5,736,152	18,699,066
4	6,982,641	445,272	7,397,953	5,265,717	
5	7,069,347	452,743	7,522.010	4,760,424	28,746,007
6	7,172,287	459,336	7,631,635	$4,330,388$	
7	7,254,640	464,610	7,719,250	3,910,812	
8	7,323,266	469,005	7.792.272	3,526,826	
9	7,385,031	472,981	7.857,991	3,173,711	
10	7,433.069	476.037	7,909,107	2,852.103	40.37789

$\begin{aligned} & \text { ISQE } \\ & \text { rene } \end{aligned}$	AT ISSUE			$\begin{aligned} & \text { at STMNT } \\ & \text { of puol. } \end{aligned}$	$\begin{gathered} \text { MEOSNLATED } \\ \text { TOTAL } \end{gathered}$
	CELL	CELL ${ }^{\text {c }}$	TOTAL		
1	\$2,706,613	\$183.631	\$2,800,046	12,890,004	2,80,044
2	2,871,430	19, 228	3,066,257	2,666,311	
3	2,940,626	200,800	3,161,506	2,390,552	7,946,907
4	3,018,406	204,820	3,223,516	2,119,514	
5	3,069,369	208,257	3,277,606	1,873,982	11,90,40s
6	3,114,044	211,209	3,323,353	1,453,27	
7	3,169,799	213,715	3,363,544	1,454,140	
8	3,179,596	215,737	3,395,332	1,276,431	
9	3,206,412	217,536	3,623,\%68	1,119,301	
10	3,227, 269	218.071	3,445,261	979, 637	18, 63,790

TABLE C-5
TOTAL FALUE CALCULATIOR - PRODUCTIOM PRONECTIOR TMREE BEGINNING 1/1/91

$\begin{aligned} & \text { MCDEL } \\ & \text { CELL } \end{aligned}$	PRESEMT VALUE Of MAOFIT MEA Leit		
	a tox	212	2. 158
CEL 81	\$3.9\%*48	33.92762	81.70537
CFl 2	0.23858	0.16770	0.07716

procuction rotals					
	TOTAL MIIS	$\begin{array}{r} \text { CELL } \% 1 \\ \text { PIL } \end{array}$		CELL 1 14155.	CELL 2 y.1Is
1	3,826, 086	408	608	1,530,436	2,294,652
2	3,874,325	405	608	1.549,811	2,324,717
3	3,953,709	405	608	1,582,286	2,373,435
6	4,069, 722	408	608	1,627,809	2.661.833
5	6,210,307	405	608	1.684,123	2,526.184
8	4,381,210	40%	6005	1.732.686	2,628.726
7	4,526,226	605	60x	1,810,490	2,715,76
8	4,655,624	408	600	1,862,250	2,753.374
9	6.773,560	408	608	1,909.626	2,864,136
10	4.878, 392	40 x	608	1,851,357	2,927,035

TOTAL PRESEMT VALUE Of Meofits at icz					
$\begin{aligned} & \text { ISsue } \\ & \text { vEAR } \end{aligned}$	AJ issue			AT START of PaOI.	$\begin{gathered} \text { Acampated } \\ \text { TgIAL } \\ \hline \end{gathered}$
	CEL4 11	cratr 8	10tab		
1	59, 180,200	8367.697	99.727,971	39,727,977.	39.727.977
2	9,296,519	- 536.63t	9.854,142	8.953,586	
3	9,691,297	564,252	10,057,548	8,312,022	26,992,586
6	9,766,858	582,573	10,367,431	7,774,172	
5	10.102.177	602,697	10,706,874	7,311,573	42,081,335
6	10,512,240	627,161	11, 139.602	6,916,692	
7	10,860,190	667.920	11,508,111	6,4\%6,083	
${ }^{8}$	11, 170,667	666,443	11.807.110	6,074,309	
9	11,653,662	683.326	12,136,967	5,661,955	
10	$11,705,175$	6\% 532	$12.403,507$	5,260, 298	12.49, 6 A7

$\begin{aligned} & \text { ISSUE } \\ & \text { YENR } \end{aligned}$	A1 155uE			AT sTAR of Pate.	$\begin{gathered} \text { AcOMLATED } \\ \text { TOTAL } \end{gathered}$
	EE1, 81	CEIL 2	TOTAL		
9	85,019,279	338.981	26,306,282	26,596,252	46,396,232
2	6,087,379	309,853	6,477,24	5,766,245	
3	6.214,925	3\%,023	6,612,949	5,271, 002	17,45f,299
4	6,306,054	489,495	6,003.550	4,842,632	
5	6,614,931	423.641	7,038,572	4,473,140	26,767,071
6	6,883,662	460,837	7.326.279	4.155,993	
7	7.111,280	655.429	7.566,709	3.833.530	
8	7,316,581	488,469	7.753,050	3,520,648	
9	7,499,874	480, 316	7.960,189	3.223,065	
10	7,64,570	690.864	8.155 .42	3.960 .925	44.45×14

1site	A) [ssis			AT STAIT	ACOMMATED
TEAR	CEL 1	cell	ratal	of mas.	total
1	82,609,957	\$177,087	\$2,737,043	32,767,063	\$2,727,043
2	2,643,002	179,329	2.822,330	2,456.200	
3	2,698,379	183,086	2,881,465	2.178,402	7,420,045
6	2,776,153	188, 363	2,966,516	1,969,247	
3	2,872,052	196, 870	3,066,922	1,753,52	11, 㐾,75
6	2,988,63	202,700	3,191,414	1.586,697	
7	3.087,556	209,492	3,297,045	1,48,405	
8	3,175,825	215.481	3,391,306	1,276,917	
9	3.256.276	220.959	3.477. 214	1,136,707	
10	3,327,785	27, 791	3,553,57\%	1.010 .148	17.554,64

$\begin{aligned} & \text { Meoel } \\ & \text { CE!! } \end{aligned}$	PRESENT VALLE OF PROFIT PER WIT		
	P 108	2 128	a 15 x
CELL 11	55.99868	53.92782	\$1.70537
CELL 8	0.23858	0.16770	0.0779

Procuction totals					
$\begin{aligned} & \text { TSSNE } \\ & \text { YEAR } \end{aligned}$	TOTAL . dulys	$\begin{gathered} \text { CELL } \\ \text { PCI. } \\ \hline \end{gathered}$	$\operatorname{CEG} R$ BCI	$\begin{aligned} & \text { CELL } \# 1 \\ & \text { CMIIS } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CELL } 12 \\ \text { LEIIS } \end{gathered}$
1	3,826,066	408	602	1,530,434	2,295,652
2	3,979,729	408	608	1,391,652	2,307,477
3	4,138,295	408	605	1,655,318	2,682,977
4	4,303,826	408	$60 x$	1,721,530	2,582,296
5	4,473,979	408	608	1,790,302	2,605,587
6	4,655,019	40%	608	1,862,008	2,793,019
7	4,861,219	608	608	1,936,488	2,904,731
8	5,034,868	408	602	2,013,947	3,020,921
9	5,28,243	608	608	2,094,505	3,161,758
10	5,665,713	608	60 x	2,178,205	3,267,428

15SUE	AT ISSUE			AT STAET	C0
YEAR	CEL6 1	CEL1.2	rotal.	of pres.	TOTAL
1	\$9, 180, 280	\$547,697	59,727,977	59.727.977	99.727.977
2	9,567,490	569,604	10,117,085	9,197,359	
3	9,929,392	-392,389	10,521,781	8,695,686	27,621,022
4	10,326,566	616,064	10,942,650	8.221,375	
5	10,730,628	660,727	11,380,356	7,772,936	43,615,333
6	11,169,245	686.357	11,435,572	7.348,959	
7	11,615,982	603.011	12,308,993	6,948,106	
8	12,080,622	720, 31	12.801.353	6,569,110	
9	12,563,848	749,561	13,313,406	6,210,803	
10	13,066,400	779,54]	13,845,943	5,872,032	76,585,350

ISSUE	Ai lssue			Af start	actuncarei
YEAR	CELL 1	CELL R	TOTAL	of prow.	ropal.
1	S6,011,271	\$384,981	36,396,252	56,396,252	36,39,25
2	6,251.721	400,360	6,652.101	5,939,376	
3	6,501,791	416,395	6,918,186	5,515,136	17,850,763
4	6,761,862	433.051	7,194.913	5,121,197	
5	7,032,336	450,373	7,482,709	4,735,397	27,727,357
6	7,313,431	460,380	7,72,049	4,615,726	
7	7,606,175	487,123	8,093,290	4,100,317	
8	7.910.622	506,608	8,417,031	3,807,437	
9	0,226,839	526,873	8,753,712	3,535,670	
10	0.355,912	547,988	9.105 .80	3.282 .83	46, 869.258

$\begin{gathered} \text { ISSSE } \\ \text { YEAR } \end{gathered}$	AT ISSUE			AT START of peas.	ACONELATED TOTAL
	CELL 19	CESL 12	total		
1	\$2,609,957	\$177,087	12,787,063	\$2,737,043	\$2.787.063
2	2,744,355	184.170	2,898,523	2,520,456	
3	2,822.730	199.337	3,014.467	2.279,370	7.586.870
6	2,935,966	199.190	3, 135,045	2,061,363	
5	3,053,260	207.166	3,260,646	1,864,171	11.512.383
6	3,175,412	215.453	3,390,868	1,685,059	
7	3,302,428	224,071	1,526,499	1,524,603	
8	3,436,525	233.056	3,667,539	1,576,771	
9	3,571,806	242,355	3,814,262	1,266,809	
10	3,716,782	252.049	3,866, 832	1,127,621	18,676.126

WOTE: Cell 11 is a $\$ 50,000$ nonperticipating mole life policy issuad to 35 yeer old male noremaker.

TABLE C-7

$\begin{aligned} & \text { MCDEL } \\ & \text { CELL } \end{aligned}$	PRESEMR VALUE OF PROFIT PER UNIT		
	2 108	212 L	a 458
CELL	\$5.99468	83.9278	31.70537
CELL 2	0.28858	0.16770	0.07716

PRODUCTIOM TOTALS					
$\begin{aligned} & 15 S 15 \\ & \text { YEAK } \end{aligned}$	TOTAL gilis	$\begin{gathered} \text { CELL } \\ \text { PCI } \\ \hline \end{gathered}$	ELIR PCI.	CELL 10115	CELL R M145
1	3,967,486	40\%	608	1,586,9\%	2,350,692
2	4,431,460	40\%	608	1,772,584	2,656, 676
3	4,848,858	407	608	1,539,535	2,909,303
4	5,286,219	60\%	608	2,116,486	3,971,731
5	5,777,190	408	608	2,310,876	3,466,314
6	6,333,740	408	608	2,533,4\%	3,800,244
7	6,882,357	408	60\%	2,752,943	4,129,414
8	7.631.3\%	40%	608	2,972,558	6,458,816
9	7.985.700	408	608	3,196,280	4,791,420
10	8,541,376	408	608	3,616,550	5,126,826

$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \end{aligned}$	AT 158VE			$\begin{aligned} & \text { AT START } \\ & \text { of patad } \end{aligned}$	$\begin{gathered} \text { MCOMULATED } \\ \text { TOTAL } \end{gathered}$
	CE14 11	CEH12	Torab		
1	59,519,556	\$567,938	\$10,087,692	810,087,492	\$10,047.492
2	10,632,810	656,355	11,267,164	10,242,877	
3	11,634,263	606, 101	12,324, 365	10, 180, 731	30,519,100
6	12,025,7i2	756,712	13,40,423	10,007,909	
5	13,861,743	826,993	14,688, 737	10,022,605	50.499,693
6	15,197,125	906,662	16.103,787	9,999.185	
7	16,513,472	9e5,186	17,496,668	9,477,542	
8	17,830,827	1,063,709	18,896,617	9,605,926	
9	19,160,025	1,163,137	20,303,962	9,471,948	
10.	20,496,109	1,222,681	21,716,790	9,210,039	94,906,353

$\begin{gathered} \text { ISSUE } \\ \text { reas } \\ \hline \end{gathered}$	at ISSUE			AT START of PAO.	$\begin{gathered} \text { ACOMLLATED } \\ \text { TOTAL } \end{gathered}$
	CELT 11	CELL 2	10Jat		
1	16,233,428	3399, 208	36,432,437	36,632,637	36, 42,057
2	6,962,391	45.80	7,408,204	6,614,540	
3	7,618,145	487,090	8,106,035	6,462,002	19,709, 28
4	8.305,327	531.890	8,837,236	6,290,143	
5	9,076,705	581,301	9,658,006	6,137,857	32, 237.258
6	9,951,116	657,301	10,588,417	6,008,152	
7	10,813,064	402,503	11,505,567	5,829,078	
8	11,675,671	767,747	12.42.418	5,619,723	
9	12,566,557	803.521	13,350,078	5,391, 873	
10	13,419.5\%	859.633	16.279, 08	5.149.161	60.135.36

15015	AT ISSES			at stant	ACOMLATEP
rent	CEL6 81	CLL 12	TOTAL	of mand.	TOPAL,
1	12,70,613	\$183,431	82,090,044	32,800,046	2,009,04
2	3,022,912	205,106	3,225,017	2,806,972	
3	3,307,623	224,424	3,532,049	2,670,736	8,367,732
4	3,605,906	245,667	3,550,651	2,531,866	
5	3,940,890	267.391	6,206,290	2,406,104	13,305, 721
6	4,320,548	295, 151	4,613,699	2,293,826	
7	6,694,786	318,543	5,013,329	2,167,401	
8	5,069,311	343,955	5,413,268	2,055,067	
9	5,447,429	369,610	5,817,050	1,901,601	
10	5,826,483	395,329	6,221,812	1,768,627	23.67370

WORE: Cell 11 is a $\$ 50,000$ nonparsicipating thole life policy tacuad to a 35 year oid mole normetar.


```
TABLE C-8
```


TOTAL FALOR CALCDIATION - PRODOCTIOR PROTECTIOR ORE BEGINSING 1/1/92

$\begin{aligned} & \text { MCDEL } \\ & \text { oELL } \end{aligned}$	PRESEMT VALUE Of Profit per unit		
	a 10x	a 12 x	1.158
CELL 11	\$5.99848	33.92782	81.70537
CELLR	0.23858	0.96770	0.07714

PRCOUETIOM ROTALS					
$\begin{gathered} \text { ISSUE } \\ \text { YEAR } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { inilis } \end{aligned}$	CELL 1 BEI	$\text { CEAL } R$ PCI_	CELL NILTS	CELL 2 1..1T5
1	3,826,086	402	60%	1,530,436	2,295,652
2	3,826,086	408	602	1,530,636	2,295,852
3	3,826,086	408	608	1,530,434	2,295,652
4	3,826,096	408	605	1,530,434	2,295,652
5	3,826,086	408	605	1,530.434	2,298,652
6	3,826,086	408	608	1,530,636	2,295,652
7	.3,826,006	408	602	1,530,636	2,295,652
8	3,826,086	408	605	1,530,436	2,295,652
9	3,826,086	408	608	1.530,636	2,298.652
10	3,826,086	408	608	1,530,636	2,295,652

1SSue	AI LSEXE			At Statit	ACOMLLATED
YEAR	CEL6 ${ }^{11}$		Total	Of peotl.	ITSAL
1	39,180,280	\$567.697	39,727,977	59,727,977	39.727 .977
2	9,180,280	347,697	9,727,977	8,843,615	
3	9.180,200	347,697	9,727,977	8,039,650	26,611,262
4	9, 180,200	567,697	9,727,977	7,308,773	
5	9,180,280	347,697	9.727.977	6,644,339	40,564,354
6	9.180,280	547,697	9,727,977	6,040,308	
7	9,180,280	567.697	9,727,977	5,491,189	
8	9.180,280	547,697	9,727,977	4,991,900	
9	9,180,280	547,697	9,727,977	4,538,173	
10	9, 180,280	547,897	9,727,977	$4,125,612$	65,758,6\%

$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \end{aligned}$	AT ISPME			$\begin{aligned} & \text { AT stant } \\ & \text { of ptoon. } \end{aligned}$	$\begin{gathered} \hline \text { ACOMOLATED } \\ \text { TOTAL } \end{gathered}$
	CELL 11	CELL 2	TOTAL		
1	56,011,271	838, 901	36,396, 32	36,396,282	36,396,252
2	$6,011,271$	384,981	6,396,252	5,710,939	
3	6,011,271	394,981	6,3\%,232	5,099,053	17,206,243
4	6.011.271	384.581	6,39,232	4,532,726	
5	6,011,271	384,981	6,396,252	6,064,934	25,023,902
6	6,011,271	384,981	6,3\%,252	3,429,405	
7	6.011,271	384,981	6,3\%,252	3,240,540	
8	6,011,274	36,981	6,396,252	2,003,539	
θ	6,011,271	384,981	6,39,232	2,583,339	
10	6.011 .274	384.981	6, 396, 232	$2.39 \% .55 \%$	40677030.

$\begin{aligned} & \text { stive } \\ & \text { rane } \end{aligned}$	at issue			$\begin{aligned} & \text { AT stant } \\ & \text { of meos. } \end{aligned}$	$\begin{gathered} \text { AcCADMRATED } \\ \text { TOTAL } \end{gathered}$
	CTL1	CELL 12	total		
1	\$2,409,957	8177,087	82,787,043	82,737,043	\$2,787,063
2	2,609,957	177,087	2,787,043	2,423,516	
3	2,609,957	177.087	2,787,043	2,107,405	7,317,965
4	2,009,957	177,087	2,787,043	1,832,526	
5	2,609,957	177,087	2,787,043	1,593,501	10,743,9\%
6	2,609,957	177,087	2,787,043	1,385,653	
7	2,609,957	177,087	2,757,043	1,206,916	
8	2,609,957	177,087	2,787,043	1,067,733	
9	2,009,957	177,087	2,787,043	911,009	
10	2,609,957	177,087	2,789,043	79R,232	16,93\%

$\begin{aligned} & \text { MCOEL } \\ & \text { EELL } \end{aligned}$	PRESEMR value of profit per luili		
	3102	2.125	2.157
CEL6 81	\＄5．99848	83.9278	31.70537
CELL 8	0.23058	0.16770	0.07714

PPCOUCTIOM TOTALS					
$\begin{aligned} & \text { issue } \\ & \text { yFser } \end{aligned}$	TOTAL cmils	CELL 11 Pet．	$\text { CELL } \operatorname{Ra}$ Pct_	뜬ํ InITs	CEL6 8 InIIS
1	4．209，394	40\％	608	1，683，758	2，573．636
2	4.360 .152	408	608	1，736，061	2，606，091
3	4，423，280	408	608	1，770，112	2，655，168
6	4，609，536	608	60%	\％，799，814	2．699．722
5	4，565，056	608	608	1，426，022	2．739，036
6	4，617，672	$40 x$	608	1，846，909	2．770，483
7	4，861，152	40x	608	1，864，461	2．79，691
8	4．700，464	405	608	1，880，186	2，820，278
9	4， 31,040	408	602	1，892，416	2，888，626
10	4，757，248	408	608	1，902，899	2，854，349

$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \end{aligned}$	AT ISPES			AT START OF Peo．	$\begin{gathered} \text { ACOMLATED } \\ \text { TOTAS } \\ \hline \end{gathered}$
	CEELL．${ }_{\text {che }}$	CEll 12	rerat		
；	\＄10，099，986	5602，566	\＄10，702，553	810，702，553	310，702，553
2	10，413．726	821.284	11，035，040	10，031， 227	
3	10，617，981	， 633,670	11，251，451	9，298，720	30，053，100
4	10，796，151	664，100	11，440，250	8，595，229	
5	10，953，359	653．479	11，606，187	7，927，626	46，553．986
6	11，079．125	660，982	11，740，107	7，289，603	
7	19.183 .931	667.235	11．851，165	6，609，674	
8	11，278，256	672，862	11，551．118	6，132，813	
9	11，351．620	677.239	12，028．858	5，611，551	
10	$11,616,503$	880， 991	12，005，693	5，129，670	77，409，347

$\begin{gathered} \text { ISSUE } \\ \text { YEAR } \end{gathered}$	AT iSSue			at START of paOd．	$\begin{gathered} \text { ACCMMLATED } \\ \text { TOTAL } \end{gathered}$
	CELL 1	CELL 12	TOTAL		
1	\＄6，613，497	2423，569	37，037，008	37．037．096	\＄7，057，046
2	6，818，934	436，706	7，235，640	6，478，250	
3	6，952，681	45，272	7，397，953	5，097，603	49，412，899
6	7，069，367	452，763	7，522，090	5，354，075	
5	7，172，287	459，336	7，631，623	6，050，035	29，617，009
6	7，254，640	464，610	7，719，250	4，300，110	
7	7，323，266	409，005	7，792，272	3，947，807	
8	7，385，051	672，\％\％1	7， 57.991	3，556，356	
9	7，433，069	476，037	7，909，107	3，194，356	
10	7，674，266	478，676	7．952．970	2．887．903	67．31．740

TOTAL PRESEMT VALUE Of Peofits at 158					
$\begin{aligned} & \text { YPIR } \\ & \text { YEAR } \\ & \hline \end{aligned}$	4）ISPE			AI START	acomalated
	矢し上	CELL 2	TOTAL	of pros．	TOTAL
1	\＄2，871．430	\＄184．828	33，066，257	33，066，267	43，066，257
2	2，960，626	200，800	3，161，506	2，749，135	
3	3，018，496	204， 820	3，225，516	2，437．461	8，282，853
4	3，069，349	208，257	3，277，606	2，155．079	
5	3，114，046	211，209	3，323，535	1．901．270	12，300，22
6	3，169，799	213．715	3，363，514	1．672，281	
7	3，179，5\％	215.737	3，305，532	1．467．0\％	
8	3，206，412	217，536	3，423，988	1，287，197	
9	3，227，269	218，971	3，466，261	1，126，502	
10	3，265，167	220.18.	3，465， 582	923，04	18，858， 188

$\begin{aligned} & \text { MCOEL } \\ & \text { CELL } \end{aligned}$			
	- 105	a 128	a 151
CELL 11	\$5.99448	53.92782	\$1.70537
CELL	0.23058	0.16770	0.07714

probuericm rotals					
$\begin{aligned} & \text { 15SUE } \\ & \text { YEAK } \end{aligned}$	$\begin{aligned} & \text { joral } \\ & \text { cyliss } \end{aligned}$	$\begin{gathered} \text { CELL } \\ \text { PGI. } \\ \hline \end{gathered}$	$\text { CELL } R$	$\begin{gathered} \text { CEL6 } \\ \text { cil } \\ \hline \end{gathered}$	$\begin{gathered} \text { CFLI } 12 \\ \text { MLIS } \end{gathered}$
1	3,874,528	40%	608	1,569,811	2,326,717
2	3,955,709	408	605	1,582,286	2,373,425
3	4,069,722	405	608	1,627,889	2,441,853
4	4,210,307	40%	80%	1,684, 123	2,526,184
5	4,381,210	40%	608	1,752,486	2,628,725
6	4,526,226	405	605	1,810,490	2,715,786
7	4,655,624	40%	605	1,862,250	2,793,374
8	4,773,560	408	608	1,909,626	2,864,136
9	4,978,392	40\%	608	1,951.357	2,927.055
10	4.974,688	408	608	1,909,7\%5	2,904, 683

[SSUE		15sNE		AT START	acomulatto
YEAR	CEL 1	CELL	POTAL	of peols.	тотa!
1	59,296,511	5554,631	\$9,851,142	39,851,162.	89, 25% \% 142
2	9,691,297	566,252	10,057,548	9,143,226	
3	9,766,858	- 582,573	10,367,431	8,551,596	27,545,964
4	10,102,177	602,697	10,704, 874	8,042,70	
5	10,512,240	627,161	11,130,402	7,600,361	43,197,056
6	10,860,190	647,920	11,500, 111	7,165,631	
7	11,170,667	666,443	11,857,110	6,601.740	
8	11,453,642	653,326	12,136,967	6.226,183	
9	11,705,175	698,352	12,605,307	5,766,327	
10	11,935,747	712,008	12,647, 835	5,363,917	74,402,854

$\begin{gathered} \text { ISSUE } \\ \text { YEAR } \end{gathered}$	Ai lissue			$\begin{aligned} & \text { AI stakt } \\ & \text { of pand. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { AcCOMLATED } \\ \text { TOTAL } \end{gathered}$
	CELL 11	CEL1. 22	107AL		
1	20,087,379	3309,855	86,677, 234	36,477, 234	86,477,234
2	6,214,925	398,023	6,612,949	5,904,418	
3	6,394,056	409,405	6,603,550	5,42,748	17,805,408
6	6,614,931	623,641	7,038,572	5,009,917	
5	6,483,442	460,857	7,324, 279	4,654,712	27,470,029
6	7,111,200	453,429	7,566,709	4,293,554	
7	7,314,581	468,499	7.763,050	3,943,125	
8	7,499, 874	480,316	7,900, 189	3,609,832	
9	7,664,578	490,864	8,155,442	3,273,846	
10	7,615.557	500,533	3.316.490	3,9\%.866	65.698.383

ISEPE	AT ISSEX			Af Start	actumated
reat	CELL 1	CELS 12	TOTML	of peos.	TOTAL
1	\$2,643,002	\$179.329	\$2,422,130	\$2,822,530	22,822,350
2	2,696,379	183,08\%	2,881.465	2,505,622	
3	2,776,153	188,363	2,966,516	2,241,600	7,509,532
6	2,872,052	194,870	3,066,922	2,016,531	
5	2,948,436	202,760	3,191,414	1,824,701	11,489,804
6	3,067,556	209,492	3.297.068	1,459,215	
. 7	3, 175,823	215,481	3,391,308	1,466,153	
8	3,26,274	220,939	3,477,214	1,307,213	
9	3,327,785	223,791	3,553,577	1,161,671	
. 10	3,393,557	230, 239	3,63,578	1,030,047	18,013,407

$\begin{gathered} \text { CoEL } \\ \text { CELb } \end{gathered}$	P恠ESEMT，Yalle of phofit per umit		
	2．108	2121	9．158
CELL 1	\＄3．99668	\＄3．9272	31.70537
CELL 12	0.23858	0.16770	0.07714

PRODUETIOM TOTA6S					
15 SYE	total	CELL 1	CEG 8	CEL6 6	CELI 12
TEAR	ymits	PCT，	Pri．	Muls	MuIs
1	3，979，129	408	605	1，591，652	2，387，677
2	4，138，295	408	608	1，655，318	2，482，977
3	4，303，826	60\％	60%	1，721，530	2，582，2\％
6	4，473，979	60\％	60x	1，790，392	2，685，597
5	6，655，019	408	608	1，862，008	2，793，011
6	4， 41.219	60%	608	1，936，488	2，906，731
7	－5，034，868	602	608	2，013，967	3，020，921
8	5，236，263	408	608	2，094，505	3，141，738
9	5，45，713	608	60\％	2，178，285	3，267，428
10	5，663，542	608	608	2，265，617	3，398，125

$\begin{aligned} & \text { YSSUE } \\ & \text { YEAR } \end{aligned}$	AT ：SSus			A）START of 昨品，	$\begin{gathered} \text { ACOPRATED } \\ \text { TOTAL } \end{gathered}$
	CEL， 1	CEIL ${ }^{\text {d }}$	rotal		
1	\＄9，547．690	\＄569，606	\＄10，117，005	310，117，085	310，117，055
2	9，929，392	392，399	10，521，711	9，565，255	
3	10，326，566	616，086	10，962，650	9，043，512	28，75，862
6	10，739，628	640，727	11，380，336	8，550，230	
5	11，169．215	666，357	11．855，572	8，083，855	45.359 .546
6	11，615，982	693，011	12，300，993	7，642，916	
7	12，000，622	720，731	12，801，353	7，226，030	
8	12，583，848	769，561	13．313．403	6，831， 853	
0	13，066，600	799，543	13，855，963	6，459，253	
10	$13,589,057$	810，725	16，399， 782	6，106，913	79，626，926

TOTAL PRESEMT Value of miofits at 127					
$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \\ & \hline \end{aligned}$	AT 1SSUE			AT START	actanlated
	CELt	CELL 12	rotal	Of phol．	topal
1	\＄6，251，729	2400， 380	46，652，101	\＄6，652，101	\＄6，652， 101
2	6，501，791	416.395	6，918，186	6，176，952	
3	6，761，862	433，051	7，196，913	5，735，760	18，544，793
4	7，032，336	450，373	7．482．709	5，326，044	
5	7，313，631	468， 388	7，782，019	4，965，614	25，83，454
6	7，605， 173	487， 123	8，095，290	4，502，353	
7	7．910．422	306，606	8，417，031	4，264，530	
8	8，226，839	526，873	8，733，712	3．939， 755	
9	8，555，912	547，968	9，103，860	3，676，8\％	
10	$8.859,149$	569，869	$9,468.015$	3，616．261	48，74，02t

Issue		： 3 Sle		Af sfat	acounliteo
YEAR	CEL1 1	CELL ${ }^{\text {a }}$	taril	Of med．	Toral
1	32，714，355	3184， 170	\＄2，892，525	32，098，523	52，88， 52
2	2，82，530	191，537	3，014，467	2，621，275	
3	2，935，866	199，106	3，135，045	2，570，544	7，000，344
4	3，053，200	207.166	3，260，466	2，143，796	
5	3，173．412	215，453	3，390，865	1．938，78	11，972， 78
6	3，302，428	224.071	3．526．69\％	1，753．293	
7	3，636，525	253，036	3，667，559	1，585，587	
0	3，571，906	262.355	3，814，262	$1.433,922$	
9	3．714．782	232，049	3，964．832	1，2\％，74	
90	3，663， 376	262， 131	6，125，305	$1,172,76$	19．295，171

MOTE：Cell $\$ 1$ is a $\$ 50,000$ nonparticipating whole life policy isand to a 35 year old eale nonemoker．

$\begin{aligned} & \text { HCoEL } \\ & \text { EELL } \end{aligned}$			
	2.108	2. 128	3.758
CEL6 ${ }_{\text {¢ }}$	\$5.90948	\$3.927 2	\$1.70537
CELL 2	0.23858	0.16770	0.07714

Provicrica torals					
ISSUE	$\begin{aligned} & \text { Total } \\ & \text { y } \end{aligned}$	$\begin{gathered} \text { CELL } \\ \text { PET } \\ \hline \end{gathered}$	$\text { cELL } R$ NCI_	CELL 101ts	CELL 8 2MITS
1	4,431,460	408	605	1.772.586	2,658,876
2	4,248, 338	408	60\%	1.939, 535	2,909,303
3	5,286,219	408	605	2,114,488	3,171,731
6°	5,777,190	408	605	2,310,876	3,466,314
5	6,533,740	408	605	2,533,406	3,800.244
6	6,882,357	408	605	2,732,063	4,327,616
7	7,431,394	408	60\%	2,972,558	4,458,836
8	7,985,700	40%	605	3,194,280	4.791.420
\bigcirc	8,541,376	408	608	3,416,550	5,124,826
10	9,102,566	408	608	3,64,166	5,461,718

155VE	A^{\top} ISs退			IS AT 108	mearulated
rear	C646 1	C탄․	Tgtah	of mors.	roral.
1	\$10,632,810	\$634,355	811,267,16	311,267,16	\$11,267,284
2	11,634,263	604, 101	12,328,365	11,207.604	
3	12,683,712	756,712	13,40,423	11,107,783	3,582,356
6	13,861,763	-826,993	14,6at , 737	11,035,865	
5	15,197,125	906,662	16,103,787	10,999, 103	35,617,525
6	16,513,672	985,146	17,490,668	10,865,296	
7	17,830,827	1,063,709	18,806,617	10,665,518	
8	19,160,825	1, 143,137	20,303,962	10,419,143	
9	20,406,109	1,222,681	21,716,790	10, 131,063	
10	21,841,339	1,303,057	23,14, 396	9,845,483	107,314,005

$\begin{aligned} & \text { I SSUE } \\ & \text { YEAR } \\ & \hline \end{aligned}$	AT 15SuF			$\begin{aligned} & \text { AJ stant } \\ & \text { of meal. } \end{aligned}$	$\begin{gathered} \text { ACOMRATED } \\ \text { TOTAL } \end{gathered}$
	CELL 1	CFLL 2	TOTAL		
1	36,962,391	3465,096	57,408,205	\$7,408, 234	\$7.408,264
2	7,618,165	487,890	8,105,053	7,237,531	
3	8,305,327	531,899	8,857,206	7,064,982	21,600,786
6	9,076.705	581,301	9,658,006	6,874,378	
5	9,951,186	637,301	10,585,617	6,72, 131	55,296,307
6	10,813,066	692,505	11,505,567	6,525,567	
7	11,675,671	747,747	12,423,418	6,2\%,090	
8	12,546,557	803.521	13,350,070	6,038,097	
9	13,619,595	859,433	14,279,028	5,767,060	
10	16,301.765	915,240	15,217.68	3,47.653	6 648.58

1915	AT ISSVE			AT START	acamalares
TEA	CL1	CEL6 12	TOTAL	Of mor.	TOTAL
1	81,022,912	\$205,106	83,223,017	\$3.224.017	33,22t,017
2	3,307,623	224,426	3,532,049	3,071.347	
3	3,005,904	24,667	3,050,654	2,911,045	9,214,007
4	3,940,899	267,391	4,205,290	2,767,099	
5	4,320,548	273.151	6,613,699	2,677.897	14,615,936
6	4.694,736	318.563	5,013,329	2,402,511	
7	5,069,311	343,955	3,613,265	2,340,304	
8	5,47,429	369,610	3,817,059	2,185,81	
9	5,826,483	395,329	6,221,812	2,053,921	
10	6,209,500	421,317	$6,630,817$	$1,84.80$	2,sFing

WIE: Cell tit is a 550,000 morparticipeting mole life policy lseund to a 35 year ald ele norispoker.

TABLE C-13
TOTAL $V A L D E$ CALEDLATION - PRODOCHIOM PROTECKION SIX BBGINNLNG 1/1/92

MODEL Et 6	PRESEMT VALUE OF MAOFIT PER UnIT		
	a 108	3123	8 158
CEL At	15.9946	33.92722	81.70537
돈)	0.23858	0.46770	0.07714

prooucitom totals					
$\begin{aligned} & \text { IEPE } \\ & \text { TEA } \end{aligned}$	$\begin{array}{r} \text { TOTAL } \\ \text { 3 ARIS } \\ \hline \end{array}$	$\begin{array}{r} \text { ELL }{ }^{1} 1 \\ \text { PCT. } \end{array}$		$\begin{gathered} \text { CRLL } \\ \text { HIS } \end{gathered}$	E1L 4..1If
1	4,371,895	405	695	1,748.758	2,623, 137
2	4.817 .691	4015	605	1,927.076	2,890,615
3	5,265,973	405	60%	2,106, 809	3,159.506
6	$5,736,750$	405	605	2,302,700	3,454,050
5	6,312.483	4005	605	2,526,993	3,787.490
6	6,865,777	605	605	2,746,311	4,119.466
7	7,619,898	405	605	2,967,959	4,451,939
8	7,973,744	408	605	3,189,490	4,744,246
9	8,535.158	40.5	608	3,414.063	5,121,005
10	9,102, 606	605	60\%	3,461,146	5,461,718

$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \end{aligned}$	A) 1SSUF			$\begin{aligned} & \text { at 57atit } \\ & \text { of moll } \end{aligned}$	mecturateb TOTA!
	CEL4 41	CF4 2	Toral		
1	\$10,489,890	5825, 22s	811, 115,718	\$11, 115,718	811.115,718
2	11,559,529	609,603	12,249,172	11,135.617	
3	12,635,133	753,816	13,384,967	11,065,265	33,316,575
6	13,812,700	126,067	14,636,767	10,9\%,20	
5	15,146.121	903,619	14,049,741	10,862, 189	55,243,503
6	16,473,890	902,822	17,454,513	10,839, 121	
7	17,803,246	1,062,166	18, 868.387	10,669,019	
8	19, 132,138	1,141,426	20,273,363	10,403,543	
θ	20,479,190	1,221,791	21,700,501	$10,123,648$	
10	21,061,359	1,303,057	23,166,396	9,815,453	107,106,617

I Ssue TEAK	AI ISsex			$\begin{aligned} & \text { AT STARI } \\ & \text { of Prod. } \end{aligned}$	ACTUMKATED Poral
	CEL1	CFL6 2	T07AL		
1	36,868, 007	5439,900	57,305,707	87,308,707	87,393,707
2	7.569,209	484, 786	8,053,945	7,191,040	
3	8,273,518	529,862	8.803,340	7,018,001	21,317,746
6	9,044,591	579,246	9,82, 535	6,850,056	
5	9.917.719	635.162	10.532, 6 (1)	6,746,567	35,074.354
6	10,767,016	690.83\%	11,477, 49	$6,312,80$	
7	11.657.690	746.590	12,404,209	6,23, 35	
8	12,527,772	002.318	13,350,091	6,029,856	
9	13,409,826	858.803	14,244,453	5,742,86	
10	14.301 .76	915.980	15,217,49\%	5.47, 63	68. 959.914

$\begin{gathered} 1810 \\ 1 y+10 \end{gathered}$	at issue			AT STAT	ACOMALATED
	Eth 11	CEL R	TOTA	of Prou.	TOTAL
1	32,902,279	1202,369	13,184,625	53, 185,420	33.184.623
2	3,26, 376	222,902	3,509,360	3,651,618	
3	3,572, 173	263,730	3,055,905	2,900,496	9,236,740
4	3,926,955	266,445	4,193,601	2,757,229	
5	$4,306,048$	292,167	$4,590.215$	2,629,064	14,523,013
6	4,643,476	317.776	5.001 .252	2,486.506	
7	5,061,469	343.42	5,404,391	2,54,684	
8	5,639,276	349,057	5,200,300	2,124,546	
9	5.822,261	3\%5,041	6,217,222	2,082,461	
10	6,209,500	421,387	$6.630,817$	1.84.892	2947ter

TABLE C-14

$\begin{gathered} \text { WDEL } \\ \mathbb{E N L L} \end{gathered}$	PRESEMT VALUE OF PHOFIT PER UuIT		
	9 188	a 128	2.158
$\begin{array}{ll} \alpha E L & \$ 1 \\ \alpha E L & B \end{array}$	$\begin{array}{r} 35.9948 \\ 0.23858 \end{array}$	$\begin{array}{r} 83.92782 \\ 0.16770 \end{array}$	$\begin{array}{r} 31.70637 \\ 0.07714 \end{array}$

Prapuetion totals					
$\begin{aligned} & \text { ISSSE } \\ & \text { YEAR } \end{aligned}$	rotal MITS	$\begin{gathered} \text { CELI } \quad \mathbf{~} 1 \\ \text { PGT } \end{gathered}$	$\begin{gathered} \text { CELL } 28 \\ \text { PCI } \end{gathered}$	$\begin{gathered} \text { EELL } 11 \\ \text { UnIS } \end{gathered}$	CELL 2 M1Ts
1	4,530,377	402	602	1,812,159	2,718,226
2	5,008,982	408	601	2,003,593	3.005,389
3	5,502,070	408	608	2,200,828	3,301,242
6	6,068,559	40\%	602	2,619,426	3,629,135
5	6,671,350	40\%	602	2,646,540	6,002,810
6	7,299,629	408	608	2,919,852	6,379,77
7	7,935,449	408	608	3,174, 180	4.761,269
8	8.576.89\%	408	602	3,430,738	5,146,136
9	9,232,357	40x	602	3,602,963	5,539.414
10	9,900,559	408	608	3,900,226	5,060,335

ISSUE	A) ISSus			at stant	ACCIMULATED
YEAR	CEL6 11	CELL 2	TOTAL	of pous.	Total.
1	\$10.870, 950	\$640.514	511,512,685	\$11,518,665	\$11.548,685
2	12,018,511	717.026	12,735,537	11,577,761	
3	13,201,623	787.610	13,909. 233	11,561.350	36,657,715
4	14,512,866	865.839	15,37\%. 703	11,554,247	
5	16,007,484	936.990	16,962.176	11.585 .393	37,797.416
6	17,516,671	1.004.927	18,559,599	11.526.051	
7	19.060.253	1.135.946	20,176,197	11.385,957	
8	20,579,331	1,227,765	21,007,0\%6	11,190,408	
9	22,152,046	1,321.573	23,673,637	10,950,63	
10	23,755,322	1,417,245	25,472,567	10,675,626	113,527,163

ISSJE	AI ISsue			Af stant	D
YEAR	CELL 1	CELL 2	TOTAL	of peos.	TOTAL
1	\$7.117.802	455.647	37,573.669	\$7,573,649	\$7,573.649
2	7.869,752	506.004	8,373.736	7,476,568	
3	8,664,456	553.618	9,195,075	7,332,649	27.302 .865
4	9,503,060	606,606	10,111.666	7,197,284	
5	10,681,565	671.271	11,152,816	7,007.816	36,667.905
6	11,688,652	74,489	12,205,140	6,926,309	
7	12,467,606	798,465	.13,266,071	6,721.004	
8	13,475,390	863.007	14,338,405	6,485,966	
9	14,505,215	928,960	15,436, 176	6,253,604	
10	15,555,065	9\%6,196	16,551.260	5,96\%,563	60.001 .673

15sue	Af ISSUE			AT START	Acanta
TEME	CELL 1	CELL 8	TOTAL	of mas.	TOTAL
1	33,000,380	\$209.606	\$3,300,072	\$3.300.072	33,300,072
2	3,416,867	231.836	3,645,763	3,172,725	
3	3,753,226	254,653	4,007,884	3,040,536	9,563,353
4	4,126,012	279.952	4,405,964	2,896,973	
5	6, 350.818	301, 777	6,159,65	2,76,506	15.173,82
6	6,979,427	337,056	5,317,283	2,643,650	
7	5.613,959	567.296	5,770,435	2,699,092	
8	5,850,711	396,973	6,267,686	2,348,736	
9	6,297,844	427,310	6,725,144	2,198,462	
10	6.753 .647	453,237	7,211.83	2,050.068	26.918, 828

MOTE: Cell 1 is a 350,000 noncarticipating whole life policy issend to a 35 year old mite nonemoker.
cell 2 is a $\$ 150,000$ ien-year anrually renemable term policy inaud to a 35 year old mate nonsmoker.

$\begin{aligned} & \text { MOOEL } \\ & \mathrm{EELL} \end{aligned}$	PRESENT VALLES OF PAOPIT PER LMIT		
	a TUS	3.12.	a 158
CEL	\$5.99440	53.92782	81.70537
cestar	0.23058	0.16770	0.07716

Proouction totals					
$\begin{gathered} \text { Isene } \\ \text { resi. } \end{gathered}$	TOTAL (E1IS	$\begin{gathered} \text { CEL6 } 11 \\ \text { PETR } \end{gathered}$	$\begin{array}{r} \text { CEL6 } 8 \\ -\quad \text { PYI. } \\ \hline \end{array}$	CELL 19 相保	
1	6,530,377	308	708	1,359,113	3,171,264
2	5.008,982	308	708	1,502,695	3,506,287
3	5,502,070	308	708	1,650,621	3,451,449
4	6,048,539	308	708	1,814,560	6,233,991
5	6,671,350	30%	T08	2,001,405	4,669,945
6	7,290.629	308	70x	2,189,809	5,109,740
7	7,935.469	30\%	708	2,380,635	5,554,814
8	8,576,896	302	708	2,573,068	6,003,026
.9	9,232,357	308	70\%	2,769,707	6,462,650
10	9,900,559	308	708	2,970,168	6,950,391

$\begin{gathered} \text { ISSUE } \\ \text { YEAR } \\ \hline \end{gathered}$	At [5sue			$\begin{aligned} & \text { at START } \\ & \text { Of PROL, } \end{aligned}$	$\begin{gathered} \text { ACCOMLATED } \\ \text { TOPAL } \end{gathered}$
	CELi. 11	CE1, 32	70TAL		
1	38,152,613	376,600	\$8.509.213	58,509,213	st.909,213
2	9.013 .884	336,530	9,850,416	8,954,921	
3	9,901.217	918,879	10,820,096	8,962,223	26,806,362
4	10,806,648	T,010,146	11,894,7\%	8,936,735	
5	12,005,308	1,116,155	13,119,563	8,960,825	46,705,921
6	13,136,004	1,219,082	14,355,005	8,913,379	
7	14,260,190	1,325,268	15,603,457	8,806,476	
8	15.434.498	1,432,393	16,866,891	8,655,382	
9	16,614,033	1,561,859	18.155.892	8.469.857	
10	$17,816,692$	1,653,653	19,460,964	d, 257, 157	87,808,570

$\begin{aligned} & \text { ISSUE } \\ & \text { YEAR } \end{aligned}$	AT ISSUE			$\begin{aligned} & \text { AT STMRT } \\ & \text { of peon. } \end{aligned}$	accimulateo TOTAL
	CELL	CELL	rotal		
1	\$5,338,352	3531.821	35,870,173	55,870,173	\$5,870,173
2	5,902,314	588,004	6,690,318	5,7\%,927	
3	6,483,342	645.888	7.129,250	5,603,379	17,348,472
6	7,127.295	710,060	7,437,336	3,578,461	
5	7,861,159	785, 150	8,644,300	5,493,614	26,420,553
6	8,601,409	856,903	9.458,392	5,366,946	
7	9,350,705	931.542	10.282,267	5,209,306	
8	10,106,569	1,006,042	11,113,590	5,027.133	
9	10,878,971	1,083,736	11,562,697	4,831,533	
10	19,64.280	1,162,227	12.036.514	6.676 .090	53.488 .561

$\begin{aligned} & \text { ISNE } \\ & \text { YEAR } \end{aligned}$	AT ISsyer			at STARTof man.	$\begin{gathered} \text { ACOMLATED } \\ \text { TOTAL } \end{gathered}$
	CELL 1	CELL 12	TOTAL		
1	\$2,317,791	8264,631	12,562,422	\$2,562,422	82,562,422
2	2,562,650	270,675	2,453, 125	2,463,587	
3	2,816,920	297, 101	3,112,020	2,353,134	7.379.144
4	3,094,509	326,610	3,421,119	2,249,42	
5	3,413,136	360,240	3,713,376	2,157,440	11,73,005
6	3,734,570	394, 165	4,120,736	2,052,711	
7	6,059,863	428, 498	4,480, 361	1.940,442	
8	6,384.053	463.135	4, 851.160	1.823,74	
9	4,72,375	498,529	5,221,906	1,707,050	
10	5,065,235	534,610	5,599, 65	1,591.82\%	20,90: 788

 Cell ${ }^{2}$ is a $\$ 150,000$ ten-year arrusilty renewable tern policy iseund to a 35 year old mele nonamoker.

