
ACTUARIAL  RESEARCH CLEARING HOUSE 
1 9 9 2  VOL. 2 

AGGREGATE SMOOTHNESS 

IN MULTI-DIMENSIONAL 

WHITTAKER-HENDERSON GRADUATI ON 

by Ronald Dubsen 

abstJ~acC 

A set of crude rates u u determined by D independent variables 

can be thought of as a discrete surface of dimension D. Let W, F, 

K~ , and S~ have their usual meaning in multl-dimenslonal 

Whittaker-Henderson graduation. Let t~ ..... t~ be non-negatlve 

smoothness parameters, let 

u .  = ~('~i) = A-'W~" , 

I -  
let ~ be the surface determined by limit (u -7 ) W(u -7 ) = O, and 

let ~. > O be some desired level of the fit F (e.g., its expected 

T 
value). Then the point (ti) at which (u -~ ) W(u - ~ ) attains 

a minimum when subject to the constraint F(u) = ~% is determined 

by the simultaneous equations 

~F 
~ (i = 1 ..... D) 

where I depende on C vZ . 

If C is any smooth curve in the region {(tl): ti >I 0 } with 

initial point (O ..... O) and end-point (t~), then 

F ~" z~-~',5, = /Z= 5 , . d t ~  • 

[=I J 
g 
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1. Given a set of crude motality rates u'x to be graduated by the 
Whit taker-Henderson method, one may ask under  what conditions there exists a 
statistical est imator for the fit F = 7. wx(u. - u'x) 2. If the graduated rates u= are 
considered to be random variables with expectation u~" and variance ox 2, then the 

expected value of F is 

E{F} = ~: w~ E { (u~ - u~) 2} = 7. w~ a~ 2 

In the case of rates q~ = 8~ / F_~ based on the number  of lives or number  of policies, 

it is well known that  ~ = q~ (1- oh) / F_~ = p ~  / F_~ 

For the so-called type B Whittaker-Henderson graduation, in which the weights w~ 

are the exposures F_~, one has 

E { F } = ~  F _ ~ ( p x q ~ l ~ ) = ~  pxch 

In mult idimensional  WH graduation where the subscript x is an ordered pair, or 
more generally, a lattice point (kl, ..., kD), there is an infinite number  of different 
values for the smoothness parameters which yield different graduated rates but the 
same fit. These considerations suggest the following problem: 

For a given level o f  fit, how are the smoothness parameters to 

be chosen so that the graduated rates form, in some natural 

sense, the smoothest discrete surface? 

In the one-dimensional  case this is not  an  issue, as the fit determines the single 
smoothness parameter,  and vice versa. Although this is a mathematical rather  than 
an actuarial  problem, it should not be without some interest to actuaries, since a 
solution would provide a standard against  which to compare graduated rates that  
emphasize smoothness along a particular axis or axes. 
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2. We will use K n o r r ' s  no ta t ion  [1], w i t h  t h e  except ion t h a t  the s m o o t h n e s s  

parameters  will  be deno ted  by ti (i = l ,  ..., D). 

D = dimension o f  the  da ta  set  of  c rude  ra tes ,  

N = nln2 ...nD, t h e  total  n u m b e r  of  cel ls  

u = {ukl k2... kD : ki = 1 .. . .  ni ; i = 1, ..., D} t h e  "unraveled" g radua ted  ra tes ,  

u = (u 1 ..... us)  t he  "raveled" g radua ted  ra t e s ,  

u = (ul', ..., u'N) t h e  raveled  crude r a t e s  

W = an N x N d iagona l  ma t r ix  wi th  p o s i t i v e  ent r ies  wl, ..., WN; 

zi 
Ki = the N x N m a t r i x  wi th  binomial  coeff ic ients  needed  to :de t e rmine  a 

KTi = the t ranspose  of  Ki , i 

D 
A = W +  X t~IQT Ki (h > 0); 

i = l  

F = (u-u') w W (u-u'); 

Si = uTKTiIQ n. 

Note that u T KTi IQu = ~. (~i u)2 ; e.g., for a two-dimensional data set with zl = 3, 
l 

uTKI T K1u = ~: (a 3 th j)2 

n~ nr3 
= E E (Ui+3, j - 3Ui+2, j + 3Ui+l,  j - Ui j )2 • 

j=li=l  
The  vector u min imizes  F + T. ti S i w h e n  A u  = W u t  As ti -, ~ ,  u -* ' l ,  t h e  

polynominal func t ion  o f  (kl ..., kD) which m i n i m i z e s  F and  whose p a r t i a l  de r iva t ives  
#zi/#k i are zero. The  vec tor  ,~ can also be  cha rc t e r i zed  as the  o r thogona l  pro jec t ion  

of  u" onto the  in te rsec t ion  of  t he  nul l  spaces  o f  the  Ki's. This  fact is used  in 

appendix (i). 

201 



3. Le t  o 2 deno te  t h e  des i red  level of fit. As the  "smoothest"  u ( = A - l W u  ") fo r  
which F = 2 ,  we p ropose  the  one which min imizes  (u - ~)T W ( u - e), the  s q u a r e  
of the  d is tance  to  t he  u l t ima te  smooth  surface ,i. 

In  o rder  to der ive  a n  equa t ion  for the (%) a t  which  this  condi t ion  is sa t is f ied ,  i t  will  

be convenien t  to  u se  t he  following notat ion:  

< u , v >  = uTWv,  I U 12 = < U,U >; hence, F = I u -  u" 12 and  

(u-~)TW(u-~) = I u-~ 12. 

It  is shown in a p p e n d i x  (i) tha t  

lu-~ 12=2<u,u "> +F--I u" 1 2 -  IT 12, 

from which it follows that, when F = a 2, I u - ~ ] 2 and 2 < u, u" > differ by a 
constant. Hence, <u,u"> attains a minimum, say~, at the same point (ti) as does 

[ u - ~ 12. By Lagrange's Theorem [2], there is a real number i, depending on (ti), 

such that 

( I )  ~ < u , u ' > / a t i  = ,I aF/ati , i = 1 ...... D 

at the point on the submanifold {F = ~} where <u,u"> =/~. Geometrically 

speaking, this says that (ti) is the point of tangency between the two submanifolds 

{F = a 2} and {< u, u"> =/~}. Replacing,1 by - 1/~ in equation (1) and using the 

fact that a<u,u"> ~at i = - S i [appendix (ii)], one obtains 

la) aF/a%=,IS~ , i=l .... ,D. 

Note that a F / ati = 2 <u" - u, A a KTi Ki u> 

[appendix (Hi)]. Since u = u" at t~ = 0, 

a F / ati = 0 at td = 0. Hence, if Si (u0 > 0 

for some i, then ,I = 0 at % = 0. 
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alF S1 
4. L e t ¢ =  oaf $2 (oi = o / ot~ ) 

In the  case D = 2, the equations (la) are equivalent to the  single determinant  equation 

¢ = 0, which determines a curve r with initial point  (0,0). We have thus reduced our 
problem to locating the intersection of the two curves F = a 2 and r. An algori thm for 
approximat ing  this point is the  following: 

(1) Calculate the slope m~ o f f  a t  the origin; it  follows from what  is shown in section 5 
tha t  

m I =  anF  S~ + SS: a21F , 

aI2F $2 a22F 

where  all functions are evaluated at  (0,0). The s t r a igh t  line through the origin with 
slope ml  intersects F = G 2 a t  some point PI ; 

(2) the  tangent  line to F = a 2 at  P1 has slope rn 2 = - el F (P1) / a2 F(P1) and meets r a t  
some point  P2 ; namely, where ¢ (P2) = 0; 

(3) the  s t raight  line through the origin and P2 in tersects  F = ¢2 at a point P3 ; 

(4) repea t  s tep (2) with P3 in place of P1 to obtain a po in t  P4 on r. The sequence (Pn) 
converges to the intersection of F =  a 2 and r (see figure). Finding P1, P2, P3 involves 
solving for t 1, t2, t3 in the equations 

F (tl  (1, m,)) m= a 2 , 

(P1 + t2 (1, m=)) = 0 ,  

F (ts (1, m3)) = 2 ,  where m3 = 
mlt l  + m2t2 

t ~ + t 2  

5. When  the dimension D> 2 ,  F = ~ is not a curve bu t  a ( D - l )  - dimensional surface. 

This  obviates the use of the preceding algorithm. We will show that  r is an integral  
curve of  a vector field V. Hence, any point  of r can be approximated by numerical  
in tegra t ion  of V, s tar t ing at  the  origin. The modified Cauchy-Euler method [3] is an 
efficient algori thm for this purpose. 
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t 

9.. 

F =  o- 

( o , o )  
> ~t 

f i ~ :  Locating the intersection of F = o = and ~ = 0 . 

(cf. para. 4) 
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Assume that the p a r a m e t e r  ~ in (la) is m o n o t o n e  in a se~men~ of ~ 
containing (t~ ). Differentiating (la) with ~espect to A gives 

~a~ ~ ( ~ )  ~t;___ = S; ÷ ~ I ( ~ S ~  __  , e l - -  ~,  . . . ,  ~ or 

(2b) (~ 'F  - A~S) ~ r  = S 

where the matrix ~*F has entries ~ F  or ~ j~F ,  

S has entries ~S~ , 

the column vector ~F/~A has entries dt~ /dA , 

and S has entries S~ . 

The matrix equation (2b) can be solved for ~/~ A by applying 
Cramer's Rule. Consider first the case D : 2. If A is the deter- 

minant of ~%S - A ~S , then 

A at__~, = I S, a2, F-%~zS, I 

I 
S~ ~I~F S~ ka2S~ 

(3, . )  

=I l- 

S~ a,~ F 

I ),S, 
),S, 

a~ S, I a,S~ 

a,F a,S, ] 

and similarly, 

Sl 

S~ a, 5, a,F 
= £ 'z"  
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The vector field V defined by (E, ,,Ez) depends only on (t& ) and not 
on ~ . On the curve ~ , V is parallel to the tangent vector ~CT~/~ . 

At t[ = O, ~{F = 0 [cf. section 3]; denoting the value of ~i at t£ = 0 

Is 
by £i , one therefore has 

~/' = I S' ~z'F I 
g,. a2~ F ' 

},, F S, I 
I a,~F S~ 

U # 
where all functions are evaluated at t[ = O. Now ( 6-, 6, ) ~ (0,0) 

if S, ~ 0 or S z ~ 0 and 

a,,F a~,F # O .  

a,,F Qz~ F 

If these conditions hold at t i = O, then one can solve the system of 
differential equations 

dr ,  d t z  

d T  a T  

with initial conditions t,(O) = O, t~(O) = O; E~ K s are given in 
equations (3a) and (3b). In particular, one can solve for the point 
(t[ ) cn ~ where F = ~z 

For the case D > 2 the equation (2b) cannot be solved so neatly, but 
the principle is the same. Replacing k by alF/S ( in equation (2a), 
one obtains 

7 ~  = S i ,  
J 

which at t[ = 0 reduces to 

Y.~#i F '~t~ - S~ , 
j ct~ 

(i= 1 . . . . .  D) 
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where ~ ~.~ T . = K~ Ki 

and ~i i 2 ~" T T "' T ,, [cf. appendix {ill)]. 

The author wishes to thank Arthur Cragoe for calling hie attention 
to Mr. Knorr's article and for encouraging the work many years ago which 
led tO this paper. 
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A P P E N D I X  

(i) S i n c e  Ki ~ = 0, A~ = W,z a n d  ~ = A -  1 W~. As  , / i s  a n  o r t h o g o n a l  p r o j e c t i o n  o f  u ' ,  

i t  f o l l ows  by  d e f i n i t i o n  t h a t  <u"  - ,1, ,/ > = 0 o r  < u " ,  ~ > = <7,  7> ;  h e n c e  " 

< U  ,T/> = < A - 1 W u ' ,  r / >  = u ' T W A - I W ~ ?  -- u ' T w / ]  ---- <U",  ;7> ---- <r], r ]>;  h e n c e  

[ u - ~ [ 2 = t u [ 2 - 2 < u ~ ' / >  + I ~ 12 

= l u l 2 - 1 . 1 2  

= l u - u ' 1 2 ÷ 2 < u , u  " > - I u ' l  2 - 1 7 1  s 

(ii) S i n c e  Au  = Wu" = c o n s t a n t ,  

0 = oiWu" = % (Au) = (%A)  u + A o i u  ; 

0i A = KWi Ki n o w  g i v e s  

0i u = - A - i  ( oi A ) u = - A  - 1 K i  w Ki u;  f inal ly ,  

0 i <  u , u " >  = < u ' , 0 i u  > = < u ' , - A - 1 K T i K i u  > 

= - u ' T W A  - 1  K T i K  i u = - u  T K T i K i u  = - S  i . 

W e  n o t e  a s t r i k i n g  i d e n t i t y  w h i c h  fo l lows  f r o m  t h i s  fact .  L e t  C be  a n y  s m o o t h  c u r v e  

in  D - d i m e n s i o n a l  s p a c e  w i t h  in i t i a l  p o i n t  (0, ...,0) a n d  e n d p o i n t  (tl ,  ...,tD). T h e n ,  

A u  = Wu", 

u T A u  = u T W u "  ' 

u 7 w u  + E h Si = uTWu ", a n d  

Y. ti Si = u T w  (u" - u)  = <U,  U" - U>;  h e n c e ,  

F + E h S i =  < u ' - u , u " - u > + < u , u ' - u >  

= <U.*~ U" - -  11> 

= < U " ~ U " >  -- < U , U " >  

= - f Z oi < u ,  u ' > d t i  
e 

= f E S i d t i  . 
¢ 
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I F +-7. ti St = ~ Y. Si dti 

(iii) 0iF = 0i < u -u ' ,  LI-u" > 

= 2 <U-U", 0iU> 

= 2 <u" - u , A - 1 K T i  Ki u > ;  aji F =  

Oj (aiF) = 2 < -0jU, A - 1 K T i  K i u >  + 2 < u" - u  ....  >; 

since,  a t  ti = 0, u = u" a n d  A = W, we have  

09F = 2  < A - I K ~ I ~ u '  A - 1 K V i K i u  >1 

%=o %=0 

= 2 u "T K~ I ~ W - '  K~i Ki u-. 
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