ACTUARIAL RESEARCH CLEARING HOUSE 1992 VOL. 2

AGGREGATE SMOOTHNESS

IN MULTI-DIMENSIONAL

WHITTARER-HENDRRSON GRADUATION
 by Ronald Dabson
 abstract

A set of crude rates u " determined by D independent variablea can be thought of as a discrete surface of dimension D. Let W, F, K_{i}, and S_{i} have their usual meaning in multi-dimensional Whittaker-Henderson graduation. Let t_{1}, \ldots, t_{D} be non-negative smoothness parameters, let

$$
A=w+\sum_{i=1}^{D} t_{i} K_{i}^{\top} K_{i}, \quad u=u\left(t_{i}\right)=A^{-1} w u^{\prime \prime}
$$

let η be the surface determined by $\underset{t_{i \rightarrow \infty}}{\operatorname{limit}^{\prime}(u-\eta)^{\top} W(u-\eta)=0 \text {, and }, ~}$ let $\sigma^{2}>0$ be some desired level of the fit F (e.g., its expected value). Then the point (t_{i}) at which ($\left.u-\eta\right)^{\top} w(u-\eta$) attalns a minimum when subject to the constraint $F(u)=\sigma^{2}$ is determined by the simultaneous equations

$$
\frac{\partial F}{\partial t_{i}}=\lambda S_{i} \quad(1=1, \ldots, D)
$$

where λ depends on σ^{2}.
If C is any smooth curve in the region $\left\{\left(t_{i}\right): t_{i} \geqslant 0\right\}$ with initial point $(0, \ldots, 0)$ and end-point ($\left.t_{i}\right)$, then

$$
F+\sum_{i=1}^{D} t_{i} S_{i}=\int_{C} \sum_{i=1}^{D} S_{i} d t_{i}
$$

1. Given a set of crude motality rates u_{x} to be graduated by the

Whittaker-Henderson method, one may ask under what conditions there exists a statistical estimator for the fit $F=\sum w_{x}\left(u_{x}-u_{x}^{*}\right)^{2}$. If the graduated rates u_{x} are considered to be random variables with expectation u_{x} " and variance $\sigma_{x}{ }^{2}$, then the expected value of F is

$$
E\{F\}=\sum w_{x} E\left\{\left(u_{x}-u_{x}\right)^{2}\right\}=\sum w_{x} \sigma_{x}^{2}
$$

In the case of rates $q_{x}=\theta_{x} / E_{x}$ based on the number of lives or number of policies, it is well known that $\sigma_{x}^{2}=q_{x}\left(1-q_{x}\right) / E_{x}=p_{x} q_{x} / E_{z}$.

For the so-called type B Whittaker-Henderson graduation, in which the weights w_{x} are the exposures E_{x}, one has

$$
E\{F\}=\sum E_{x}\left(p_{x} q_{x} / E_{x}\right)=\sum p_{x} q_{x}
$$

In multidimensional WH graduation where the subscript x is an ordered pair, or more generally, a lattice point (k_{1}, \ldots, k_{D}), there is an infinite number of different values for the smoothness parameters which yield different graduated rates but the same fit. These considerations suggest the following problem:

For a given level of fit, how are the smoothness parameters to be chosen so that the graduated rates form, in some natural sense, the smoothest discrete surface?

In the one-dimensional case this is not an issue, as the fit determines the single smoothness parameter, and vice versa. Although this is a mathematical rather than an actuarial problem, it should not be without some interest to actuaries, since a solution would provide a standard against which to compare graduated rates that emphasize smoothness along a particular axis or axes.
2. We will use Knorr's notation [1], with the exception that the smoothness parameters will be denoted by $t_{i}(i=1, \ldots, D)$.
$D=$ dimension of the data set of crude rates,
$\mathrm{N}=\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{D}}$, the total number of cells
$u=\left\{u_{k_{1} k_{2} \ldots k D}: k_{i}=1, \ldots n_{i} ; i=1, \ldots, D\right\}$ the "unraveled" graduated rates,
$u=\left(u_{1}, \ldots, u_{N}\right)$ the "raveled" graduated rates,
$u=\left(u_{1}{ }^{\prime \prime}, \ldots, u^{\prime \prime}{ }_{N}\right)$ the raveled crude rates
$\mathrm{W}=$ an $\mathrm{N} \times \mathrm{N}$ diagonal matrix with positive entries $w_{1}, \ldots, w_{\mathrm{N}}$;
$K_{i}=$ the $\mathrm{Nx} N$ matrix with binomial coefficients needed to determine $\stackrel{\mathrm{z}_{\mathrm{i}}}{\Delta}$,
$\mathrm{K}_{\mathrm{j}}^{\mathrm{T}}=$ the transpose of K_{i},

$$
\mathrm{A}=\mathrm{W}+\sum_{\mathrm{i}=1}^{\mathrm{D}} \mathrm{t}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}^{\mathrm{T}} \mathrm{~K}_{\mathrm{i}} \quad\left(\mathrm{t}_{\mathrm{i}}>0\right) ;
$$

$$
F=\left(u-u^{\prime}\right)^{T} W\left(u-u^{\prime}\right) ;
$$

$$
\mathrm{S}_{\mathrm{i}}=\mathrm{u}^{\mathrm{T}} \mathrm{~K}_{\mathrm{i}}^{\mathrm{T}} \mathrm{~K}_{\mathrm{i}} \mathrm{u}
$$

Note that $u^{T} K_{i}^{T} K_{i j} u=\sum\left(\underset{i}{Z_{i}} u\right)^{2}$; e.g., for a two-dimensional data set with $z_{1}=3$,

$$
\begin{aligned}
& u^{T} K_{1}^{T} K_{1} u=\sum_{i, j}\left(\Delta^{3} u_{i j}\right)^{2} \\
= & \sum_{j=1}^{n_{2} n_{1}-3} \sum_{i=1}\left(u_{i+3}, j-3 u_{i+2, j}+3 u_{i+1, j}-u_{i j}\right)^{2} .
\end{aligned}
$$

The vector u minimizes $F+\sum t_{i} S_{i}$ when $A u=W u^{\prime \prime}$. As $t_{i} \rightarrow \infty, u \rightarrow \eta$, the polynominal function of ($\mathrm{k}_{1} \ldots, \mathrm{k}_{\mathrm{D}}$) which minimizes F and whose partial derivatives $j z_{i} / \partial k_{i}$ are zero. The vector η can also be charcterized as the orthogonal projection of $u^{\prime \prime}$ onto the intersection of the null spaces of the K_{i} 's. This fact is used in appendix (i).
3. Let σ^{2} denote the desired level of fit. As the "smoothest" $u\left(=A^{-1} W^{*}\right)$ for which $F=\sigma^{2}$, we propose the one which minimizes $(u-\eta)^{T} W(u-\eta)$, the square of the distance to the ultimate smooth surface η.

In order to derive an equation for the (t_{i}) at which this condition is satisfied, it will be convenient to use the following notation:
$\langle u, v\rangle=u^{T} W v,|u|^{2}=\langle u, u\rangle$; hence, $F=|u-u|^{2}$ and
$(u-\eta)^{T} W(u-\eta)=|u \cdot \eta|^{2}$.
It is shown in appendix (i) that
$|u-\eta|^{2}=2\left\langle u, u^{\prime \prime}\right\rangle+F-\left|u^{\prime}\right|^{2}-|\eta|^{2}$,
from which it follows that, when $F=\sigma^{2},|u-\eta|^{2}$ and $2<u, u^{\prime \prime}>$ differ by a constant. Hence, $\left\langle u, u^{\prime \prime}\right\rangle$ attains a minimum, say μ, at the same point (t_{j}) as does $|u-\eta|^{2}$. By Lagrange's Theorem [2], there is a real number λ, depending on (t_{i}), such that
(1) $\partial\left\langle u, u^{\prime \prime}>/ \partial t_{i}=\lambda \partial F / \partial t_{i}, \quad i=1, \ldots ., D\right.$
at the point on the submanifold $\left\{F=\sigma^{2}\right\}$ where $\left\langle u, u^{\prime \prime}\right\rangle=\mu$. Geometrically speaking, this says that $\left(t_{j}\right)$ is the point of tangency between the two submanifolds $\left\{F=\sigma^{2}\right\}$ and $\{<u, u *>=\mu\}$. Replacing λ by $-1 / \lambda$ in equation (1) and using the fact that $\partial<u, u \gg / \partial t_{i}=-S_{i} \quad$ [appendix (ii)], one obtains

1a) $\partial F / \partial t_{i}=\lambda S_{i}, \quad i=1, \ldots, D$.
Note that a $\mathrm{F} / \mathrm{\partial ti}=2\left\langle\mathrm{u}^{*}-\mathrm{u}, \mathrm{A}^{-1} \mathrm{~K}_{\mathrm{i}}^{\mathrm{T}} \mathrm{K}_{\mathrm{i}} \mathrm{u}\right\rangle$
[appendix (iii)]. Since $u=u^{u}$ at $t_{i}=0$, $\partial \mathrm{F} / \partial \mathrm{t}_{\mathrm{i}}=0$ at $\mathrm{t}_{\mathrm{j}}=0$. Hence, if $\mathrm{S}_{\mathrm{i}}\left(\mathrm{u}^{*}\right)>0$ for some i, then $\lambda=0$ at $t_{i}=0$.
4. Let $\phi=\left|\begin{array}{ll}\partial_{1} F & S_{1} \\ \partial_{2} F & S_{2}\end{array}\right| \quad\left(\partial_{i}=\partial / \partial t_{i}\right)$

In the case $\mathrm{D}=2$, the equations (1a) are equivalent to the single determinant equation $\phi=0$, which determines a curve Γ with initial point $(0,0)$. We have thus reduced our problem to locating the intersection of the two curves $\mathrm{F}=\sigma^{2}$ and Γ. An algorithm for approximating this point is the following:
(1) Calculate the slope m_{1} of Γ at the origin; it follows from what is shown in section 5

$$
\begin{gathered}
\text { that } \\
\mathrm{m}_{1}=\left|\begin{array}{ll}
\partial_{11} F & S_{1} \\
\partial_{12} F & S_{2}
\end{array}\right| \div\left|\begin{array}{ll}
S_{1} & \partial_{21} F \\
S_{2} & \partial_{22} F
\end{array}\right|, ~ \text {, }, \text {, } \quad \text {, }
\end{gathered}
$$

where all functions are evaluated at $(0,0)$. The straight line through the origin with slope m_{1} intersects $F=\sigma^{2}$ at some point P_{1};
(2) the tangent line to $F=\sigma^{2}$ at P_{1} has slope $m_{2}=-\partial_{1} F\left(P_{1}\right) / \partial_{2} F\left(P_{1}\right)$ and meets r at some point P_{2}; namely, where $\phi\left(P_{2}\right)=0$;
(3) the straight line through the origin and P_{2} intersects $F=\sigma^{2}$ at a point P_{3};
(4) repeat step (2) with P_{3} in place of P_{1} to obtain a point P_{4} on Γ. The sequence (P_{n}) converges to the intersection of $F=\sigma^{2}$ and Γ (see figure). Finding P_{1}, P_{2}, P_{3} involves solving for t_{1}, t_{2}, t_{3} in the equations
$F\left(t_{1}\left(1, m_{1}\right)\right) m=\sigma^{2}$,
$\phi\left(P_{1}+t_{2}\left(1, m_{2}\right)\right)=0$,
$F\left(t_{3}\left(1, m_{3}\right)\right)=\sigma^{2}$, where $m_{3}=\frac{m_{1} t_{1}+m_{2} t_{2}}{t_{1}+t_{2}}$
5. When the dimension $\mathrm{D}>2, \mathrm{~F}=\sigma^{2}$ is not a curve but a ($\mathrm{D}-1$) - dimensional surface. This obviates the use of the preceding algorithm. We will show that Γ is an integral curve of a vector field V. Hence, any point of Γ can be approximated by numerical integration of V, starting at the origin. The modified Cauchy-Euler method [3] is an efficient algorithm for this purpose.

figure: Locating the intersection of $F=\sigma^{2}$ and $\varnothing=0$. (cf. para. 4)

Assume that the parameter λ in (ia) is monotone in a segment of Γ containing (t_{i}). Differentiating (la) with respect to λ gives
(Ra) $\sum_{j} \partial_{j}\left(\partial_{i} F\right) \frac{d t_{j}}{d \lambda}=S_{i}+\lambda \sum_{j}\left(\partial_{j} S_{i}\right) \frac{d t_{j}}{d \lambda}, \quad(i=1, \ldots, D)$ or
(ab) $\left(\partial^{2} F-\lambda \partial S\right) \frac{d \Gamma}{d \lambda}=S$,
where the matrix $\partial^{2} F$ has entries $\partial_{j} \partial_{i} F$ or $\partial_{j i} F$,

$$
\partial S \text { has entries } \quad \partial_{j} s_{i} \text {. }
$$

the column vector $d \Gamma / d \lambda$ has entries $d t_{i} / \alpha \lambda$,
and S has entries S_{i}.
The matrix equation (ab) can be solved for $d \Gamma / d \lambda$ by applying Creamer's Rule. Consider first the case $D=2$. If Δ is the determinant of $\partial^{2} S-\lambda \partial S$, then

$$
\begin{aligned}
\Delta \frac{d t_{1}}{d \lambda} & =\left|\begin{array}{ll}
S_{1} & \partial_{21} F-\lambda \partial_{2} S_{1} \\
S_{2} & \partial_{22} F-\lambda \partial_{2} S_{2}
\end{array}\right| \\
& =\left|\begin{array}{ll}
S_{1} & \partial_{21} F \\
S_{2} & \partial_{22} F
\end{array}\right|-\left|\begin{array}{ll}
S_{1} & \lambda \partial_{2} S_{1} \\
S_{2} & \lambda \partial_{2} S_{2}
\end{array}\right| \\
& =\left|\begin{array}{ll}
S_{1} & \partial_{21} F \\
S_{2} & \partial_{22} F
\end{array}\right|-\left|\begin{array}{ll}
\lambda S_{1} & \partial_{2} S_{1} \\
\lambda S_{2} & \partial_{2} S_{2}
\end{array}\right| \\
& \left.=\left|\begin{array}{ll}
S_{1} & \partial_{2 i} F \\
S_{2} & \partial_{22} F
\end{array}\right|-\left|\begin{array}{ll}
\partial_{1} F & \partial_{2} S_{1} \\
\partial_{2} F & \partial_{2} S_{2}
\end{array}\right|=\varepsilon_{1}\right)
\end{aligned} \text { (3a) } \begin{aligned}
& \text { and similarly, }
\end{aligned}
$$

(3b) $\Delta \frac{d t_{2}}{d \lambda}=\left|\begin{array}{ll}\partial_{11} F & S_{1} \\ \partial_{12} F & S_{2}\end{array}\right|-\left|\begin{array}{ll}\partial_{1} S_{1} & \partial_{1} F \\ \partial_{1} S_{2} & \partial_{2} F\end{array}\right|=\varepsilon_{2}$.

The vector field V defined by $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ depends only on ($\left.t_{i}\right)$ and not on λ. On the curve Γ, V is parallel to the tangent vector $d T / d \lambda$. At $t_{i}=0, \partial_{i} F=0\left[c f\right.$. section 3]; denoting the value of ε_{i} at $t_{i}=0$ by $\varepsilon_{i}^{\prime \prime}$, one therefore has

$$
\begin{aligned}
& \varepsilon_{1}^{\prime \prime}=\left|\begin{array}{ll}
S_{1} & \partial_{21} F \\
S_{2} & \partial_{22} F
\end{array}\right|, \\
& \varepsilon_{2}^{\prime \prime}=\left|\begin{array}{ll}
\partial_{11} F & S_{1} \\
\partial_{12} F & S_{2}
\end{array}\right|,
\end{aligned}
$$

where all functions are evaluated at $t_{i}=0$. Now $\left(\varepsilon_{1}^{\mu}, \varepsilon_{2}^{\prime \prime}\right) \neq(0,0)$ if $S_{1} \neq 0$ or $S_{2} \neq 0$ and

$$
\left|\begin{array}{ll}
\partial_{11} F & \partial_{21} F \\
\partial_{12} F & \partial_{22} F
\end{array}\right| \neq 0
$$

If these conditions hold at $t_{i}=0$, then one can solve the system of differential equations

$$
\frac{d t_{1}}{d \tau}=\varepsilon_{1}, \quad \frac{d t_{2}}{d \tau}=\varepsilon_{2}
$$

with initial conditions $t_{1}(0)=0, t_{2}(0)=0 ; \varepsilon_{1}, \varepsilon_{2}$ are given in equations ($3 a$) and (3 b). In particular, one can solve for the point (t_{i}) on Γ where $F=\sigma^{2}$.

For the case $D>2$ the equation (2b) cannot be solved so neatly, but the principle is the same. Replacing λ by $\partial_{i} F_{i} S_{i}$ in equation (2a), one obtains
(2c) $\sum_{j}\left[\partial_{j i} F-\partial_{i} F \partial_{j} S_{i} / S_{i}\right] \frac{d t_{j}}{d \lambda}=S_{i}$,
which at $t_{i}=0$ reduces to

$$
\sum_{j} \partial_{j i} F \frac{d t_{j}}{d \lambda}=S_{i}
$$

where $S_{i}=u^{n \top} K_{i}^{\top} K_{i} u^{\prime \prime}$
and $\partial_{j i} F=2 u^{n} \top K_{j}^{\top} K_{j} W^{-1} K_{i}^{\top} K_{i} u^{\prime \prime}$
[cf. appendix (iii)].

The author wishes to thank Arthur Cragoe for calling his attention to Mr. Knorr's article and for encouraging the work many years ago which led to this paper.

APPENDIX

(i) Since $\mathrm{K}_{\mathrm{i}} \eta=0, \mathrm{~A} \eta=\mathrm{W}_{\eta}$ and $\eta=A^{-1} W_{\eta}$. As η is an orthogonal projection of u^{*}, it follows by definition that $\left\langle u^{\prime \prime}-\eta, \eta\right\rangle=0$ or $\left\langle u^{*}, \eta\right\rangle=\langle\eta, \eta\rangle$; hence

$$
\begin{aligned}
\langle u, \eta\rangle & =\left\langle A^{-1} \mathrm{~W} u^{*}, \eta\right\rangle=u^{* T} W^{-1} W_{\eta}=u^{*} W_{\eta}=\left\langle u^{\prime \prime}, \eta\right\rangle=\langle\eta, \eta\rangle ; \text { hence } \\
|u-\eta|^{2} & =|u|^{2}-2\langle u, \eta\rangle+|\eta|^{2} \\
& =|u|^{2}-|\eta|^{2} \\
& =\left|u-u^{\prime \prime}\right|^{2}+2\left\langle u, u^{\prime \prime}\right\rangle-\left|u^{\prime \prime}\right|^{2}-|\eta|^{2} .
\end{aligned}
$$

(ii) Since $\mathrm{Au}=\mathrm{Wu}=\mathrm{w}=$ constant,

$$
0=\partial_{i} W u^{*}=\partial_{i}(A u)=\left(\partial_{i} A\right) u+A \partial_{i} u ;
$$

$\partial_{\mathrm{i}} A=K_{i}{ }_{i} K_{\mathrm{i}}$ now gives

$$
\begin{aligned}
& \partial_{i} u=-A^{-1}\left(\partial_{i} A\right) u=-A^{-1} K_{i}^{T} K_{i} u ; \text { finally, } \\
& \partial_{i}\left\langle u, u^{*}\right\rangle=\left\langle u^{*}, \partial_{i} u\right\rangle=\left\langle u^{n},-A^{-1} K_{i}^{T} K_{i} u\right\rangle \\
& =-u^{T} W^{T} A^{-1} K_{i}^{T} K_{i} u=-u^{T} K^{T}{ }_{i} K_{i} u=-S_{i} .
\end{aligned}
$$

We note a striking identity which follows from this fact. Let C be any smooth curve in D-dimensional space with initial point ($0, \ldots, 0$) and endpoint ($\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{D}}$). Then, $\mathrm{Au}=\mathrm{Wu} \mathbf{u}^{*}$,

$$
\begin{aligned}
& u^{T} A u=u^{T} W u^{*}, \\
& u^{T} W u+\Sigma t_{i} S_{i}=u^{T} W u^{*}, \text { and }
\end{aligned}
$$

$$
\sum t_{i} S_{i}=u^{T} W\left(u^{\prime \prime}-u\right)=\left\langle u, u^{\prime \prime}-u\right\rangle ; \text { hence }
$$

$$
F+\sum t_{i} S_{i}=\left\langle u^{\prime}-u, \mathbf{u}^{*}-\mathbf{u}\right\rangle+\left\langle u, u^{n}-u\right\rangle
$$

$$
=\left\langle u^{\prime}, u^{\prime \prime}-u\right\rangle
$$

$$
=\left\langle u^{\prime}, u^{\prime \prime}\right\rangle-\left\langle u, u^{\prime \prime}\right\rangle
$$

$$
=-\int_{c} \sum \partial_{i}<u, u^{\prime \prime}>\mathrm{dt}_{\mathrm{i}}
$$

$$
=\int_{c} \sum S_{i} \mathrm{~d}_{\mathrm{i}} .
$$

$F+\Sigma t_{i} S_{i}=\ell \sum S_{i} d t_{j}$
(iii) $\partial_{\mathrm{i}_{\mathrm{i}}} \mathrm{F}=\partial_{\mathrm{i}}\left\langle\mathrm{u}-\mathbf{u}^{*}, \mathrm{u}-\mathbf{u}^{*}\right\rangle$
$=2\left\langle u-u^{*}, \partial_{i} u\right\rangle$
$=2\left\langle u^{\prime \prime}-u, A^{-1} K_{i}^{T} K_{i} u\right\rangle ; \quad \partial_{j i} F=$
$\partial_{j}\left(\partial_{i} F\right)=2\left\langle-\partial_{j} u, A^{-1} K_{i}^{T} K_{i} u\right\rangle+2\left\langle u^{\prime \prime}-u, \ldots\right\rangle ;$
since, at $t_{i}=0, u=u^{*}$ and $A=W$, we have

$$
\begin{aligned}
\left.\partial_{\mathrm{ji}} \mathrm{~F}\right|_{\mathrm{t}_{\mathrm{i}}=0}= & 2<A^{-1} K_{j}^{T} K_{j} u, A^{-1} K_{i}^{T} K_{i} u>\left.\right|_{t_{i}=0} \\
& =2 u^{n^{T}} K_{j}^{T} K_{j} W^{-1} K_{i}^{T} K_{i} u^{0} .
\end{aligned}
$$

REFERENCES:

1. Knorr, Frank E., "Multidimensional Whittaker - Henderson Graduation" TSA XXXVI (1985).
2. Bartle, Robert G., Elements of Real Analysis, John Wiley \& Sons, Inc., New York, 1964, Chapter 21.
3. Kellison, S.G., Fundamentals of Numerical Analysis, Richard D. Irwin, Homewood, Illinois, 1975, Chapter 10.

Kansas City, Missouri 1991

