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AGGREGATE SMOOTHNESS
IN MULTI-DIMENSIONAL

WHITTAKER-HENDERSON GRADUATION
by Ronald Dubson
abstract

A set of crude rates u” determined by D independent variables
can be thought of as a discrete surface of dimeneion D. Let W, F,
K; , and S; have their usual meaning in multi-dimensional
Whittaker-Henderson graduation. Let t,,..., t; be non-negative
smocthness parameters, let
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1. Given a set of crude motality rates u”, to be graduated by the
Whittaker-Henderson methogd, one may ask under what conditions there exists a
statistical estimator for the fit F = 3§ w,(u, - u7)% If the graduated rates u, are
considered to be random variables with expectation u, and variance o, then the
expected value of F is

E{F} =3 v, E{ (- w)? = T w, 0,2

In the case of rates q, = 6, / E, based on the number of lives or number of policies,
it is well known that %, = q, (1- @) / E, = p.a./E.

For the so-called type B Whittaker-Henderson graduation, in which the weights w,
are the exposures E, , one has

E{Fi=3 Ei(p:%/EJ =3 pia

In multidimensional WH graduation where the subseript x is an ordered pair, or
more generally, a lattice point (k;, ..., kp), there is an infinite number of different
values for the smoothness parameters which yield different graduated rates but the
same fit. These considerations suggest the following problem:

For a given level of fit, how are the smoothness parameters to
be chosen so that the graduated rates form, in some natural
sense, the smoothest discrete surface?

In the one-dimensional case this is not an issue, as the fit determines the single
smoothness parameter, and vice versa. Although this is a mathematical rather than
an actuarial problem, it should not be without some interest to actuaries, since a

solution would provide a standard against which to compare graduated rates that
emphasize smoothness along a particular axis or axes.
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2. Wewill use Knorr’s notation [1], with the exception that the smoothness
parameters will be denoted by t; i =1, ..., D).

D = dimension of the data set of crude rates,

N =njn, ..np, the total number of cells

u= {lﬁu ko kp" ki =1, ..n;;1i=1,.., D} the "unraveled" graduated ratgs,

u = (uy, ..., uy) the "raveled" graduated rates,
u = {uy, ..., u"y) the raveled crude rates
W =an N x N diagonal matrix with positive entries wy, .., wy;

z
K; = the N x N matrix with binomial coefficients needed to:determine A" )
K7, = the transpose of K; , 1

D
A=W+3SHKTK, (> 0);
i=1
F = (u-u)T W (uu);
S, = v'K'K; u.

Notethat " KT, Ku = 3 (A,zi u)?; e.g., for a two-dimensional data set with z; = 3,
1

VK Ku=3(a%y ,-)2

ij 1
n2n1-3 2
= 3 T (Weg; - Buo;+ 3ty — w;) .
j=li=1

The vector u minimizes F + 3 t; S; when Au = Wu". Ast; > <, u -y, the
polynominal function of (k; ..., kp) which minimizes F and whose partial derivatives
o%i/ 3k, are zero. The vector 5 can also be charcterized as the orthogonal projection
of u” onto the intersection of the null spaces of the K;’s. This fact is used in

appendix (i).
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3. Let o” denote the desired level of fit. As the "smoothest" u ( = A™*Wu’) for
which F = %, we propose the one which minimizes (u - )7 W (u - 7), the square
of the distance to the ultimate smooth surface #.

In order to derive an equation for the (t;) at which this condition is satisfied, it will
be convenient to use the following notation:

<uv>=u"Wv, | u |2 = <u,u >; hence, F = | u-u |*and

w-"Wu-n=Ju-g|%

It is shown in appendix (i) that

lu-n®=2<uu>+F—|uw|’—|7/%

from which it follows that, when F = o, [ u-5 |?and 2 < u, u” > differ by a

constant. Hence, <u,u"> attains a minirnum, say x, at the same point (t;) as does
lu-9 Iz. By Lagrange’s Theorem {2}, there is a real number 4, depending on (t;),

such that

1) s <u,u>/at; =21 aF/at; , i=1,..,D

at the point on the submanifold {F = o'} where <u,u"> = u. Geometrically
speaking, this says that (t) is the point of tangency between the two submanifolds
{F = ¢’} and {< u, u"> =x}. Replacing2by — 1/4in equation (1) and using the
fact that s<u,u"> /ot; = - S; [appendix (ii)], one obtains

la) aF/a; =45, , i=1,.,D
Note that s F/ati = 2 <u’ ~ u, A* K5 K, u>
[appendix (iii)]. Sinceu=u"att; =0,

oF/ot;=0att; = 0. Hence, if5; (u) > 0
for some i, theni = 0att; = 0.
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alF Sl

oF S, (3,= a/at;)

4. letg =

In the case D = 2, the equations (1a) are equivalent to the single determinant equation

¢ = 0, which determines a curve I with initial point (0,0). We have thus reduced our

problem to locating the intersection of the two curves F = o® and I An algorithm for

approximating this point is the following:

(1) Calculate the slope m; of T at the origin; it follows from what is shown in section §

that
m; = |onF 8y} . |8 oyF )

d19F 82 Sg do0F

where all functions are evaluated at (0,0). The straight line through the origin with
slope m, intersects F = o% at some point P, ;

(2) the tangent line to F = o at P, has slope mg = — a; F (P,) / 33 F(P;) and meets T at
some point P, ; namely, where ¢ (Py) = 0;

(3) the straight line through the origin and P; intersects F = o* at a point Pj ;

(4) repeat step (2) with P; in place of P; to obtain a point Py on I'. The sequence (Py)
converges to the intersection of F= o and T (see figure). Finding P,, P,, P; involves
solving for t;, ts, t3 in the equations

F (t’l (1, ml)) m= 02 ,

¢(Pl+t2(1’m2))=os

m;t; + mots

F (t3 (1, mg)) = o°, where mg = L

5. When the dimension D> 2, F = o is not a curve but a (D-1) - dimensional surface.
This obviates the use of the preceding algorithm. We will show that T' is an integral
curve of a vector field V. Hence, any point of T can be approximated by numerical
integration of V, starting at the origin. The modified Cauchy-Euler method [3] is an
efficient algorithm for this purpose.
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(0,0) > t,

figure: Locating the intersection of F = c®> and ¢ =0 .

(cf. para. 4)
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Assume that the parameter A in (la) is monotone in a segment of T
containing (t{ ). Differentiating (la) with respect to A gives

3 F) At oy di; :
<2&)%9J(3,,F)_6‘_ =S.‘+A§(3_,St)ﬁ4 , (=1, ..., D) or

L aT  _
(2b) (3%F /US),A_A- =S,

where the matrix 3°F has entries Bj 9 F or QJ--‘F.
4 S has entries 3J~S; .

the column vector dfyd.)\ has entries dt; /dA,

and S has entries SL .

The matrix equation (2b) can be solved for dr‘/"“ by applying
Cramer’s Rule. Coneider first the case D = 2. If A is the deter-

minant of 315 - AQS , then

A dt S, ¢, F~- ABLS,

—‘3— Sz dn F - )\B,S,_
S, a“F} S, »3,5 l
- S'I. 311F Sz A azsl
SI az| F ‘ )«S. azsl
TS, anF xS, 315
S, &,F 8 F 2,5 - £,
= - '
(34) Sz 3. F N F o, S,_
and similarly,
3,S, ©o.F
36 A%t o |WF S - £,
dA 3.F S, a|5,_ a.F
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The vector field V defined by (€&,,&.) depends only on (t; ) and not
on A . On the curve ', V is parallel to the tangent vector gLT‘/d). .

At t; = 0, J;F = 0 [cf. section 3]; denoting the value of £ at t; =0

by EL“ , one therefore has
U T N
' SL 91 F ’
E” _ aHF S' )
: inF S,

where all functions are evaluated at t{ = 0. Now (5;1, E:) # (0,0)
if S, #0 or 5, #0 and

onF  a,F
3,1F gllF

If these conditiones hold at t; = 0, then one can solve the system of
differential equations

dt‘ dt; - £

_— = v —_— = z

a1 4T
with initial conditions t,(0) =0, t,(0) = 0; &,, €2 are given in
equations (3a) and (3b). In particular, one can solve for the point

(t; ) on T' where F = g2

For the case D > 2 the equation (2b) cannot be solved so neatly, but
the principle is the same. Replacing X\ by JF/S; in equation (2a),
one obtains

. . dt;
(2¢) Z[BJ;F - B.FBJ-S‘/S;}_&_L =S,
J
which at t; = O reduces to
ZBJLFiS = S‘ 3 (i= l. ,D)
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T T
where S; = U K; K; u”

T T T
and 3;F = Qu'TK K W KK u" [cf. appendlx {i11)].

The author wishes to thank Arthur Cragoe for calling his attention

to Mr. Knorr“s article and for encouraging the work many years ago which
led to this paper.
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APPENDIX

(i) SinceK;7 =0, Ay = Wypandy = A™' Wy. Asy is an orthogonal projection of u”,
it follows by definition that <u” ~ 7,7 > = 0 or <u", 5 > = <g, n>; hence
<u,n> = <A™! Wu, p> = U'TWA—IWr] = U'TWﬂ = <u", 3> = <y, n>; hence

lu-7°=|ul?- 2<uy> + |4
=|ul*-n|?
=ju-wiZ+2<uyuw>-|uw?-|yp*
(i) Since Au = Wu” = constant,
0= gWu =93 (Au) = ( A)u+ Asu;
3 A = KT, K; now gives
su=-A"(3A)u= -AT'KTKu; finally,

s<uw>=<w,qu> =<u,-A" K Ku >
= uTWAT'KI Kiu=-uTK K u=-S;.

We note a striking identity which follows from this fact. Let C be any smooth curve
in D-dimensional space with initial point (0, ...,0) and endpoint (¢, ...,tp). Then,

Au = Wu',

uTAu = uTWu',

uW"Wu + TS, = u"™Wu~, and

SHS; =uW( -u) = <u,u"-u>; hence,
F+34S =<u"-uy,u -u>+ <y, u" - u>

= <y, u" - u>

=<y, U"> ~ <uu>

i

-1 3 <u,u>dt;
[SSdt; .
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!F+Eh&=LZ&dh

(i) aF = g < uv-u’, tru* >
= 2 <u-u", u>
=2<w -y, AT K K u>; @ F =
5GF) =2 <-u, ATT KN Kiu> + 2 <ur -u, .. >

since, at t; = 0, u = u"and A = W, we have

& F =2<A7'K%Ku, A 'K Ku >
=0 t:=0

= 2wt KN KW KT K w.
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