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ABSTRACT

The proof of the following result will be presented via

geometrical realization of moments.

Main theorem. Let R(x | x > €) be the reciprocal of the hazard
rate function 7\(:4 l x» ) of & conditional survival function
Six i % > c) of the age—at-death random variable X for any ¢ = Q.
R (= l X » C) iz linear if and only if the n—th conditicnal moment

can be expressed as

n n
ELX ) ox vl = TP o,
i=1 i
where @ is the solution of the equation
i
1 1=t -1
= iRk b x Q) 4+ L[TF % 3
i=1 3
(4
for i = 1, 2, 2, ..., N, with TT » = 1.
j=1 3

Geometrical realization of monents of some other classes of
survival functions will also be discussed in the hope of shedding
some light for estimation of moments of more general class of

survival functions.
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Let us first look at the case where ¢ = 0. For any survival

function S(x), we note that

N W  n—-1
Elfx 1 3} X S (k) dx.
o)

For convenience, we define

It

T (%) = x S(w)
i

and note that TL(W) =0 for all i = 1, 2. 3y v .

W
We shall first investigate //r T (x)dx, where T (x) = S(x),
9] Q Q

To obtain an estimate of the integral., we suggest the following
method of approximation.
Find x such that the tangent to the graph of T (x) at point
1 0

{(x ,T (x )) has y-intercept (0,2T (x )) as shown in the figure.
1 ¢ 1 o 1

O.:To(x|))
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We shall use the area of reciangle OFOR for approximation of
W
T (x)dx.
0 o

EEX] = » . (1)
1

Thus

Since the equation of the tangent in question is

y ~ T (x ) = T,(x Y (ko= ox ),
o 1 o 1 1
we see that x is the solution of the equation
1 .
T (») = ‘NTI(X),
0 0
or

o= RO, 2)

Let us look at the uniform distributiorn and see how good this

approximation is. Since

the equation (2) is

and hence ® = —-—-. 8o the approximation (1) is exact.

1 2

For the exponential distribution, we have
?\(H) = 7\ .

The equatian (2) is
1

% = —5:
1
and hence x = —-z—-. The approximation (1) is also exact.
1
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For the survival function

we can derive the eguation (2

which gives XI = -——= . Again, the approzimation (1) is exact.

Note that R(x) is linear for all the above cases. In fact, we

»

can show the following theorem using the fact that
w
EfX1 = R =+ R/ (oS Goax. 3
(%]

Theorem 1. If R(x) = ax + b, then EIX] 1s egqual to the

solution of the eguation

namely

where a £ 0 and b > O.

Froof. Since S(x) is decreasing, we see that

S(0) 1
b = R = ~ = - O
s o) 570

Since RG> > O for all # < w, we require that a éiL
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Since

S (%)
ax + b = R(x) = = —w—ew .
s/ ¢
it follows from (3) that
w
ELX]1 = b + asS(xrdx = b + aELX]
8]
and that
b
ECX] = ————-—
. 1 - a
with a £ 0O,
For the survival function
S(x) = (1 + Awe

. the approximation (1) is not exact, since

K = mm—m—m— while EI[X] = ——— .
1 b
Now, let us look at T (x). Since
1
df:»8(x) 1 .
T (%) & ——mm——— e = x87¢x) + S(x) = [x - RO 1S GO,
1 dx
we see that x = %y is a critical point. Furthermore,
TV () = %S% 0G0+ 287 6o
1

gives the follawing

Lemma 1. T'(x) is concave down wherever S(i) is.
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Since -

Se)
df - =——-1
RCs) 25 () *IRA (%) + 11 - RGO
Tel(x) = - - = S(x}),
dst R =2 ’

[R(:x) 1]

Lemma 2. T (%) is concave down if and only if

1
2R (x)
P e —— . (4)
1+ r7 00
et » denote the solution of the equatian
2
¥ o= 2R .
Then T (%) attains the global maximum at :x = x Ffor the interwval
1 1
[o,x 1 provided that f G 0, which 1s true when R({x) is
)

linear.

Note that the tangent

to the graph of T (») at point (% ,T (2 )} has y=-intercept

1 2 1 2

(0,27 (%)), since x = 2R{(x ) implies T (x> = - 2 T/ (% ).

1 2 z 2 1 2 1 2

As shown in the figure, we shall use the

area of the triangle OFGQ for approximation

w 2
of ///~ T,(dex. Thus ETCX 1 = x 3t .
Q 1 2
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Note that x, can also be obtained by finding ihe maximum

rectangle inscribed under the graph of S{x) as shown.

—~
(% ’S(XJ))

1

v

O Tl
XI
We shall show the following
Theorem Z. If Ri{x) = ax + b, then ELX 1 is egqual to the
product of the saolutions of equations x = RG:) and = 2RGO,
namely
2 b 2b
EfX 1 = -———- . ———— .

Froo¥f. Since

%R G 57 G d

m
m
>
(]
o
[}
3]
:5‘\\
b
‘-4‘
a
]
*
z

-~

= ZaELX 1 + ZbELX] .,

our result follows from Theorem 1.
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Now, let us look at the case where ¢ > 0. Far simplicity, we

shall still use R{(x) = ax + b in reference to R(x 1 x > o).

) w
gerx | x > e =/ wfix | x > ordx
c

Since

/.
W
=c - R(x)8 (e | » - c)dx
<

w
=c + R(c) =+ //r R/(x)S(x l o> oc)dx
c
w
=c + ac + b + a S(x i ®ooedu
[

= ¢ + ac + b + al{ELlX l X o) — ci.

we have

EIX | X 3 ¢l = ——e—m :

As for geometrical realization, we seek x such that the tangent

to the grapb of Si(x § = » ) at point G ,S5(x l X » c)}

1 1
intersects the line x = c at point (c,25(x 1 % > ¢)). Since the
1
equation of the tangent in question is
y = 8ix } x o) = s/ | ox o oelix - x ).
1 1 1
we have Si(x l woroc) = Sl(x 1 % > crte ~ %), namely
1 1 1
b+ c
= R(x ) =+ cC. Hence 1 = ————— = the solution of & = R(x) + <,
1 1 1 - a

as stated in the main theoram.
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Similarly. we can obtain

2 2b(b + ) + (1 - arc?
Efx t X » ¢l = —— —- = %, %, «
(1 - 2a)(1 — a) Iz
where
2 2
2b + C /%y 2b(b + ©)» + (1 -—-alc
xzz —————————— = bl
1 - 2a (1 - 2ar(b + c)

which turns out to be the solution of the equation

. ' c
= ZROx) + ———— ,

»

1

%
!

as stated in the main theorem.

For the third moment, we have

3 IbI2be(h + ) + (1 — a)c?]1 + (1 - 2a) (1 - arc3
ELX I X »e31=
(1 - Ta)(l - Za)(1l - a)
= Mo ,
123
where
I 2 3
3b + © /x;x;  3BIZbIB * @) + (1 —ac®l + (1 - Za)(1l - a)c
ht 1 - 3a (1 - 3arf2b¢h + ) + (1 - arg?]
is the solution of the equation
3
c
%= FR(u) + ———— .
“[“2

The main theorem can be proved by Mathematical Induction.
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Conversely,

Since S(x)

of R{x) that

w
S () dx
o]

Then by the ex

have
+
R (¢

voo= R
1

By compa?ing (

Since 2R

):2

2RO +

[l

By comparing ¢
2

would have
1

that all the h

R(x) is linear

we shall only consider the case where c 2

R84 G,

it follows from Maclaurin®s expansion

‘ &7 (o) w SLAON w
RA(O) + ~==—— Sx)yd +  ——m—— #S(nide + ..,
1! 0 20 [}
pressions of moments given in the main theorem. we
RV (o) ox R (o) v
2
RO 4+ LK IS o ———a ... (5
1 2 = & z
)« we have
1
kYwy 2z Ry =
+ RO+ e Koo mmm———— ot (&)
1 2 1 () 1
S) and (&), we can conclude that
¢ o= 2x . (7)
2 1
xz). we have
oy 2 R oy T
R0t + D0 ——eme R X .. (8)
z 2 2 6 2
&) and (B). we see that R o) = Q. Otherwise, we
= , contradicting (7). Similarly, we can show

igher derivatives of R:) at » 0O are zero.
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Geometrically, the n-th moment of an age-at-death randam
variable can be approximated by finding the volume of an
n—dimensionalrectangular solid with dimensions obtainable
iteratively via appropriate tangents. This approximation is

not exact 1f F(x) 1s non-linear. Let us look at the following.

\ 7
: 1
Case 1. R(x) = === + b . ¢y;o\
0
D 2 wi =
We can show, for n 'z with EIX 1] 1. that (xh—i/’ér\-l)
n* n-2 n-1
ELX 1 = naBLX: 1 + nbELX bl
and x = nF(x ), namely 0 =
n n—1
El
¥oOF n(mme—— + b) . ()
n e
n—1
Instead of using & tangent, (9) suggests that we use the
hyperbola xy = a to first aobtain vy from and thern make
n—1t n—1

appropriate shifting and enlargement to arrive at x .

n
!
Case Z. R((n) = ——w——= .
ax + b
We can show , for n 2 2, that
n-2 a n b n=1
ELX ] = —— E[X ] + =~———= ELX 1
n n -1
and
1/ a 1 b
t T Almm—m— - e --=) .
n % n -1 a
n—1
We use the hyperbaola xy = 1 / a to first obtain vy from
n—1% n~1

and then make appropriate shifting and enlargement to get Ay, -
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Case . Rix) = ax + bx + c.

We can show, for n 2 2, that

n 1 - (n - 1b n=1 [ n-2
ELX ] = =—————————ee ELX 3 - ——— EIX ]
(n - a a
and
-c/ a b 1
X = ——————— = [~ - ——————— .
2} ® a (n - 1)a
n—1
We use the hyperbola »y = - c / a to first obtain vy from
. n-1
I3 and then make an appropriate shifting to get .
n—1 n

We hope that the above observation may shed some light far more

general cases.
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