ACTUARIAL RESEARCH CLEARING HOUSE 1992 VOL. 2

MOMENTS OF SURVIVAL FUNCTIONS WITH CERTAIN CLASS OF HAZARD RATES

Hung-ping Tsao

ABSTRACT

The proof of the following result will be presented via geometrical realization of moments.

Main theorem. Let $R(x \mid x > c)$ be the reciprocal of the hazard rate function $\lambda(x \mid x) c$ of a conditional survival function $S(x \mid x > c)$ of the age-at-death random variable X for any $c \ge 0$. $R(x \mid x > c)$ is linear if and only if the n-th conditional moment can be expressed as

$$E[X] \quad \downarrow \quad X > c] = \frac{n}{\prod_{i=1}^{n} x_{i}},$$

where x is the solution of the equation

$$x = iR(x | x > c) + c \begin{bmatrix} i-1 & -1 \\ f | x \end{bmatrix}$$

for i = 1, 2, 3, ..., n, with $\frac{1}{11} \times = 1$.

Geometrical realization of moments of some other classes of survival functions will also be discussed in the hope of shedding some light for estimation of moments of more general class of survival functions. Let us first look at the case where c = 0. For any survival function S(x), we note that

$$E[x] = n \int_{0}^{w} \frac{n-1}{x} S(x) dx.$$

For convenience, we define

$$T_{i}(x) = x^{1}S(x)$$

and note that $T_i(\omega) = 0$ for all $i = 1, 2, 3, \ldots$

We shall first investigate
$$\int_{0}^{W} T(x) dx$$
, where $T(x) = S(x)$.

To obtain an estimate of the integral, we suggest the following method of approximation.

Find x such that the tangent to the graph of T (x) at point 1 0 (x , T (x)) has y-intercept (0,2T (x)) as shown in the figure. 1 0 1 0 1

We shall use the area of rectangle OPOR for approximation of

 $\int_{0}^{\infty} \bigvee_{0}^{w} T_{-}(x) dx.$

Thus

$$E[X] \stackrel{*}{=} \times . \tag{1}$$

Since the equation of the tangent in question is

$$y - T(x) = T'(x) (x - x),$$

$$O_1 O_1 = 1$$

we see that x is the solution of the equation

$$T_{0}(x) = -xT'(x),$$

or

$$x \neq R(x). \tag{2}$$

Let us look at the uniform distribution and see how good this approximation is. Since

$$\lambda(x) = (w - x)^{-1},$$

the equation (2) is

x = w - xand hence x = ---. So the approximation (1) is exact. 1 2

For the exponential distribution, we have

$$\lambda (\infty) = \lambda$$
,

The equation (2) is

$$\times = \frac{1}{\lambda}$$

and hence $x = \frac{1}{\lambda}$. The approximation (1) is also exact.

For the survival function

.

$$S(x) = \sqrt{1 - \frac{x}{w}}$$

we can derive the equation (2) to be

$$x = 2(w - x),$$

2w which gives x = ---- . Again, the approximation (1) is exact. I 3

Note that R(x) is linear for all the above cases. In fact, we can show the following theorem using the fact that

$$E[X] = R(0) + \int_{0}^{W} R'(x) S(x) dx.$$
 (3)

Theorem 1. If $R(x) \approx ax + b$, then E[X] is equal to the solution of the equation

$$x = ax + b$$
,

namely

where $a \leq 0$ and b > 0.

Proof. Since S(x) is decreasing, we see that

$$b = R(0) = -\frac{S(0)}{S'(0)} = -\frac{1}{S'(0)} > 0.$$

Since R(x) > 0 for all x < w, we require that a ≤ 0 .

Since

 $ax + b = R(x) = -\frac{S(x)}{S'(x)}$

it follows from (3) that

$$E[X] = b + \int_{0}^{w} aS(x) dx = b + aE[X]$$

and that

E[X] = -----1 - a

with a ≤ 0 .

For the survival function

$$S(x) = (1 + \lambda x)e^{-\lambda x}$$

with R(x) = $\frac{1 + \lambda x}{\lambda^2}$, the approximation (1) is not exact, since $\lambda^2 x$

$$x = \frac{1 + \sqrt{5}}{2\lambda} \text{ while E[X]} = \frac{2}{\lambda} .$$

Now, let us look at T (x). Since 1 .

$$\frac{d[xS(x)]}{T'(x)} = \frac{d[xS(x)]}{dx} = xS'(x) + S(x) = [x - R(x)]S'(x),$$

we see that $x = x_1$ is a critical point. Furthermore,

$$T^{\psi}(x) = xS^{\psi}(x) + 2S^{\prime}(x)$$

gives the following

Lemma 1. $T_{1}(x)$ is concave down wherever S(x) is.

Since

$$T_{f}^{(x)} = x - \frac{S(x)}{dx} - \frac{S(x)}{2S(x)} + \frac{xER^{f}(x) + 1}{2ER(x)} - \frac{2ER(x)}{2ER(x)} - \frac{2ER(x$$

we have .

Lemma 2. T (x) is concave down if and only if 1

$$+ \times < \frac{2R(x)}{1 + R'(x)} \qquad (4)$$

Let \times denote the solution of the equation 2

$$x = 2R(x)$$
.

Then T (x) attains the global maximum at x = x for the interval 1 [0,x] provided that $\mathbb{R}^{\ell}(x) < 0$, which is true when $\mathbb{R}(x)$ is 2 linear.

TUECU.

Note that the tangent

$$y - \tau (x) = \tau' (x) (x - x)$$

1 2 1 2 2

to the graph of T (x) at point (x ,T (x)) has y-intercept 1 2 1 2

$$(0,2T(x)),$$
 since $x = 2R(x)$ implies $T(x) = -xT'(x)$.
1 2 2 2 1 2 2 1 2

As shown in the figure, we shall use the area of the triangle OPO for approximation of $\int_{0}^{W} T_{1}(x) dx$. Thus $E[X^{2}] = x \times x$. 1.2 Note that x, can also be obtained by finding the maximum rectangle inscribed under the graph of S(x) as shown.

We shall show the following

Theorem 2. If R(x) = ax + b, then E[X] is equal to the product of the solutions of equations x = R(x) and x = 2R(x), namely

Proof. Since

$$E[X^{2}] = 2 \int_{0}^{w} T_{1}^{(x)} dx = 2 \int_{0}^{w} xR(x) S'(x) dx$$
$$= 2 \int_{0}^{w} \frac{dExR(x)}{dx} S(x) dx$$
$$= 2aE[X^{2}] + 2bE[X],$$

our result follows from Theorem 1.

Now, let us look at the case where c > 0. For simplicity, we shall still use R(x) = ax + b in reference to $R(x \ x > c)$. Since

$$E[X \mid X > c] = \int_{c}^{w} xf(x \mid x > c) dx$$

$$= c + \int_{c}^{w} S(x \mid x > c) dx$$

$$= c - \int_{c}^{w} R(x) S'(x \mid x > c) dx$$

$$= c + R(c) + \int_{c}^{w} R'(x) S(x \mid x > c) dx$$

$$= c + ac + b + a \int_{c}^{w} S(x \mid x > c) dx$$

$$= c + ac + b + a (E[X \mid X > c]) dx$$

we have

 $E[X | X > c] = \frac{b + c}{1 - a}$.

As for geometrical realization, we seek x such that the tangent to the graph of $S(x \mid x > c)$ at point $(x , S(x \mid x > c))$ intersects the line x = c at point $(c, 2S(x \mid x > c))$. Since the equation of the tangent in question is $y - S(x \mid x > c) = S'(x \mid x > c)(x - x)$. i we have $S(x \mid x > c) = S'(x \mid x > c)(x - x)$, namely i x = R(x) + c. Hence $x = \frac{b + c}{1 - a}$ is the solution of x = R(x) + c, i = a as stated in the main theorem. Similarly, we can obtain

 $E[X | X > c] = \frac{2b(b + c) + (1 - a)c^{2}}{(1 - 2a)(1 - a)} = x_{j}x_{z},$

where

$$x_{2} = \frac{2b + c / x_{1}}{1 - 2a} = \frac{2b(b + c) + (1 - a)c}{(1 - 2a)(b + c)} ,$$

which turns out to be the solution of the equation

as stated in the main theorem.

For the third moment, we have

$$3 3b[2b \cdot (b + c) + (1 - a)c2] + (1 - 2a)(1 - a)c3$$
E[X | X > c] =------(1 - 3a)(1 - 2a)(1 - a)

$$= x \times x ,$$
1 2 3

where

$$3b + c /x_1 x_1 3b[2b(b + c) + (1 - a)c^2] + (1 - 2a)(1 - a)c^2$$

$$3b + c /x_1 x_1 3b[2b(b + c) + (1 - a)c^2]$$

is the solution of the equation

$$x = 3R(x) + \frac{c}{x_1 x_2}$$

The main theorem can be proved by Mathematical Induction.

Conversely, we shall only consider the case where $c = 0_{--}$

Since S(x) = -R(x)S'(x), it follows from Maclaurin's expansion of R(x) that

$$\int_{0}^{w} S(x) dx = R(0) + \frac{R'(0)}{1!} \int_{0}^{w} S(x) dx + \frac{R'(0)}{2!} \int_{0}^{w} S(x) dx + \dots$$

Then by the expressions of moments given in the main theorem, we have

$$x = R(0) + R'(0) x + \frac{R'(0)}{1} - \frac{x_1 x_2}{2} + \frac{R'''(0)}{----} + \frac{x_1 x_2 x_3}{-----} + \dots$$
 (5)

Since x = R(x), we have 1 1

$$x = R(0) + R'(0)x + \frac{R'(0)}{2}x + \frac{R''(0)}{3}x + \frac{R''(0)}{3}x + \dots$$
 (6)

By comparing (5) and (6), we can conclude that

$$\begin{array}{c} x = 2x \\ 2 \end{array}$$
(7)

Since $x_2 = 2E(x_2)$, we have

By comparing (6) and (8), we see that $\mathbb{R}^{\frac{1}{2}}(0) = 0$. Otherwise, we would have $\frac{2}{2} = \frac{2}{2}$, contradicting (7). Similarly, we can show

that all the higher derivatives of R(x) at x = 0 are zero. Hence R(x) is linear.

Geometrically, the n-th moment of an age-at-death random variable can be approximated by finding the volume of an n-dimensionalrectangular solid with dimensions obtainable iteratively via appropriate tangents. This approximation is not exact if F(x) is non-linear. Let us look at the following.

Case 1.
$$R(x) = \frac{a}{x} + b$$
.
We can show, for $n \ge 2$ with $E[x] = 1$, that
 $n^* = nE[x] = nE[x] + nbE[x]$
and $x = nF(x)$, namely
 $n = n(\frac{a}{x} + b)$.
 (9)
 $n = 1$

Instead of using a tangent, (9) suggests that we use the hyperbola xy = a to first obtain y from x and then make n-1 n-1

appropriate shifting and enlargement to arrive at \times .

Case 2. $R(x) = \frac{1}{ax + b}$.

We can show , for $n \ge 2$, that

$$n^{-2}$$
 a n b n^{-1}
E[X] = --- E[X] + ---- E[X]
n n 1

and

$$\frac{1}{a} = \frac{1}{a} + \frac{1}{a} = \frac{1}{a} + \frac{1}{a} + \frac{1}{a} = \frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} = \frac{1}{a} + \frac{1$$

We use the hyperbola xy = 1 / a to first obtain y from x n-1 n-1 and then make appropriate shifting and enlargement to get x_n.

Case 3. R(x) = ax + bx + c.

We can show, for $n \ge 2$, that

$$n = (n - 1)b = n - 1 = c = n - 2$$

E[X] = ----- E[X] = ---- E[X]
(n - 1)a = a

and

We use the hyperbola xy = - c / a to first obtain y from n-1x and then make an appropriate shifting to get x .

We hope that the above observation may shed some light for more general cases.

ACKNOWLEDGEMENT.

The author would like to thank Professor William Jewell for his valuable suggestions.

REFERENCES.

London, Dick: Survival Models and Their Estimation, ACTEX Publications, 1988.