ACTUARIAL RESEARCH CLEARING HOUSE 1992 VOL. 2

MOMENTS OF SUFUIVAL FUNCTIONS WITH CERTAIN CLASS OF HAZARD RATES Hung-ping Tsao

ABSTRACT

The proof of the following result will be presented via geometrical realization of moments.

```
    Main theorem. Let R(x {x>c) be the reciprocal of the hazard
rate function \lambda (% | x) c) of a conditional survival function
S:x \ x > c) of the age-at-death random variable x for any }e\geqslant0
Fi(% f x > c) is linear if and only if the n-th conditional moment
can be expressed as
```

$$
E\left[x^{n} \mid x>c\right]=\prod_{i=1}^{n} x_{i}
$$

where $:{ }_{i}$ is the solution of the equation

$$
x=i F(x \mid \times y c)+c^{i}\left[\prod_{j=1}^{i-1} \times\right]^{-1}
$$

for $i=1,2,3, \ldots, n$, with $\prod_{j=1}^{0} x j=1$.

Geometrical realization of monents of some other classes of survival functions will also be discussed in the hope of shedding some lignt for estimation of moments of more general Elass of survival functions.

Let us first look at the case where $c=0$. For any survival function $S(x)$, we note that

$$
E\left[x^{n}\right]=n \int_{0}^{w} x^{n-1} S(x) d x
$$

For convenience, we define

$$
T_{i}(x)=x^{1} S(x)
$$

ara mote that $T_{i}(w)=0$ for allimin $=1,3, \ldots$

We shall first investigate $\int_{0}^{w} T_{0}(x) d x$, where $T(x)=5(x)$.

To obtain an estimate of the integral, we suggest the following method of approximation.

$$
\begin{aligned}
& \text { Find } x_{1} \text { such that the tancent to the graph of } T_{0}(x) \text { at point } \\
& \left(x_{1}, T_{0}\left(\%_{1}\right)\right) \text { has y-intercept }\left(0,2 T_{0}\left(x_{1}\right)\right) \text { as shown in the figure. }
\end{aligned}
$$

We shall use the area of rectangle DFDF for approximation of

Thus

$$
\begin{equation*}
E[x] \stackrel{x_{1}}{ } \tag{1}
\end{equation*}
$$

Since the equation of the tangent in question is

$$
y-T_{0}\left(x_{1}\right)=T_{0}^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

we see that x_{1} is the solution of the equation

$$
T_{0}^{T}(x)=-x T_{0}^{\prime}(x) .
$$

or

$$
\begin{equation*}
x=F(x) . \tag{2}
\end{equation*}
$$

Let us look at the minform distribution and see how good this approximation is. Since

$$
\lambda(x)=(w-x)^{-1}
$$

the equation (2) is
and hence ${ }_{1}=\frac{w}{2}$. So the approximation (1) is exact.

For the exponential distribution, we have

$$
\lambda(x)=\lambda .
$$

The equation (2) is

$$
x=\frac{1}{\lambda}
$$

and hence $x_{1}=\frac{1}{\lambda}$. The approximation (1) is also exact.

For the survival function

we can derive the equation
(2) to be
$x=2(w-x)$.
which gives $x_{1}=-\frac{2 W}{J}$. Again, the approximation (i) is exact.

Note that $\mathrm{F}(\%)$ is linear for all the above cases. In fact, we can show the following theorem using the fact that

Theorem 1. If $F(x)=a x+b$, then $E[x]$ is equal to the solution of the equation

$$
x=a x+b,
$$

namely

$$
E[x]=\frac{b}{1-a},
$$

where $a \leq 0$ and $b \geqslant 0$.

Froof. Since $S(x)$ is derreasing, we see that

$$
b=R(0)=-\frac{S(0)}{S^{\prime}(0)}=-\frac{1}{5^{\prime}(0)}: 0 .
$$

Since $F(x)$; 0 for $a 11 x$ < w, we require that $a \leq o$.

Since

$$
a x+b=f(x)=-\frac{S(x)}{S^{\prime}(x)} .
$$

it follows from (ङ) that

$$
E[x]=b+\int_{0}^{w} a S(x) d x=b+a E[x]
$$

and that

$$
E[x]=\frac{b}{1-a}
$$

with a ≤ 0.
For the survival function

$$
-\lambda x
$$

with $F(\%)=\frac{1+\lambda \%}{\lambda^{2} \%}$, the approximation (1) is not exact, since
$x_{1}=\frac{1+\sqrt{5}}{2 \lambda}$ while $E[x]=-\frac{2}{\lambda}$.

Now, let us look at T ($\%$). Since

$$
T_{1}^{\prime}(x)=-\frac{d[x S(x)]}{d x}=x S^{\prime}(x)+S(x)=[x-F(x)] S^{\prime}(x) .
$$

we see that $x=x_{i}$ is a critical point. Furthermore,

$$
T_{1}^{\prime \prime}(x)=x 5^{4}(x)+2 S^{\prime}(x)
$$

gives the following

Lemma $1 . \quad T_{f}(\%)$ is concave down wherever $S(: x)$ is.

Since

$$
T 4,(x)=x-\frac{d\left[-\frac{S(x)}{F(x)}\right.}{d x}-\frac{2 S(x)}{F(x)}=\frac{x\left[F^{\prime}(x)+1\right]-2 F(x)}{[R(x)]}
$$

we have

Lemma 2. $T_{1}(x)$ is concave down if and only if

$$
\begin{equation*}
\cdot x \because \frac{2 R(x)}{1+R^{\prime}(x)} \tag{4}
\end{equation*}
$$

Let $: 2$ denote the solution of the equation

$$
x=2 F^{\prime}(x)
$$

Then $T(x)$ attains the global maximum at $\therefore=x$ for the interval

I inear.

Note that the tangent

$$
y-T_{1}\left(x_{2}\right)=T_{1}^{\prime}(x)\left(x-x_{2}\right)
$$

to the graph of $T(x)$ at point $(x, T(x))$ has y-intercept

As shown in the figure, we shall use the area of the triangle OFQ for approximation of $\int_{0}^{w} T_{j}(x) d x . \quad$ Thus $E\left[x^{2}\right]=x_{2}^{2}$.

Note that x, can also be obtained by finding the maximum rectangle inscribed under the graph of $S(x)$ as shown.

We shall show the following

Theorem 2. If $F(x)=a x+b$, then $E\left[x^{2}\right]$ is equal to the product of the solutions of equations $x=R(x)$ and $x=2 R(x)$, namely

$$
E\left[x^{2}\right]=\frac{b}{1-a} \cdot \frac{2 b}{1-2 b}
$$

Froof. Since

$$
\begin{aligned}
E\left[x^{2}\right] & =2 \int_{0}^{w} T \int_{0}^{w}(x) d x=2 \int_{0}^{w} x R(x) S^{\prime}(x) d x \\
& =2 \int_{0}^{w} d[x R(x)] \\
& =2 a E\left[x^{2}\right]+2 b E[x] d x
\end{aligned}
$$

our result follows from Theorem 1.

Now, let us look at the case where $c>0$. For simplicity, we shall still use $R(x)=a x+b$ in referenceto $R(x \mid x ; c)$.

Since

$$
\begin{aligned}
& E[x \mid x \geqslant c]=\int_{c}^{w} x f\langle x \mid x>c\rangle d x \\
& =c+\int_{c}^{w} S(x \mid x>c) d x \\
& =5-\int_{c}^{W} F(x) S^{\prime}(x \mid x ; E) d x \\
& =c+F(c)+\int_{c}^{W} F^{\prime}(x) S(x \mid x ; c) d x \\
& =c+a c+b+a<\int_{c}^{w} S(x \mid x: c) d x
\end{aligned}
$$

we have

$$
E[x \mid x>c]=\frac{b+c}{1-a}
$$

As for geometrical realization. we seek x such that the tangent to the graph of $5(x+x \geqslant c)$ at point $(x, S(x, 1 x \geqslant c))$
intersects the line $x=c$ at point (c, 2S($x, 1 \quad x y \operatorname{c})$). Sinee the equation of the tangent in question is

$$
y-S(x \mid x ; c)=S_{1}^{\prime}(x, \quad \mid x y c)(x-x)
$$

$$
\begin{aligned}
& \text { as stated in the main theorem. }
\end{aligned}
$$

Similarly, we can obtain

$$
E\left[x^{2} 1 x>c\right]=\frac{2 b(b+c)+(1-a) c^{2}}{(1-2 a)(1-a)}=x_{1} x_{2} .
$$

where

$$
x_{2}=\frac{2 b+c^{2}\left(x_{1}\right.}{1-2 a}=\frac{2 b(b+c)+(1-a) c^{2}}{(1-2 a)(b+c)},
$$

which turns out to be the solution of the equation

$$
x=2 R(x)+\frac{c^{2}}{x} \frac{1}{1}
$$

as stated in the main theorem.

For the third moment, we have

$$
\begin{aligned}
& E\left[x^{3} \mid x>c\right]=\frac{\operatorname{Sb}\left[2 b \cdot(b+c)+(1-a) c^{2}\right]+(1-2 a)(1-a) c^{3}}{(1-\operatorname{a})(1-2 a)(1-a)}
\end{aligned}
$$

where

$$
\because \frac{3 b+c^{3}\left(x_{1} x_{2}\right.}{3 b} \frac{3 b\left[2 b(b+c)+(1-a) c^{2}\right]+(1-2 a)(1-a) c^{3}}{3-3 a}
$$

is the solution of the equation

$$
x=3 R(x)+\frac{\varepsilon^{J}}{x_{1} x_{2}}
$$

The main theorem can be proved by Mathematical Induction.

Conversely, we shall only consider the case where $c=0$.

Since $S(x)=-F(x) S^{\prime}(x)$, it follows from Maclaurinis expansion of $F(x)$ that
$\int_{0}^{W} S(x) d x=F(0)+-F^{\prime \prime}(0) \int_{0}^{W} S(x) d x+\frac{F^{4}(0)}{2!} \int_{0}^{W} x(x) d x+\ldots$ Then by the expressions of moments given in the main theorem, we have

Since $x_{1}=F(x)$, we Mave

Ey comparing (5) and (6), we can conclude that

$$
\begin{equation*}
x_{2}=2 x_{1} \tag{7}
\end{equation*}
$$

Since $x_{2}=2 F\left(\because_{2}\right)$, we have

By comparing (b) and (8), we see that $\mathrm{F}^{\prime \prime}(0)=0$. Otherwise, we would have $\because_{1}^{2}=\because_{2}^{2}$, contradicting (7). Similarly, we can show that all the higher derivatives of $F(\therefore)$ at $\%=0$ are aero. hence $F^{\prime}(x)$ is Iinear.

```
    Geometricaliy: the n-th moment of an age-at-death random
variable can be approximated by finding the volume of an
n-dimensionalrectangular solid with dimensions obtaimable
iteratively via appropriate tangents. This approximation is
not exact if.F(N) is nom-linear. Let us loov at the following.
    Case 1. Fi(x)=
    We can show, for n }02\mathrm{ with E[x ] = 1, that
                                    E[\mp@subsup{x}{}{n+}}]=\operatorname{naE[x.
and }\therefore=\mp@code{nfr(:%,n-1
```



```
mos:
\[
\begin{equation*}
\left.x_{n}=\frac{n(--\infty}{n}+b\right) \tag{9}
\end{equation*}
\]
```


Instead of using a tangent. (7) suggests that we use the hypErbola by $=$ a to first obtain y \quad from $\because \quad$ no \quad and then make appropriate shifting and enlargement to arrive at $:$
Case 2. $F(x)=\frac{1}{a x+D}$.
We can show, for $n \geqslant 2$, that

$$
E\left[x^{n-2}\right]=\underset{n}{a} E\left[x^{n}\right]+\frac{\square}{n-1} E\left[x^{n-1}\right]
$$

```
and

We use the hyperbola \(\because y=1 /\) a to first obtain \(y\) from \(\because n-1\)
and then mate appropriate shifting and enlargement to get in.

Case \(\because \quad f(x)=a x^{2}+b x+c\).
We can show, for \(n \geqslant 2\), that
\[
E\left[x^{n}\right]=\frac{1-(n-1) b}{(n-1) a} E\left[x^{n-1}\right]-\frac{c}{a} E\left[x^{n-2}\right]
\]
and


We use the hyperbola \(x y=-c /\) a to first obtain \(y\) from
\(x_{n-1}\) and then make an appropriate shifting to get \(x_{n}\).

We hope that the above observation may shed some light for more general cases.

ACKNOWLEDGEMENT.
The author would like to thank Frofessor william Jewell for his valuable suggestions.

\section*{FEFERENCES.}

London, Dick: Survival Models and Their Estimation, ACTEX Fublications. 1999.```

