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ABSTRACT 

The p r o o f  o~ the ÷ollowing result will be presented via 

geometrical realization o4 moments. 

Main theorem. Let R(x | x > c) be the reciprocal o@ the hazard 

rate function ~(x ~ x> c> of a conditional survival function 

S(,: ~ x > c) of the age-at-death random variable X Got amy c ~ O. 

R(x ~ x > c) is linear i9 and only if the n-th conditional moment 

can be expressed as 

n n 

E.r.x ~ X > c ]  =..'T'T' ~C 

i=l i 

where ;: 
i 

is the solution o~ the equation 

i 
x = iR(x ~ x > c) + c 

i-I -i 
['~ x ] 
j=l j 

0 
9or  i = I ,  2, 3, . . . .  n, w i t h  ~ x = I .  

j = l  j 

Geometrical realization of moments of some other classes of 

survival functions will also be discussed in the hope of shedding 

some light ~or estimation o~ moments o~ more general class o~ 

survival ÷unctions. 
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For any survival L e t  us  f i r s t -  l o o k  a t  t h e  c a s e  w h e r e  c = O. 

f u n c t i o n  S ( x ) ,  we n o t e  t h a t  

n / w  n-I 
E[x ] = n x S(x)dx. 

For convenience, we define 

i 
T ( x )  = x S ( x )  

i 

a n d  n o t e  t h a t  T. (w) = 0 4 o r  a l l  i = I ,  2 ,  3 ,  . . . .  

/ - 
We shall ~irst investigate T (>:)d::, where r (x) = S(>:). 

t-) 0 

To obtaln an estimate o~ the integral, we suggest the following 

method of approximation. 

Find x such that the tangent to the graph o~ T (x) at point 
i 0 

(× ,T (x )) has y-intercept (O,2T (x ) ) as shown in the ~igure. 
I 0 I 0 1 

Y 

> 

0 P(x ,0) X 
i 
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We shall use the area o~ rectangle OPQR ~or approximation o~ 

Z) T ( x )  d x .  
0 

Thus 

E[X] =" x 

1 

Sin~e the equation o~ the tangent in question is 

y- T (x ) = T/(:< ) (x - x ), 
0 1 0 1 1 

we see that x is the s~olution o~ the equation 
1 

T (x> = -xT/(x), 

0 () 
Or 

(i> 

;: = R(x). (2) 

Let us look at the uniform OistriOution and see how good this 

approximation is. Since 

the equation (2> is 

W 

and hence x = ---. 

I 2 

-I 
~,(x) = (w- x) , 

So t h e  a p p r o x i m a t i o n  (1) i s  e x a ~ t .  

For the exponential distribution, we have 

The equation (2) is 

1 

1 
and hence x = ---. The approximation (1) is also exact. 
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For the survival ~unction 

2 S(x) = i .... 

w 

we can derive the equation (2) to be 

x = 2(w - x), 

2w 

which gives x ..... . Again, the approximation (I) is exact. 

Note that R(x) is linear for all the above cases. In tact, we 

can show the tollowing theorem using the tact that 

Z E[X] = R(O) + Rf(:.')S(x')dx. (3) 
i 

Theorem I. 

solution ot the equation 

namely 

where a ~ 0 and b > 0. 

It R(x) = ax + b, then E[X] is equal to the 

" ---- aH + b, 

b 

E[X] ...... , 

i - a 

Proof. Since S(x) is decreasing, we see that 

S(O) 1 

b = R(O) = ...... = ...... 

Sl(O) S$" (0) 

Since R(x) > 0 for all x < w, we require that a ~ O. 

> ~-J. 
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Since 

ax + b = R(x) 

it eollows ~rom (3) that 

and that 

with a ~---O. 

SCx) 

S l (x) 

w 

E[X] = b + aS(::)dx = b + aE[X] 

E[X] = ..... 

For the survival ~un~tion 

with R<x) = . . . . . . .  
2 

x 

i÷V~ 
x while E[X] = 

b 

1 - a 

S(x) = (I + ~x)e 

• the approximation (i) is not exact, since 

Now, let us look at T (x). Since 

1 

Tl(x> = 

1 

d[xS(x) ] 

d x 
x S t ( x )  + S ( x )  = I x  - R (x )  ] S l ( × )  

we see that x = x; is a critical point. Furthermore, 

T ~ (x) = x S ~ ( x )  + 2 S Z ( x )  
1 

g i v e s  t h e  G o l l o w i n g  

Lemma 1. T I x) i s  c o n c a v e  down w h e r e v e r  S<::) i s .  
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S i n c e  

T# I  ( x )  = :: 

we have 

S(x) 

d[ ..... ] 
R(x) 2S(x) 

dx  R ( x ) 

×[R/(x) + i] - 2R(x) 

2 

[R(x> ] 

S(x) , 

Lemma 2. T (x> i s  c o n c a v e  down i f  and o n l y  i f  
i 

2R(x> 

1 + R I ( > : )  
(4> 

Let x denote the solution of the equation 

2 

x = 2R (:i) . 

Then T (×) attains the global maximum at :: = x Gor the interval 

1 1 

CO, x ] provided that RJ(x) < O~ which iS true when R(x) is 

2 

linear. 

Note that the tangent 

y - T ( x  ) = T / ( x  l ( x  - x } 
1 2 1 2 

to the graph of T (x) at point (x ,T (x l) has y-intercept 
I - o 1 2 

(O,2T (x ))~ since x = 2R(x I imolies T (x ) = - x T / (x ). 
1 2 2 2 1 2 2 1 2 

As shown i n  t h e  ~ i g u r e ,  we s h a l l  u s e  t h e  

&rea of the triangle OPQ @or approximation 

w 2 
o~ T I ( x ) d x .  Thus  ECX ] = x x . 

x , x ) 

0 J x" P ( x Z ,  0 ) "  
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Note that x. 

rectangle inscribed under the graph of S(x) as shown. 

can also be obtained by 6inding "the maximum 

)) 

--<___ 

)- 
X, 

We shall show the following 

2 
Theorem 2. I~ = R(>:) = ax + b, then E[X ] is equal to the 

product of the solutions o6 equations x = R(x) and :,' = 2R(>.'>, 

F'roo~. Since 

namely 

2 b 2b 
E[X ] = ............ 

1 - a 1 - 2b 

E[X ] = Tl(x)dx = xR(x)SJ(x)dx 

= 2m~O w dCxR(x)]dx S(x>dx 

2 
= 2aE[X ] + 2bEEX] , 

outr result follows ~rom Theorem I. 

217 



Now, l e t  us  l o o k  a t  t h e  c a s e  w h e r e  c > O. F o r  s i m p l i c i t y ,  we 

s h a l l  s t i l l  u s e  R ( x )  = ax  + b i n  r e ~ e r e n c e  t o  R ( x  i x > c ) .  

S i n c e  

/ E [ X  | X > c ]  = x f ( x  | x > c ) d x  

= c + S(~." l x > c ) d : :  

= c - R ( x ) S / ( x  l x > c ) d x  

= c + R ( c )  + R / ( > , ' ) S ( x  ;< > c ) d x  

= C + a c  ÷ b + a S (:-; x > ~ ) ~ ; :  

= c + ac + b * a{E[X | X ;: c) c], 

we have 

b + c 

EEX ~ x > c] . . . . . .  . 
I - a 

As ~or geometrioal realization, we seek x such that the tangent 

t o  t h e  g r a p h  o ~  S ( x  ~ x > c )  a t  p o i n t  <x , S < x  | x > c ) )  
1 1 

intersects the line :: = c at point (c,2S(x I x > c)~. Since the 

1 

equation o~ the tangent in question is 

y - S ( x  ~ :.: > c )  = S / ( x  | ;', > c ) ( x  - x ) ,  
1 1 1 

we have S(x [ x > c) = S #(x ~ x > c) (c - x ), namely 

1 1 1 

b + c 

,, - R(x ) + E. Hence x = ..... is the solution o~ '; = R(x) + ~, 

i 1 1 - a 

as stateO in the main theorem. 
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S i m i l a r l y ,  we c a n  o b t a i n  

2 2 b ( b  + c )  + ( I  - a ) c  i 

EEX | × > c] = = x f x  z . 
(i - 2a)(i - a) 

where 

2 

2b + c /Y I  2b(b + c> + (1 -a)c 
B 

1 - 2a (I - 2a)(b + c) 

w h i c h  t u r n s  o u t  t o  be t h e  s o l u t i o n  oG t h e  e q u a t i o n  

x = 2R(x) + .... 

as stated in the main theorem. 

C 

>, 

1 

For the third moment, we have 

3 

EEX ~ X > c ]  
3bE2b.(b + c) + (i - a)c ~] + (I - 2a) (I - a)c 9 

( i  - 3 a )  ( i  - 2 a )  ( i  - a )  

1 " 3  

where 

3 

3b + c /x I x z 

3 1 - 3a 

3 

3b[2b(b + c> + (I -a)c a] + (i - 2a> (I - a)c 

(I - 3a)£2b(b + c )  + (I - a>c 2] 

is the solution oG the equation 

:-," = 3R(x) + 

c 

x I Xz 

The main theorem can be proved by Mathematical Induction. 
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Conversely, we shall only consider the case where c = 0.- 

Since S(x) = -R(x)S/(x), it ~ollows ~rom Maclaurin's expansion 

o~ R(x) that 

w . RI f (0) f w 
S(x)dx = R(O) + ..... S(x)dx + 

I~ JO 

R#(O)2! / Wxs(x)d:: + "'" 

Then by the expressions o~ moments given in the main theorem, we 

have 

R l;J (0) x I R k (0) x! :<Z xl  ::3 + 
x = R(O) + R/(O)x +,- .... • .... + ...... ... (5) 
1 1 2 ~ 6 3 

S i n c e  x = R ( x  ) , we h a v e  

I 1 

~:~ (0) 2 R U/ (0) 3 

x = R(O) + RI(O)× + ..... x ÷ ...... x + ... 

i 1 2 i b 1 

By comparing (5) and (6), we can conclude that 

= 2x ( 7 )  
2 I 

(6) 

Since ":2 = 2R(:"Z)' we have 

R~(O) 2 R ~a (0) 3 

:', = 2R(0) + 2R/(0): -'. + 2" x + 2 ....... :: + ... (8) 

2 2 2 2 6 2 

By comparing (6) and (8). we see that R If(O) = 0. Otherwise, we 

2 

would have :: = :: , contradicting (7). Similarly. we can show 
1 2 

that all the higher derivatives of R(::) at x = 0 are zero. hence 

R(x) is linear. 
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Geometrically, the n-th moment o ~  an age-at-death ranOom 

variable can be approximated by ~inding the volume of an 

n-dimensionalrectangular solid with dimensions obtainable 

iteratively via appropriate tangents. This approximation is 

not exact iG.R(x) 

Case i. R(::) = --- + b . 

We can show, ~or n =% 2 with E[X ] = i, that 

and x = nR(x ), namely 

n n-i 

x -- n( ..... ÷ b) 

n-i 

is non-linear. Let us look at the following. 

,T 
a 

I< 

0 

n" n-2 n-1 ~ n - |  ) 

E[X ] = naE[X ] ÷ nbE[X ] 

> 

o :N: 

(9) 

Instead o~ using a tangent, (9) suggests that we use the 

hyperbola xy = a to ~irst obtain y ~rom :< and then make 

n-I n-i 

appropriate shi=ting and enlargement to arrive at x . 

n 

1 
Case 2. R(x) = ...... . 

We can show , for n ~ 2, that 

n-2 a n b n-i 

EZX ] .... E[X ] + ..... E[X 
n n - 1 

and 
1 / a 1 b 

n × n - 1 a 

n-i 

We use t~ne hyperbola xy = 1 / a to first obtain y ~rom x 
n-i n-i 

and then make appropriate shi~ting and enlargement to get x~. 
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2 

Case 3. R(x) = ax + bx + c. 

We can show. Got n ~ o that 

n 1 - (n - l)b n--I 

E[X ] = E[X ] .... 

(n- l>a 

C n-2 

EEX ] 
a 

and 

- c / a b 1 

x [ ............ ] . 

n × a (n - l>a 

n-I 

We use the hyperbola ~y = - c / a to Girst obtain y 6tom 

n-I 

x and then make an appropriate shiGting to get x 

n-i n 

We hope that the above observation may shed some light ~or more 

general cases. 
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