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Technical 

A b s t r a c t  

Two renewal p rocesses ,  known i n  r e l i a b i l i t y  main tenance as 

minimal r e p a i r  and rep lacement  p o l i c y ,  a r e  i n t r o d u c e d .  The i r  

p r o p e r t i e s  are s t u d i e d  i n  t h e  case where t h e  g e n e r a t i n g  random 

sequence has a d i s t r i b u t i o n  w i t h  p e r i o d i c  f a i l u r e  r a t e .  A 

characterization theorem establ ishe~ necessary and sufficient 

conditions for a non-stationary Poisson process to have a periodic 

failure rate. Applications in risk theory a r e  shown. 
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I ,  I n t r o d u c t i o n .  

The r e c e n t  works o f  Chukova and D i , u t r o v  C l g ~ l .  IggR)  and 

D i m / t r o y  e t  a l .  [ l gg~9  i n t r o d u c e d  random v a r i a b l e s  C r . v .  ' s )  h a v i n g  

the so called "almost lack of memory" CAL~D property and studied 

their physical interpretations and their analytical and 

probabilistic properties. For non-negative r.v. 's X these results 

can be summarized as follo~5: 

1Suppor ted  by the  B u l g a r i a n  SCience Founda t i on .  Grant  MM 8 0 - g l  

~Research funded by FCAR Gcant F055 C r e p r i n t s  can be sen t  a t  t he  
Dept. o f  Math. & S t a t .  , Concord /a  U n i v e r s i t y ,  7141 Sherb rooke  W. , 
Montruaal, Qc, H4B IR6 CANADA9 

83 



Theorem I. These statements are all equivalent: 

Ci~ The distribution function of X has the form 

[x/cl 
F x C X 3  = 1 - a [ 1 - < l - ¢ ~ F ' y C X - [ X / c l c ~  2,  x~O,  C l )  

where c>O and ~ ~ C O , i )  are given constants and Fy is an arbitrary 

c.d.f, for a r.v. Y with support on the interval [O,c); 

Cii) For a given c>O and all x>O the following relation holds: 

P~.X-c>_xlX'~'_c) = P { X ~ _ x )  C?.~ 

We say that X has the lack of memory (LHD property at the point c: 

Ciii) For a given c, any positive integer n and any x~O : 

P . [ X - n c > _ x l X ' ~ n c )  = P~. X'~'_x} (;33 

T h i s  p r o p e r t y  i s  c a l l e d  " a l m o s t  l a c k  o f  m e m o r y " ,  s i n c e  t h e r e  i s  a 

sequence o f  i nfi ni tel y many differ ent poi nts, namely nc. 

Cn=O,I,E .... 3 at which X has the LM property; 

(iv) The  r . v .  X is representable a s  the sum 

X = Y+ cZ (4~ 

of two independent r.v. 's: Y with distribution Fy on [O,c~, and Z 

with geo~tric distribution P~Z=b) = <~61-00, ]~=0,~ ..... ~0,1~; 

Cv~ The Laplace - Stieltj~ transform f~XCs~ = ~-[e -$X] of X 

satisfies the following equation for any positive intege? n.: 

n.c 
= I e-SXdFyCxD/(l-e-nCS[l-FxC~cD2), s>O ~XC S) 

o 

(vi) T h e  failure rate function ( w h e n  it ex/sts9 

fXC a~ 
AXC&D = ! _ FXCt D C5~ 

iS periodic in ¢ wzth period c>O; i.e. for any lnteger ~OO we have 

kxC~c+~D = AXC~D for all ~->0. C69 

The proofs of CiD-Civ> can b~ found in DZm~trov et al. Clgg2D, 

the proof of Cv9 i5 given in Chukova and Dimltrov Clgga9 while that 

of C vi ) i s gl yen i n Chuk ova and Di ml t rov C i ggl ) . As menti oned 
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before, this class of distributions ap;>ears to be a generalization 

of the wel I kno~ e~nenti a/ and geometri c distr i btlti ons. These 

have the LH property at every given point c>O, and therefore are a 

part of the class of distributions with the ALM property. 

A natural question arises: What is the corresponding 

generalization of the Poisson process, wh/ch would not be generated 

by a renewal process with exponential distribution, but rather wlth 

ALH distributions? If such a generalzzation e x z s t s  what physical 

and probabilistic properties does it have a n d  is it characterized 

by such properties9 

In this article ~ consider two definitions of generalized 

Poisson processes generated by a sequence of i.i.d, r.v. "s {X } 

with ALH distributions, and establish some of their properti~. 

E. Two types of renewal processes related to the sam distribution, 

We introduce two renewal processes related with a r.v. X~_O. 

These are based on considerations from tel iability theory, 

specially from the theory of the technical maintenance of items. 

Consider renewal p r o c e s s e s  generated as follo~s: 

I~ The process N (~t) is a process Of mlnimal repair actions. It 

means that if an item falls at a given moment t, then the failure 

is counted and an operating item o/ ~he same ~e ~ is imm~d/ately 

put in operation, in replacement of the failed one. This mechanism 

of geneFatl on of failures leads to the consideration of a 

non-stationary Poisson process determined by its hazard function 

£ 

AMCt9 = I kxCUDdu = -[n[1-FxC£DI. CTD 

Man>, authors, as Beichelt C1981019gI) and Block et aI.C19859, 

have proved this almost evident fact e x p r e s s e d  by C79 ; here we vlew 
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i t  as an immediate c o n s e q u e n c e  o f  C5D. The main problem i s  t h a t  i f  

X is a bounded r.v. , then the process explodes in a fZdite time 

hor i ion. But when X i s unbounded, i e when for any L> 0 the 

probability P(X>Z} is positive, then the non-stationary Poisson 

p r o c e s s  d e f i n e d  a b o ~ e  C d e n o t e d  briefly by N P P I )  d o e s  not explode. 

We denote by N (s) the number of failures until time L of a new item £ 

(i) 
put in operation at time (o=O , i.e. /q£ is the number of events 

of the above NPPZ on the interval [0, £9, (>0. It is known, see 

Baxter C l g 8 2 3  , that 

[ AC £.) ] • -ACt.-) 
P~ N (s'  M } - e C89 £ = /,./ 

where ACt) - AXCL) is defined by (79; 

( z} 
23 The process N£ is generated by the replacement of failed 

. N (m denotes the number of items by ne~ o n e s  For any t=l"O the r.v. c 

failures Creplacements~ of the operating items with ~ife times X , 
n 

n=l,2 .... on the interval [0, t9, i.e. 

N cz) = ~zx ( ~: X +X +... +X < ~). Cg9 
l 2 7% 

Here ~X } is a sequence of i. i.d. r.v. "s, each wi th the same 

distribution as X. 

(i) and N ( ~  may be considerz~d as potential T h e  t w o  p r o c e s s e s  N t t 

candidates to extend the homogeneous Poisson process to the case 

where the r.v. X, used to generate both processes, has an ALM 

distribtltion. In the next section we see how the two processes 

characterize the distribution of X. 

3 .  Characterization of the exponential distribution. 

It is well known from renewal theory that 

(k) (k~$} 

P{ N (m~ = M } = F X C[.) - F x C~.) , ~ = O,l,a,... CI09 

( 0 )  (~ )  

where is the k-fold convolution of F X C ~  = I o, C ~ 3 ,  a n d  F X 
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the c.d.f. F X with itself CIto,omC..~ is the indicator function of 

the set [0,~. 

( $ )  ( Z )  
T h e o r e m  2 .  I f  t h e  t w o  p r o c e s s e s  N ,  a n d  N t a r e  g e n e r a t e d  b y  

the same r.v. X, with c. d.f. FX• the equality 

(i) ( 
P~N t = Z) = P(N ~=~) Cll) 

is true for any £>0 if and only if X is exponential, i.e. when 

FXCtD = I - exp~-k£). Ci~9 

Proof. We first prove that it is a necessary condition. Let 

(z) 
PXCt9 = 1 - exp{-kt,). Then the renewa/ process { ]q~ , t>0 > is a 

time-homogeneous Poisson process and with parameter k, i.e. 

CA. t 9  J~ -;~Z 
P~ N (z'")~ ) = e t>O, for any ~ = 0,1•2, C13~ 

t /'~ ." " "  " 

If at the same time one puts the c.d.f. C1~-.9 into the hazard rate 

equation C T )  • we then see that AC ~9 - ),t. Thus for exponential 

F X, the expression in C8) coincides with C139 for any integer k_>O, 

not only for k=l. 

For the sufficiency part• let CIID be satisfied for any t>0. 

We see from CI09 CTD and C8) that P{ N (i,= 0 ) = P{ N (2, 0 } for 
• t Z = 

any £>0. Also from C8), C 1 0 )  and CIi) we obtain that for any z>O 

ACgDe -ACID = FXCZD - FX*FxCtD. 

In view of C7) and from the convolution rule this last equality is 

equivalent to 

I e-ACt-xgdFxCX.) = ACt.)e -ACL9 C14) 
o 

Integrating the left-hand side by parts we get 

£ t 
° / e-ACz-XDd~-xCx~ = o 2 e-ACt-x)d[l _ e -ACx)] 

t -AC z -xge-ACxgd2%Cx.) -AC t-X.)e-ACXgACx9 1 ~ : I e = e 
o 

£ 
- [ ACt -xg+ACxg) + $ ACx9 e {~,Cx>-kC£-xDldx. 

o 
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Since  ACOD = 0 t he  f i r s t  te rm above equa ls  AC(De -ACt~ and 

c o i n c i d e s  w i t h  t h e  r i g h t - h a n d  s i d e  o f  C14). T h e r e f o r e  
£ 

{ ACxD e (kCx~-kCt-w.)gcl_~ = 0 

T h i s  ~ a n s  t h a t  where ever ACxD#O we have 

XCxD = kCt-xD 

for ~>x. Since there exist at least one positive x ° for which ACXoD 

0 Cand then ACxD ~ 0 for any x>× 3 the last equation holds for 
o 

any  x>x  o ,  ( > x  i f  and o n l y  i f  ~,CxD i s  a c o n s t a n t .  Thus f r o m  (73 we 

( : )  ~el  I as N ( ~j o b t ~ i  n ~ X  C &~ = % m e X ~  - k  L } ,  a n d  H t a s  t a r e  

homogeneous Po isson processes.  • 

R e l r k .  An ana logous r e s u l t  i s  shown by Bax te r  ( l g 8 ~ ) .  He 

suggested t he  c o n d i t i o n s  

P(" N S k } = P(" i Y  = 

f o r  any t>O and any k = 0 , 1 , 2  . . . .  and r e f e r s  t o  a r e s u l t  o f  Grosswald 

e t  a l .  Cig809 c h a r a c t e r i z i n g  t h e  e x p o n e n t i a l  d i s t r i b u t i o n  i n  t he  

cases where F X has a power s e r i e s  t a i l .  

4. The NPP w i t h  per iodLic f a i l ~ e  r a t e  and i t  c h a r a c t e r i z a t i o n .  

Here w~ c o n s i d e r  t he  NPP H el) i n t r o d u c e d  by t h e  h e l p  o f  a 

r . v .  X h a v i n g  an ALM - d i s t r i b u t i o n .  Acco rd i ng  t o  t he  p r e v i o u s  

d i s c u s s i o n  and Theorem 1 - ( v i ) ,  t he  f ~ i l u r e  r a t e  f u n c t i o n  ) . X C t D  i s  

p e r i o d i c  w i t h  p e r i o d  c>O. A3so f rom t h e  d e f i n i t i o n  o£ an NPP f rom 

r e l a t i o n s  C7) and C8) we see t h a t  t h e  f a i l u r e  r a t e  o f  t he  process 

s~ Cde f ined  as t he  f i r s t  d e r i v a t i v e  o f  t he  hazard  f u n c t i o n )  H t 

coincides with the abov~ kxCtD and is therefore periodic also. The 

following is true: 

(s) has periodic failure rate function Lem I. If the NPP N t 

kXC~D with period c>O, then for all t_>O and for any fixed integer 

~0 its hazard function A has the property 
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AC~c+&D = AC~cD ÷ ACLD = ,4.D.,CcD + ACt.). C15"D 

P r o o f .  F r o m  CT~ a n d  C 5 ) ,  a n d  f r o m  t h e  p e r i o d i c i t y  o f  ;k X w e  g e t  

• ~.c ; , .c ÷ 
A C J 4 c ÷ Z ~  = f k C ' u . D d u  ÷ $ k C ' u . D d ' u  

o 14c 

~ - I  C v + l D c  

12=0 12C 0 

= ) , . A C c D  + $ A.C~u.)d,., = = k ,%.Cc~ ÷ A C I D .  
o 

The substi tuti on u--u¢ +9 i s used when the lower bound o f  the 

integral i s  uc and then C~) is applied, m 

We call C15~ "'almost linearity", a property of the hazard 

function A. To introduce the next property we denote by N; ;),T+~) 

the random number of failures of the principal NPP on the interval 

[ T , T ÷ t ) .  Alternati~ly, if the initial item is a new one Cat time 

Zo= 09, ww can interpret T aS the age of the in/tial item at the 

(1) 
begi nnz ng of the obser ~-ati on per i od then N [  T, T + Z) gi v ~ s  the 

overall number of failures after z time units. 

Lemma 2. Under the conditions of Lemma i, for all £>-0 and any 

fixed integer }~0 ~ ha~ 

Ci9 p {}q~i> M% ) = P (~4 <i~ = m ) m =0,1 5, 
~ . c ,  ~ c +  t )  = [0, t )  . . . . .  

Cii~ The r v. " s  N (*) (*> " [/~c, ~÷~9 and N[ o, j~c ) are 

mutual i y independent. 

Proof. Ci) From the general properties of a NPP, (see ~inlar, 

19"~49, it is kno~ that for any m = 0.1.2 .... 

< z ) = [ACT÷t}-ACTD]%-{ACT÷t,)-AC'[DI 
P C  N [  T , T ÷ L]) --n%) rR.; 

Substitute here T=}~c and apply the result of L e m m a  1 to obtain 

~s) _ [ACID) M% -AC£D = P ( N  <z> m=0,l E~, 
P(N[~c,Mc.£ 9- fro m~ e [0, £9 =rod . . . .  

eli> Consider the probability generating function 
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0o 
p ( i )  

[ o , ~ c ÷ L ) C z ~  = ~ P e N  ( i~  = [ o , / ~ c ÷ t 3  = n ~ z m  o x o ( A C J ~ c ÷ t ) C z - l ) ]  
m = O  

Apply here C153 and the result of Ci3 to see that 

p ( i )  
[0,~c+t~(zD = expEAChc~(=-1~] exp[ACtD6=-l>] 

{i) (~) 
= P [ o , ~ c ~ C Z >  P E ) ~ c , i ~ c + t b  6 z )  

( 1 )  ~ N ( & )  ( i )  
Since N[ O. )~C+ ~ 3 [ O, ~b:3 + N[]~C,)~C+t ~ add the gener =tl ng 

function on the left-hand side is equa/ to the product o[ the 

p.  g . T .  o f  t h e  s u n m ~ n d ~  o n  t h e  r i g h t - h a n d  s i d e ,  t h e s e  s u m m ~ n d s  a r e  

independent. • 

Theorem 3. A NPP {N ~i> L>_O) has a periodic failure rate , 

function if au~d only if the next two conditions are fulfilled: 

Ci3 T h e r e  exists s o m e  c>O such that f o r  any t_>O the random 

~:) ~*> coincide in distribution; number of Tailtn-es N[ ,c÷t~ and [(.t~ 

Cii3 For the same c>O as in Ci~ and for any t>O, the random 

{~) and ( ~; are independent. number of failures N[o.c D H[c.c+g > 

Proof. The necessity part of the theorem follow~ from Lemma 

when k=1. To prove the sufficiency we observe that from asst~mptions 

Ci3 and Cii~ the following chain of implications holds: 

p ( N  ( i~  + N ¢ i )  
[ o , c + t ~  = 0 ) = p { ~ / s )  . = O )  ( 1 8 >  [c ,  cJ  [ c , c + t ~  

A ~ '  . = O)  P { N  I ' )  = O) = P( (,cJ c,c+t~ 

h/I> = O) P{N~ I~ = O) 
= P (  [ ( , c 3  o ,  t 3  " 

F u r t h e r  we remark that on the basis of the relation 

P { N [ o , y  > = O) = P { X  1 -> > )  /or any ~>-.O, 

equation E l l S )  means that for t h e  g i v e n  c>O a n d  any t----.O we have 

P{X 1 >- c+t} = PgX 1 -> c} P(X 1 -> t}, CI'~ 

where X is the random life time of the first component in the P~PP 
i 

model, which started the renewal process and determines it. But 
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C17) i s  e x a c t l y  t h e  LM p r o p e r t y  a t  p o i n t  c ([see Theorem i - C i i D ) .  

R e f e r r i n g  t o  Theorem l e v i )  we v e r i f y  t h e  a s s e r t i o n  and see t h a t  i t  

i s  e q u i v a l e n t  t o  say  t h a t  X l has t h e  AJ-M p r o p e r t y .  • 

( i )  
Corollary. If N{ is an NPP with periodic failure rate 

N(1) 
function of period c>O , then for any L>O the r.v. [o, {9 is 

representable in the form 

N ( i )  = M ( i )  M (2) M ( t /c~  M C 1 8 D  
[ O,  ~ C • C * "  " " + C ÷ [ O , t - - [ t / ( : : ] C )  

where M ~V) and M are independent Poisson r.v. 's, distributed 
C (O,y) 

(1) (%) 
as N[0, c ) and NCo,~ ) , respectively, for ~ E [O,c). 

Proof. We apply the result of Theorem 3 to each one of the 

t e r m s  in the decomIx)sition 

t/c ] -, 
N(s> N < s ~  + N (s~ 

[ o , t )  = ~" [ )~c, ( ~ ÷ i ~ c )  [ { t / ~ c ,  ~9 ' 
k=o 

and replace them by the variables M (~ and kf (s) to obtaln C18). 
c I ~ , y )  

M o r e o v e r  w e  k n o w  t h e  d i s t r i b u t i o n s  o f  e a c h  s u ~ n d ;  

{ ACcD] ,n -ACc.) 
P{ M<U)=c ,O - ~! e , m = 0,I .... ; 

[ ~r >.CuDdu ]m 
o 

P{ Moo,y, ~' " " " 
o 

Corollary I gives a clear and practical structure for the use of 

NP{ =' with periodic failure rates. For time instants Z that are 

• N ( •}> i n t e g e r  m u l t i p l e s  o f  c ,  i . e .  when Z-no t h e  p r o c e s s  < t i s  

e q u i v a l e n t  t o  t h e  i n d e p e n d e n t  sum o f  n i d e n t i c a l l y  d i s t r i b u t e < J  

Poisson processes, Csee C1899. T h i s  property i s  not equivalent to 

the infinite divisibility of the time-homogeneous Poisson process 

but is analogous to it. 

5. Applications to r i s k  theory. 

The proper t1 es of the NPPI establi shed above, i.e. an NPP with 

per i odlc failure rate, is expected to find wlde applications in 
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many problems related with risk theory. For illustration purposes 

we briefly describe here some applications to insurance modelling. 

A general Z n s u r a n c e  contract Zs usually issued Tor a llntited 

time period, say one y~ar. During this period the insurance company 

will pay any reasonable claims of the policyholder; when no claim 

is made Ci.e. no events occurred or they w~re not reportedD, no 

payment i s issued. At the end of the contract peri c~J, the 

pol icyhol tier may renew the poli cy, thus buying insurance /or the 

next y~ar. The process so extends in time. We assume permanent 

renewal of the insurance contracts on the part of the policyholder 

and a constant number of policyholders within the portfolio. 

Let ),XCZ9 be the intensity of occurrence of insurance events 

at tame t_>O. When seasonal conditions affect the insured riEk Ce.g. 

automobile insurance9 it is natural to assume that )'X is a ~eriod/c 

function with period of I year. The policy issue date is irrelevant 

but mu~t be fixed in advance; e.g. our periods could start on 

lanuary 1 and end on December 31. A1 ternativel y, we could use 

fiscal years going from April 1 to March 31, but then AXC~D would 

have to be modified appropriately to account for weather patterns. 

For instance, 

kXC£• = 2"tPCf-¢.) q, for r>O; pro-l; q~-1; £E[O,~.) CI~9 

which mimics the shapes of the beta distribution. This could be 

flexible enough to include many  expected patterns of clalm 

intensities during the year. 

If w~ assume that AXC~9 is the claim intensity of one 

poli cyhol der and that there are N sl nu i ar cont r acts i n the 

pot tfoli o at the begi nni ng of the year , then from the theory of 

NPP's Csee ¢inlar, IgT4D, the composition of N such processes is 
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also NPP with intensity 

( ,  c z )  (N)CtD = NXXCLD C 2 0 3  XC~D = X x >CLD + k x CtD + . . .  + k x 

Fu r the r ,  i f  X x i s  a p e r i o d i c  f u n c t i o n ,  so w i l l  X. T h e r e f o r e  i f  the  

c l a i m  i n t e n s i t y  f u n c t i o n  o f  a s i n g l e  i n s u r ~  has t h e  fo rm C l g )  , 

then the p o r t f o l i o  c l a i m  i n t e n s i t y  w i l l  have t h e  s a m e  fo rm,  namely 

~CtD = A~'tPc~-~D q, C21) 

which i s  conven ien t  f o r  s t a t i s t i c a l  i n f e r e n c e .  We assume here  t h a t  

X X has a pe r i od  o f  1, as when c l a i m  occur rences  depend on s e a s o n s  

but  a re  p reserved  f rom year  t o  y e a r .  Moreover ,  we a s s u m e  t h a t  i f  no 

c l a i m  i s  recorded d u r i n g  the  y e a r ,  i t  does no t  a l t e r  t he  

p r o b a b i l i t y  o f  an event  o c c u r r i n g  d u r i n g  t he  next  y~ar .  

4 .1.  The number o f  c l a i m  w i t h i n  a p o l i c y  yea r ,  

H ( s )  h a s  a According t o  t h e  p rev ious  s e c t i o n s  t h i s  r . v .  [ T , T + ~ )  

Poisson d i s t r i b u t i o n :  
T÷t 
[$ ~ C x L ) d u ~  m 

T $ t  
( s )  T 

P { N [ ~ , T + t  ) = mO= ~ !  e x p ' ( - $  ~C,.L.)d'u..), m = O , l , 2  . . . .  C2~_~ 
T 

I f  kxCtD is as i n  Clg) then the p r o b a b i l i t i e s  i n  ( ~ )  ca~ be 

c a l c u l a t e d  by t h e  he lp  o f  the  i n c o m p l e t e  beta  f u n c t i o n .  

When i n  C ~  T=O and ~=i we o b t a i n  a t o t a l  number ~z> o f  

c l a i ~  du r ing  t he  year .  Using t he  I ~ t a  f u n c t i o n  
$ 

~Cp,  q )  = VCRDVCQD = I t P - I C I - t D Q - I ~ ( ,  p , Q  ~ 0 ,  
VCp+qD o 

1 

where FC00 = ; { a - l e - t d t ,  f o r  000, i s  t he  gamma f u n c t i o n ,  we can 
o 

w T i t e  f o r  m=O,1,E . . . .  

[ N r  F C P + ' D F C q + ' D  ] m 

rCp+q+2~ 

o.~3 m! FCp+Q+2D 

The expected number o£ c la ims  d u r i n g  t he  year c o i n c i d e s  w i t h  

i t s  va r i ance  and Zs ex]3ressed by the f o rmu la  
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E [  N ( *> FCp+~DFCq+I} 
[o,i}] = N r  Ca4> 

rcp+q÷ED 

Here r ,  p and q are parameters and can be estimated from the annua/ 

data records. The constant n ~ r  of policies in force, IV, is 

assumed known. Models with random H could be developed. 

The expected number of claims during any period [m,T+t} w~thin 

the year could be found from C 2 2 9  in a sinular way: 

T+t 
E[ NI s ,  = Nz ' ;  C~5~ T, T+ t9 ] ~PCI -tDqd~ 

T 

F C p ÷ I . ) F C q + I D  . .  q ÷ f  ; T D ]  = Hm FCp+qJ+2D [19Cp~J, q + t  ; T +  tD-- [ 'K,O+I,  

t 

Here l~CP'q; £')= I-C[+c}') I %~°'-IC~ -tl~c~-IdiJ is the incomplete 

FCOgI 'CqD o 

beta function. Hence C ~ 9  can be calculated numerically. 

4.2.  The t o t a l  c la ims i n  a given t ime M r i o 4 .  

Let Z i be the amount of the ~-th claim. We assume Z( does not 

the time when the claim occurs and let (Z£) °0~. be i.i.d. depend on 

r.v. 's with c.d.f. FzCX~ = P{Z~<x}. Then the total claims for the 

time per iod [0,£) ks represented by 

N ( : )  
[ O , t )  

= 0  

w h e r e  N [ o , t  ) i s  t h e  N P P  d e f i n e d  a b o v e .  T h e r e f o r e  f r o m  C $ 8 9  w e  c a n  

~ r i t e  C~:~9 in t h e  following f o r m  

S t = S ( l )  + N ( z )  + . - .  * S c~ t /e ] )  ÷ N ( ¢ - { t / ¢ ) c )  C 2 7 9  
C C C C 

w h e r e  t h e  S < ~  a r e  i . i . d ,  r . v .  ' s  a l l  d i s t r i b u t e d  a s  
c 

N ( s )  
[ o , c >  

= > Z C 2 8 }  S c ~ "  

c 

( * ) ~ k C u b d ~ .  a n d  H [ O , c  ) i s  a P o i  s s o n  r . v .  w i t h  p a r a m e t e r  A C E )  = 

0 
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Therefore the Laplace-Stieltjes transform {L~--T5 of ~ is 
c 

~S 6s) = E[ex6xF-sEc~] = exF~AdcD[~ZCs)-l]), C~ 
c 

. .  T h e  last term where ~Z6s3 is the LST of the claim amountsZ 
L 

S (t-{tIc)c> in (ET) is equivalent to the random sum 
c 

[O , t - [ t . / ¢ ]¢ )  

The representation in C27~ generalizes the classical compound 

renewal sum used in the literature Tot  the ruin problem and related 

questions. These wall be considered in deta/l in a future paper. 
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