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Abstract

Two renewal processes, known in reliability maintenance as
minimal repair and replacement policy, are introduced. Their
properties are studied in the case where the generating random
sequence has a distribution with periodic failure rate. A
characterization thecrem establishes necessary and sufficient
conditions for a non—stationary Pocisson process to have a pericdic
failure rate. Applications in risk theory are shown.
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1. Introduction.

The recent works of Chukova and Dimitrov (1991, 19922 and
Dimitrov et al. (1982) introduced random variables (r.v.’'s> having
the so called "almost lack of memory"™ C(ALM> property and studied
their physical interpretations and their analytical anc
probabilistic properties. For non-negative r.v.'’'s X these results

can be summarized as follows:
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Theorem 1. These statements are all equivalent:
Cid) The distribution function of X has the form

{xscl
- a

F.dx> = 1

X [1-(1-a)FY(x-[x/C]c) 7, x20, 1>

where c>0 and a € (0,10 are given constants and F, is an arbitrary

Y
c.d.f. for ar.v. Y with support on the interval (0,c>;
Ciid> For a given ¢>0 and all x20 the following relation holds:
P{X—cZx|X2c) = P(X2x} j4=s]
We say that X has the lack of memory (LM property at the point c;
Ciiid For a given c, any positive integer n and any x20 :
P{X—ncleXch) = P{X2x) 3
This property is called "almost lack of memory’, since there is a
sequence of infinitely many different points, namely nc,
Cn=0,1,&,...Y at which X has the LM property;
Civd The r.v. X is representable as the sum
X =Y + c2Z 4o
of two independent r.v.’s: Y with distribution FY on [0,c), and 2
with geometric distribution P(Z=k> = akfi-—co. k=0,1,... , ae0,1);
sX

Cv) The Laplace - Stieltjes transform px(s) = Fle °71 of X

satisfies the following equation for any positive integer n:

nc
PyCsd = e sxdFny)/{l—e “"[1—FXCnc)J), s20
(]

Cvi2 The failure rate function (when it existsd

Fylt2
ACED = s>

X 1 - x(t)
is periodic in t with period ¢>0; i.e. for any integer 0 we have
)\XCKC*‘l) = KXCL) for all ¢20. e
The proofs of (i>2—(Civ) can be found in Dimitrov et al. (18982,
the proof of (v2 is given in Chukova and Dimitrov (19920 while that

of Cwvid) is given in Chukova and Dimitrov (1881>. As mentioned
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before, this class of distributions appears to be a generalization
of the well known exponential and geometric distributions. These
have the LM property at every given point ¢>0, and therefore are a
part of the class of distributions with the ALM property.

A natural question arises: What is the corresponding
generalization of the Poisson process, which would not be generated
by a renewal process with exponential distribution, but rather with
ALM distributions? If such a generalization exists what physical
and probabilistic properties does it have and is it characterized
by such properties?

In this article we consider two definitions of generalized
Poisson processes generated by a sequence of i.i.d. r.v.'s CXn)
with ALM distributions, and establish some of their properties.

2. Two types of renewal processes related to the same distribution.

We introduce two renewal processes related with a r.v. Xz0.
These are based on considerations from reliability theory,
specially from the theory of the technical maintenance of items.
Consider renewal processes generated as follows:

1> The process N:“ is a process of minimal repair actions. It
means that if an item fails at a given moment t, then the failure
is counted and an operating item of the same age ¢t is immnediately
put in coperation, in replacement of the failed one. This mechanism
of generaticon of failures leads to the consideration of a

non-stationary Poisson process determined by its hazard function

t
AX(L) = 2{ )\x('u)du = -Ln[i-—."x(t)]. [Gre)

Many authors, as Beichelt (1881,1991> and Block et al.(18985),

have proved this almost evident fact expressed by (7D, here we view
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it as an immediate consequence of (S2. The main problem is that if
X is a bounded r.v., then the process explodes in a finite time
horizon. But when X is unbounded, i.e. when for any >0 the
probability P(X>t) is positive, then the non—stationary Pocisson

process defined above (dencted briefly by NPP12 does not explode.

We dencte by N:” the number of fajilures until time t of a new item

put in operation at time t°=0 » i.e. N(t” is the number of events

of the above NPP1 on the interval {[{0,tD, t>0. It is known, see

Baxter (1982), that

1.3
(L _ LACLD =ACto
e R TR — ¢ ¥

where ACtD = Ax(!.) is defined by (7);

P{ N a2

2) The process N:m is generated by the replacement of failed
items by new ones. For any t20 the r.v. N:D denotes the number of
failures Creplacements) of the operating items with life times Xn'

n=1,2,... on the interval (0, tJ, i.e.
NP = max ¢ n: X +X +. .. 4K < ). q-5
t i 2 n
Here CXn) is a sequence of i.i.d. r.v.’'s, each with the same
distribution as X.

The two processes N:” and N;z’ may be considered as potential
candidates to extend the homogeneous Poisson process to the case
where the r.v. X, used to generate both processes, has an ALM
distribution. In the next section we see how the two processes
characterize the distribution of X,

3. Characterization of the exponential distribution.

It is well known from renewal theory that

(k> (ke

PC N(tz)=k)=Fx(L)-Fx(tJ , kR =0,1,2,... 10

(X3 k)

wher e F, e =17 Ct>, and F is the k-fold convolution of
X (0,00 bt
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the c.d.f. Fx with itself CItom(') is the indicator function of

the set [O,00D).

Theorem 2. If the two processes N:” and N:m are generated by

the same r.v. X, with c.d.f. F the equality

X’

V. 4y = P(N:z’sl) c11d

P(N‘

is true for any t>0 if and only if X is exponential, i.e. when
Fsz) =1 ~ exp(~At). cias

Proof. We first prove that it is a necessary condition. Let

{2

Fxft) =1 -~ exp(-At}). Then the renewal process < Nt , 50 > is a

time-homogeneous Poisson process and with parameter A, i.e.
(Ac)k At
—% € .

If at the same time one puts the c.d.f. (12 into the hazard rate

1% N;”. R D> = t20, for any A = 0,1.,2,... <130

equation (7)), we then see that ACt> = xt. Thus for exponential
Fx. the expression in (8D coincides with (13) for any integer k20,
not only for k=1.

For the sufficiency part, let (11> be satisfied for any ¢>0.
We see from (103, (7> and (8 that P( N¥= 0 ) = PC N®= 0 3 for
any t>0. Also from (8), (10> and (110 we cbtain that for any >0

~ACLD

ACtoe = Fx(t) - Fx'Fth).

In view of (72 and from the convolution rule this last equality is

equivalent to

4
5 e M 0r x> = ActreTACH,

Fo b <142

Integrating the left-hand side by parts we get
t

t

f e ACt deF x> = f e AC L x)d[l - e ACx)]

° X o

¢ t
= s e—ACt—xJe—ACx)dACx) - e—A(t—xJe-ACx)A(x)

o 2]

t 4 -
LA e LACE=XIPACKIT 1) o> anC t-x> 2 dx.
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Since ACO2 = 0O the first term above equals A(L)e-ACO and

coincides with the right-hand side of (14>. Therefore
2 ACx> o [ACETXITACEIT ) o> nCt-xDTdx = ©
This means that where ever AC(xJ#0 we have
Alx2 = N(t-x2

for t>x. Since there exist at least one positive X, for which A(xo)
# O Cand then A(x> # O for any x)xo) the last equation heclds for
any x>x°, t>x if and only if A{(x> is a constant. Thus from (72 we
obtain F'x(t) = 1 - exp(-At}), and N;” as well as N;D are
homogenecus Poisson processes. -

Remark. An analocgous result is shown by Baxter (1982). He
suggested the conditions

%

P(Nttk)=P(N;D=k)

for any t>0 and any k=0,1,2,... and refers toc a result of Grosswald
et al. (1980> characterizing the exponential distribution in the
cases where Fx has a power series tail.

4. The NPP with periodic failure rate and it characterization.

Here we consider the NPP N:”

introduced by the help of a
r.v. X having an ALM - distribution. According to the previous
discussion and Thecorem 1-Cvid, the failure rate function kx(t) is
periodic with periocd ¢>0. Alsoc from the definition of an NPP from
relations (7) and (8) we see that the failure rate of the process
(2

Nt Cdefinmned as the first derivative of the hazard functiond

coincides with the above )\x<t) and is therefore periodic alsoc. The
following is true:
Lemma 1. If the NPP N;” has periodic failure rate function

kat) with period ¢>0, then for all (20 and for any fixed integer

20 its hazard function A has the property
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ACRe+tD = ACke) + ACtD = RACcD + ACtD. 1S

Proof. From (72 and (B0, and from the periodicity of Ax we get

ke kc+t
ACkc+tD = £ ACwdu + J A(wdu
° I

k=1 Cv+ioc t
=¥ S ANwdu + F AChec+uvodu
v=0 ve o
t
= RACcD + g ACuodu = = RACeD + ACtD.

The substitution usve+v is used when the lower bound of the
integral is vc and then (6) is applied. ]

We call (150 ™"almost linearity", a property of the hazard

(32

function A. To introduce the next property we denote by N(-r +td

the random number of failures of the principal NPP on the interval
{T.7+¢D>. Alternatively, if the initial item is a new one Cat time

t°= 0>, we can interpret T as the age of the initial item at the
. . . : <1) .
beginning of the ocbservation period then Ntr regy Gives the
’

overall number of failures after ¢ time units.
Lemna 2. Under the conditions of Lemma 1, for all t20 and any

fixed integer A20 we have

C1> _ = <4 - -
fhe. Re+td™ m J P(N[o,t) mJ2 , m=0,1,2,...

‘. . (1) 1)
Ciid> The r.wv.'s N[hc.kc+LD and N[o.lu:) are

Cid> P (N

mutually independent.
Proof. (i> From the general properties of a NPP, (see Ginlar,

19743, it is known that for any m = 0,1.2....

(1> o = [ACTHEI-ACTII™ —IACT+EI=ACTIT

P(N[r,-r*!.) m!

Substitute here r=kc and apply the result of Lemma 1 to obtain

m
PCN'Y? = LAC7 e ACt> _ (€ §)

mJ P(N

[he, ke+td oy (o, t>~™, m=0.1.2...

Cii> Consider the probability generating function
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1)

1)
P[o. Rc+tD

= mo_ -
[o.kc*t)-m}z = explACkc+to>(z-101

@®
cz> = T P(N

mE=0o
Apply here (15) and the result of (i) to see that

(1)

P[ o, Rc+tD

€20 = explACkedl2-12] explAlto>Cz-1D]

{1) «i)
Lo, k3522 Prie, rc+td

(1) 1>
N

N = + NV
[o, kc+td [o, keD (e, Rc+t2
function on the left-hand side is equal to the product of the

= P cz>

Since and the generating
p.-g.f. of the summands on the right-hand side, these summands are
i ndependent. -
Theorem 3. A NPP <N,'] (20> has a periodic failure rate
function if and only if the next two conditions are fulfilled:
(i) There exists some ¢>0 such that for any t20 the random
number of failures NE::c+t) and N‘[‘:' o~ coincide in distribution;

Ciid) For the same ¢>0 as in (i) and for any t>0, the random

; (1) (1) .
number of failures N[c.c) and N[c.cﬁ.) are independent.

Proof. The necessity part of the thecrem follows from Lemma 2
when k=1. To prove the sufficiency we observe that from assumptions

Cid and (ii) the following chain of implications holds:

(FY _ - 1) <1 -
P(N[o.c*z) =02 P{N‘[(.CD N{c.c*t) 0> 18>
1) = t4) =
= P(M[(_c) o) PN Ly =0
1> - 1) -
= P(N‘[('c) =0 P(N{D = 0.

Further we remark that on the basis of the relation

= = > >
P(N[\__"y> o) J"()(1 2 y} for any y20,

equation (16> means that for the given ¢>0 and any t20 we have
P(Xl > e+t = P(X1 > ¢ P{X1 > 2, 17

where X’ is the random life time of the first component in the NPP

model, which started the renewal process and determines it. But
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C17> is exactly the LM property at point ¢ (see Theorem 1-Ciidd.
Referring to Theorem 1<Cvi) we verify the assertion and see that it

is equivalent to say that )(1 has the ALM property. -

Corollary. If N;” is an NPP with periodic failure rate

1)

function of period >0 , then for any >0 the r.v. N[° ) is
representable in the form
N(I) = H(t) . M(Z) .- .. H(t/cl - M ) 18>
[o, tD < < < [ O,t—t eie>
where H;w and Htoy) are independent Poisson r.v.'s, distributed
(1) [ B <
as Nto,c) and NCo.y) , respectively, for y € {0,cD.

Proof. We apply the result of Thecrem 3 to each one of the

terms in the decomposition

L& B ttrei=e 1 < 1>
= +
fo,td k?.o N re ,Ch+adc) N tirex, td’
» 0

and replace them by the variables Hc and H( oy to obtain (185,

Moreover we know the distributions of each summand;

m
Pe V= m IACe21 Al - o1,
[ m!
Y
[ ACwdu 1™ v
PC M =m o= S exp(—IACWAW, Mm=0,1,E,... .
(o,y m/

o

Corollary 1 gives a clear and practical structure for the use of
NPP with periodic failure rates. For time instants ¢ that are
integer multiples of ¢, i.e. when t=nc, the process CN;“) is
equivalent to the independent sum of n identically distributed
Poisson processes, (see C18)). This property is not egquivalent to
the infinite divisibility of the time-homogenecus Poisson process
but is analogous to it.

5. Applications to risk theory.

The properties of the NPPl1 established above, i.e. an NPP with

periodic failure rate, is expected to find wide applications 1in
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many problems related with risk theory. For illustration purposes
we briefly describe here some applications to insurance modelling.

A general insurance contract is usually issuvued for a limited
time period, say one yesar. During this period the insurance company
will pay any reasonable claims of the policyholder; when no claim
is made C(i.e. no events occurred or they were not reported), no
payment is issued. At the end of the contract period, the
policyholder may renew the policy, thus buying insurance for the
next year. The process so extends in time. We assume permanent
renewal of the insurance contracts on the part of the policyholder
and a constant number of policyholders within the portfolio.

Let kat) be the intensity of occurrence of insurance events
at time t20. When seasonal conditions affect the insured risk Ce.g.
automobile insurance) it is natural to assume that kx is a periodic
function with period of 1 year. The policy issue date is irrelevant
but must be fixed in advance;, e.g. our periods could start on
January 1 and end on December 31. Alternatively, we could use
fiscal years going from April 1 to March 31, but then kat) would
have to be modified appropriately to account for weather patterns.
For instance,

Ao = rtPc1-15%, for r>0; p>-1; g>—1: tel0.1D c1ed
which mimics the shapes of the beta distribution. This could be
flexible enough to include many expected patterns of claim
intensities during the year.

If we assume that KXCC) is the claim intensity of one
policyholder and that there are N similar contracts in the
portfolio at the beginning of the year, then from the theory of

NPP’'s (see Ginlar, 19742, the composition of N such processes is
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alsc NPP with intensity
At =AMl e P e e Ve = e 20>
Further, if )\x is a periodic function, so will A. Therefore if the
claim intensity function of a single insured has the form 1G> ,
then the portfolio claim intensity will have the same form, namely
> = NrePor-109, ca1d
which is convenient for statistical inference. We assume here that
)\x has a periocd of 1, as when claim occurrences depend on Seasons
but are preserved from year to year. Moreover, we assume that if no
claim is recorded during the year, it does not alter the

probability of an event occurring during the next year.

4.1. The number of claims within a policy year.

<1)

According to the previous sections this r.v. Nh‘ e has a
Poisson distribution:
T+t m
{ S ACwdu? ot
(32 T
P(N[-r.-r-rc) = = —~ exp(—;r_ AMwdw, m=0,1.,2,... 22

Ir J\XCt) is as in (19> then the probabilities in (22> can be

calculated by the help of the incomplete beta function.

When in <22) 7=0 and t=!{ we obtain a total number N> of

a1
claims during the year. Using the beta function
1
Acp.g> = TBACD o [P lcro 5% ar, p.q 20,
. I'Cp+qo °
where 'Cod = fta—le-tdt, for o, is the gamma function, we can
o
write for m=0,1,2....
[Nr FCo+1o0Ca+1> ]”‘
¢ p+rg+2>
P{N[( :’ y = = — exp[—Nr Clp+ioTCar1> ] .23
- ’ r¢p+a+dd

The expected number of claims during the year coincides with

its variance and is expressed by the formula
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[u) )] = Nr IrCp+1oI'Cg+t> )
0.1 rCp+q+e>

Here r, p and @ are parameters and can be estimated from the annual

ECN 24>

data records. The constant number of policies in force, N, is

assumed known. Models with random N could be developed.

The expected number of claims during any period [(7,7+t) within

the year could be found from (223 in a similar way:

T+t

(32 3 = Nrf WFor-wTau s>
T

EL N[-r.‘r-H)

- TCp+toT(g+1D i _ .
Nr —pepegeras |l e LT -3Cp s gt ;O]
t

Here ¥ p,q;to= —T<pre> UP—XCI -u)q—,du is the incomplete
CpodXl'dg> o

beta function. Hence (250 can be calculated numerically.
4.2. The total claims in a given time period.

Let Zl' be the amount of the i1-th claim. We assume Zi does not

depend on the time when the claim occurs and let (ZL.)m be i.i.d.

=2

r.v.'s with c.d.f. FZCxJ = P(Zl_(x). Then the total claims for the

time period [Q0,t) is represented by
(1)
to,uv

t L
1=0

where NES’O is the NPFP defined above. Therefore from (18) we can

s 'Z zZ., 262

write (26) in the following form

(2 (3 s g (G Bt & g ]
[$ &) 2 Lred» - Sllt cIc'

s =sP 4+, .5 a7
t < < < (=4
where the s;"’ are i.i.d. r.v.'s all distributed as

< 1)
10,

s =Z z.. P

c 1
T=o0

and N;(‘))cb is a Poisson r.v. with parameter ACcd = P\Cu)du.
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Therefore the Laplace-Stieltjes transform (LS of Sc is

LS (s> = E[exp(—sSC)J = exp(A(c)[pzts)-lJ), 29
c

where pos) is the LST of the claim amount.szt. The last term

(t-ftre)ed
(=4

s in (27> is equivalent to the random sum

(t=t/ed
Sc 21*22*...+2N¢u . <302
o t—{trcled

The representation in (272 generalizes the classical compound
renewal sum used in the literature for the ruin problem and related
questions. These will be considered in detail in a future paper.
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