ACTUARIAL RESEARCH CLEARING HOUSE 1990 VOL. 2
 BInomlal Lattice for the Cox, Ingersoll and Ross Spot Rate Process

Zhaobi Ha and Elias S.W. Shiu
Department of Actuarial \& Management Sciences
University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada

This note is motivated by the paper [MT], which appeared in a recent issue of this journal. Among the many interesting ideas discussed in [MT] is a proposal of a discrete analogue of the Cox-Ingersoll-Ross model [CIR1, CIR2]. The purpose of this note is to comment on this binomial lattice model.

Cox, Ingersoll and Ross postulate that the instantaneous spot rate of interest $r(t)$ is a stochastic process governed by the stochastic differential equation

$$
\begin{equation*}
d r(t)=\alpha[\gamma-r(t)] d t+\rho \sqrt{ }(t) d W(t), \tag{1}
\end{equation*}
$$

where α, γ and ρ are positive constants and $W(t)$ is the standardized Gauss-Wiener process. In the context of an intertemporal general equilibrium asset pricing model, Cox, Ingersoll and Ross [CIR2, (23)] derive a closed-form formula for valuing default-free and noncallable zero coupon bonds. Several authors ([Ba], [HW], [NR]) have presented methods for the discretization of the square-root spot rate process. With the closed-form formula for zero coupon bonds, it is possible to check the validity of a discretization method. A derivation of the closed-form formula can be found in [BeS].

It is suggested in [MT] that the stochastic equation (1) be discretized as

$$
\begin{equation*}
r(n+1)-r(n)=\alpha[\gamma-r(n)] \pm \rho \vee r(n), \quad n=0,1,2,3, \ldots \tag{2}
\end{equation*}
$$

Consider the up and down functions:

$$
\begin{equation*}
u(x)=\alpha \gamma+(1-\alpha) x+\rho \sqrt{x}, x \geq 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
d(x)=\alpha \gamma+(1-\alpha) x-\rho \sqrt{ } x, x \geq 0 . \tag{4}
\end{equation*}
$$

Formula (2) means that $r(n+1)=u(r(n))$ or $r(n+1)=d(r(n))$. (For simplicity, we assume that the constants α, γ and ρ are such that, for each $x \geq 0, d(x)$ is nonnegative.) Since

$$
u(d(x)) \neq d(u(x))
$$

(2) cannot be "implemented" on a binomial lattice. To overcome this difficuity, the authors of [MI] modify (2). We now show that the volatility of the spot rate in the modified model will almost always go to zero as time passes.

In a binomial lattice, there are $n+1$ states of nature at time n. Let the one-period rates at time n be denoted by $\left\{r_{0}(n), r_{1}(n), r_{2}(n), \ldots, r_{n}(n)\right\}$.

Write $f^{2}(x)=f(f(x)), f^{3}(x)=f(f(f(x))), \ldots$. In the binomial lattice in $[M T], r_{0}(n)=d^{n}(r(0))$, $r_{n}(n)=u^{n}(r(0))$ and the inequalities

$$
r_{0}(n) \leq r_{1}(n) \leq r_{2}(n) \leq \ldots \leq r_{n}(n)
$$

hold. The sequence $\left\{u^{n}(r(0))\right\}$ converges to the unique tixed point of u, which is the larger root of the quadratic equation

$$
[\alpha(\gamma-x)]^{2}=\rho^{2} x
$$

(The smaller root of the quadratic equation is the fixed point of the function d and is the limit of the sequence $\left\{\mathrm{d}^{n}(\mathrm{r}(0))\right\}$.) Thus there is a positive constant M such that, for all n ,

$$
0 \leq r_{0}(n) \leq r_{1}(n) \leq r_{2}(n) \leq \ldots \leq r_{n}(n) \leq M
$$

Consequently, for large n, most of the differences $\left\{r_{i+1}(n)-r_{i}(n)\right\}$ have to be small. Hence the volatility of the one-period interest rate must almost always go to zero as time tends to infinity.

Acknowledgment

We acknowledge with thanks the support from the Great-West Life Assurance Company and the Natural Sciences and Engineering Research Council of Canada.

References

[Ba] Ball, C.A. "A Branching Modei for Bond Price Dynamics and Contingent Claim Pricing." Working Paper, University of Michigan, November 1989.
[BeS] Beekman, J.A., and Shiu, E.S.W. "Stochastic Models for Bond Prices, Function Space integrals and Immunization Theory," Insurance: Mathematics and Economics 7 (1988), 163-173.
[CIR1] Cox, J.C., Ingersoll, J.E., Jr., and Ross, S.A. "Duration and the Measurement of Basis Risk," Journal of Business 52 (1979), 51-61.
[CIR2] Cox, J.C., Ingersoll, J.E., Jr., and Ross, S.A. "A Theory of the Term Structure of Interest Rates," Econometrica 53 (1985): 385-407.
[HW] Hull, J., and White, A. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis 25 (1990): 87-100.
[MT] Macleod, N.J., and Thomison, J.D. "A Discrete Equilibrium Model of the Term Structure," Actuanial Research Clearing House (1988.1): 69-109.
[NR] Nelsòn, D.B., and Ramaswamy, K. "Simple Binomial Processes as Diffusion Approximations in Financial Models." Working Paper, University of Chicago, June 1989.
[PST] Pedersen, H.W., Shiu, E.S.W., and Thorlacius, A.E. "Arbitrage-Free Pricing of Interest-Rate Contingent Claims," Transactions of the Society of Actuaries 41 (1989): 231-265; Discussion, 267-279.

