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ABSTRACT

We find the necessary and sufficient conditions for fitting five given moments by a
triatomic distribution. We consider three examples drawn from fire (large spread),
individual life (medium spread) and group life (small spread) insurance data, fit them
with triatomics, and compute the ruin probabilities using well known formulas for
discrete and for combination of exponentials claim amounts. We then compare our
approximations with the exact values that appeared in the literature. In the fire (large
spread) example, we found the triatomic to have 4.8% average relative error,
triexponential 3.6%, and the Beekman-Bowers 2.1%. In the medium spread example,
the triatomic has maxirmum relative error of 0.26% and average relative error of 0.03%.
In the small spread example, the triatomic has maximum relative error of 0.14% and
average relative error of 0.02%. We recommend that for n3/03 less than 5, the simple
method of triatomic approximant to the claim amount distribution, which produces

quick and reliable results, be used.
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1. INTRODUCTION

In the classical work of Cramér (1955, p.43), the following claim amount
distribution was used to represent data from Swedish non-industry fire insurance
covering the years 1948-1951:

p(z) = 4.897954 ¢ ~ 9514588 2 4 4503 (4 6) =275 0<z<500 (1)

Exact ruin probabilities were computed by numerically solving
u 00
W) = 3 [ 1-PO) wlu-s)dy + 2 [ [1-PO))dy, o)
0 u

which was a nontrivial numerical task then(Cramér 1955, p.45). A modern reference for
the above integral equation is Exercise 12.11 in Bowers et alii (1986).

A much easier numerical task even now is to approximate (1) by a distribution
for which there is a readily executable formula for its ruin probabilities. For the claim
amount taking a combination of exponential distributions, there are the Tacklind (1942)
type formulas. See Shiu (1984), Gerber, Goovaerts and Kaas (1987), Dufresne and
Gerber (1988) (1989) (1991), and Chan (1990a). For the claim amount taking a discrete
distribution (mixture of atomic distributions), there are the Takics (1967) type
formulas. See Beekman(1968), Shiu (1989) and Kaas (1991). We considered the special
cases of mixture of two atoms (diatomic) and of combination of two exponentials
(diezponential) in Babier and Chan (1991) and here we consider the tri-exponential and

tri-atomic claims.

RUIN PROBABILITIES FOR TRIATOMIC AND TRIEXPONENTIAL DISTRIBUTIONS

The ruin probability formula for a discrete claim amount distribution has been
given by Schmitter (1990). See Kaas (1991, p.136). For similar formulas see Shiu (1989).
Proof for the atomic case and a reference to Feller (1971) are found in Shiu (1987). We

list the ruin probability formula for triatomic claim amounts with atoms {11, o, 13} of

probabilities {py, py, P3} :
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where z =

The theory of ruin probability for mixture and combination of exponentials is
well known. See Tacklind (1942), Shiu (1984), Dufresne and Gerber (1988), (1989),
(1991), and Chan (1990b). Recall that in a compound Poisson surplus process, the ruin
probability (u) satisfies

o M (r) ~ 1
[t (-wwyau = 2. M= @
0 146 — —XTT_

where 8 is the relative security loading, X is the claim amount random variable, and
p = E(X).(See Bowers et alii (1986), §12.6) When claim amounts are distributed as a

mixture of exponentials, i.e.,

ﬂi-’r

pla) = ,)’fl A B (5)
=

for >0 where all A;>0 and f A; =1, the ruin probability is also a linear

combination of exponentials =1
n ~ru
Yu)=3 C;e (6)
1=l
where { Tty Tn } are solutions to the adjustment coefficient equation
My(r) -1
4o = Mx0-1 )
pr
and { Cy, -, Cp} are determined by the partial fractions of the right side of (8):
DL S I pr @)
& o 1+6 MX(r) -1
=1 14 - —2—r

®r
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This is verified by substituting (6) into the left side of (4) to obtain the left side of (8).

The denominator on the right side of (8) is a rational function with zefos ry,-,
ry, and simple poles ,31, -+, By. Therefore

Mgy -1 O g

146 - = K &L =0 ] 22 = 9
* 11 (8- iI.—:[l ri(B;=r) )
=1

where the constant K has been found by evaluating the first equality of (9) at r=0 and

My(r) -1
lim L
0 pr

using

=1

The numerator on the right side of (8) can consequently be written as

MX(r)—-l (r; r)

With the left side of (8) written in a common denominator and with (9) and (10) into
the right side of (8}, we transform (8) into an easy partial fraction problem:

E C]r ﬁ (rq)

=1 #
J zt_lj - ﬁ r’- (ﬂt——r) __0__ (11)
I (ri=) 25 Birer) 148

n
Multiply both sides by [] {r—r), we obtain

=1
n n v (B
C. T (r——r) = H _F— (r—-r)
]é:l 7 tI;éI] =1 : H
=1

At last, let r==r
e 1 2 r ()
G Il )= [ 5.
1£k =1 1
=1
or
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Consider rf) in (8), or easier yet in (11) for k=1, -, n to obtain
n C;r;
Ak S
i§1 Br, = 140 for k=1, -, n. (13)
To solve (13), consider

n Cor; 9 9 {3 (I - ﬂ')
PORE S v E v 2 | Q)
=1 =1

where the two sides are different expressions for the same rational function of (degree

n—1 / degree n} with simple poles {ry, ---, rp} and takes the value l—% at 2=, -
,Bq. Multiply by z—r1) and let z=r; to obtain
k(3
8 Hl(ﬁ‘—rk)
Ci=1r5 —+k (14)
o II (=7
ik
=1
Comparing (12) and (14), we obtain
n r.
-t = 9 (15)
1.’]-;-[1 B, 146

Our derivation of (13) is motivated by Shiu (1984 , p.484, (9)) where he
multiply (8) by r;—r and let 7 to obtain:

- ép
= Wl - (079) 7, (16)

Ck

The expressions for Cy, (49) and (54) in Dufresne and Gerber (1989), arise
natewally when a more detailed problem including the severity of ruin is studied. These
two expressions can be obtained from summing (9) and (22) in Dufresne and Gerber
(1988) over j respectively. In fact, the system in Dufresne and Gerber (1989)

7L
EB—C=1, =1, .-, m, 17
=1Fi Tk k an)
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can be solved by the same arguement as our solution to (13). Simply consider

S T oo - ry (== By
i;::—ricz—l ig:lﬂi(z_n)

where the two sides are different expressions for the same rational function of (degree n
/ degree n) with simple poles {ry, ---, 7o} and takes the value 1 at 2=, .-, By and
the value 0 at z=0. Multiply by z—r and let =r to obtain (12).

The formulas (12), (14), and (15) and their derivations are still valid even when
members involved in the mixture and combination includes some gamma distributions
with integral a. To explain how it works, we illustrate by a =2. The only changes
needed are that the right side of (8) would have poles of order 2 at #’s that come with
gamma distributions and that the system (13} would have fewer equations than
unknowns. To show (14) is still valid, one needs to perturb the repeated 3’s to # + € and
let e+0. Gamma(n,3), odd integer n >3 would give one real roots and n—2 complex
roots to the adjustment coefficient equation (7); Gamma(n,3), even integer n >4
would give two real roots and n—2 complex roots to the adjustment coefficient
equation (7). Equation (15) would give real 8 because the
complex roots in {r;} comes in pairs of r and 7 . We encountered complex roots of the

adjustment coefficient equation in Gerber, Goovaerts, and Kaas (1987) for example.

3. TRIATOMIC AND TRIEXPONENTIAL AS APPROXIMANTS

In Babier and Chan (1991), we studied three claim amount distirbutions and
compute ruin probabilities of approximating diatomic and diexponential with matching
first three moments and compare the approximations with the exact values of ¥(u). In
the first example (Cramét’s fire) the claim amount distribution has a large spread, none
of the approximations is very close to the exact value, and there we point out the run-
off error problem encountered in the Takacs type formulas. In the second example
(Reckin, Schwark, and Snyder’s individual life) the claim amount distribution has a
medium spread, both of the diatomic and diaexponential give good approximations. In
the third example (Mereu's group life) the claim amount distribution has a small

spread, the diatomic gives an excellent approximation, and the spread is so small that
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there is no diexponential fit.

The new contribution here is that we fit triatomics with matching first five
moments to all three examples. Cramér’s fire has high .‘C3/03 that our triatomic
approximant works poorly, and Wikstad’s (1971) triexponential fares better. The other
two examples are discrete distributions with smaller spreads. The triatomic
approximants work so excellently for both cases that there is no need to work out the
triexponential approximants. In fact, that Mereu’s group life has 02/p2 = .2508 would
require four exponentials close to a gamma(4, g~ 1); but its x5 is too small for such a

gamma. Thus we have only done the triexponential approximation for the first example.

Example 1: We consider Cramér’s fire insurance data, the one mentioned in the
introduction. In the following table, the exact values of ¥(u) for § = 0.3, and the values
for the Cramér-Lundberg approximation is from Cramér (1955, p.45). The values for the
Beekman-Bowers approximation is from Beekman (1969, p.279). The ruin probability
for diatomic claims, (9), encounters convergence problems when u is large. Our
experience echoes with that reported in Seah (1990, §4). For values of u close to and
above 30 times g, large numbers are subtracted off each other and we obtain
probabilities less than zero or greater than one. In Babier and Chan (1991), these
problemic valuse were listed as xx. This time we use Mathematica to 68 digit accuracy
to handle « =40, 60, 80, and 100 for the diatomic and triatomic cases. In the table
below, the approximating diatomic has atoms { .7657175616, 181.1382584 } and
probabilities { .9987011192, .001298880835 }, the approximating diexponential has %
=60.75201696, %: 6552147239, and A =.005737165094 ; as done in Babier and Chan
(1991). The approximating triatomic with atoms { .60220174840013, 77.32991843481469,
371.6249366477063} and probabilities { .995231341384981, .00466023012321588;
-.0001084284918028845 }. The approximating triexponential is given by Wikstad (1971)
with
p(x) = (.0039793)(.014631)e — 014631z

(.1078392)(.190206)e ~ -190206%  ( 5381815)(5.514588)e — 5-9145882

and the corresponding ruin probability is found to be

W(u) = 514735 ¢ ~ 0031w 1 993197 ¢ = 099058 w | 031300 ¢~ 484374 u
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TABLE 1 Cramér’s Fire Insurance
p =1, o2/u? = 42.20323069, x3 /03 = 27.69286626

u P(u) CL BB diatom diexp  triatom triexp
20 .5039 4524 .5140 4133 4666 .5122 4749
40 .3985 3904 4079 .3841 4010 .4401 3874
60 .3280 3370 3369 .3535 3447 .3586 3311
80 2757 .2909 2812 .3214 .2962 2715 2853

100 .2346 2511 .2369 2877 2546 2314 .2461

u Y(u)  CL/¥(u) BB/¥(u) dia/i(u) die/y(u) tria/u(u)triexp/y(u)
20 5039 0.898  1.020 0.820 0926  1.014  0.942
40 3985  0.980 1028 0964 1.006 1.104  0.972
60 3280 1.027  1.027 1078  1.051  1.093  1.009
80 2757 1.055  1.020 1166  1.074 0.985  1.035

100 .2346 1.070 1.010 1.226 1.085 0.986 1.049

Example 2: In this example, we consider the individual life insurance date from Reckin,
Schwark, and Snyder (1984). This is also the claim distnibution in Example 3 of Seah
(1990). The claim amount X 1s discrete with support {1,2,3,4,5,7,8,10,12,13,15,16} and
probabilities (in order) {.5141, .3099, .0639, .0220, .0194, .0096, .0276, .0036, .0041,
.0019, .0013, .0226}. Since the claim amount distribution is more spread out, (i.a) of

Proposition 2 in Babier and Chan (1991) is satisfied and we have a diexponential fit.

TABLE 2.1 ¥(u) by Seah for RSS’s Individual Life Insurance Data
4= 2.2896, 02/u? = 1.43257300, x5/ = 3.60560786

6=.1 =2 6§=23 =4 6=.5
u=0 .909091 .833333 769231 .714286 666667
u=10 .644361 450722 .334890 .260412 .209732
u=20 .469129 254324 152965 099371 .068466
u =30 341528 143813 070341 038430 022840
u =40 .248408 .081101 032173 014735 007526
u =50 .180700 .045752 014725 005654 .002482
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TABLE 2.2 diatomic approximant/(u) for RSS’s Data
The approximating diatomic has atoms { 1.580450117, 12.887964915 } and probabilities
{ 9372389245, 06276107517} by (3), (4), (5), and (6).
=1 f=.2 =23 =4 6=.5

u=1_0 1 1 1 1 1

u =10 1.013 1.029 1.045 1.060 1.073
u=20 1.003 1.007 1.012 1.015 1.018
u =30 1.001 1.000 0.996 0.990 0.981
u =40 1.001 0.999 0.992 0.982 0.968
u =50 1.001 0.997 0.988 0.974 0.957

TABLE 2.3 triatomic approximant/y(u) for RSS’s Data

The approximating diatomic has atoms {1.328358114, 5.718977791, 15.50183293) and
probabilities { .848776854063243, .1208354358483337, .03038771008642312}.

f=.1 =2 #=.3 =4 #=.5
u=1_ 1 1 1 1 1
u=10 0.99979 0.99987 1.00033 1.00113 0.99744
u =20 1.00006 0.99998 0.99972 0.99924 0.99852
u =30 1.00002 1.00006 1.00009 1.00008 0.99996
u = 40 1.00000 1.00001 1.00006 1.00007 0.00027
u = 50 1.00001 1.00011 0.99973 1.00000 1.00000

TABLE 2.4 dicxponential approximant/iy(u) for RSS’s Data
The approximating diexponential has % =5.4483771581, %z 1.930653556, and
A =.1020393986 by (23), and (19).

=1 8=.2 =23 0= 4 =235

u=1_ 1 1 1 1 1

u=10 0.997 0.984 0.966 0.947 0.928
u =20 0.994 0.985 0.979 0.978 0.984
u =230 0.995 0.991 0.997 1.016 1.047
u=40 0.996 1.000 1.022 1.066 1.132
u =350 0.998 1.009 1.048 1.119 1.224
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Example 3: In this example, we consider the group insurance data from Mereu (1972).
This is also the claim distribution in Example 2 of Seah (1990). The claim amount X is
discrete  with  support {4,6,8,10,12,14,16,20,25} and probabilities (in order)
{-15304533960, .07882237436, .11199119040, .10432698260, .09432769021, .10925807990,
.09727308107, .18073466720, .07022059474}.

TABLE 3.1 ¥(u) by Seah for Mereu’s Group Life Insurance Data
= 12.61243786, o2/p? = 0.25079144, £3 /0" = 0.30556145

#=.25 =275 8=.75 =1
u=>0 .8 666667 .371429 5
u=23 433995 .232316 141606 .094198
u=2350 .222739 .072766 .030113 014607
u=75 114114 .022685 .006349 .002236
u =100 .058463 .007072 .001339 000342

TABLE 3.2 diatomic approximant/(u) for Mereu’s Group Life Insurance Data
The approximating diatomic has atoms { 7.187946466, 19.96691435} and probabilities {
5755141225, 4244858774} by (3), (4), (5), and {6).

8=.25 6d=2.5 6=.75 d=1
u=20 1 1 1 1
u=25 0.9995 0.9992 0.9986 0.9977
u=250 1.0003 1.0004 0.9988 0.9962
u=175 1.0000 0.9978 0.9929 0.9857
u=100  0.9997 0.9962 0.9888 0.9795

The diatomic approximant is producing excellent values! Since the variance is
quite small, there is no diexponential fit as indicated by Proposition 2 A, (v) in Babier
and Chan (1991). Note that because the approximating claims distribution has the same

mean and variance as the original, the non-ruin probability is overestimated as well.

124



TABLE 3.3 triatomic approximant/y(u) for Mereu’s Group Life Insurance Data
The approximating triatomic has atoms { 5.257664493, 13.89153404, 23.08844433} and
probabilities { .3461811629837337, .4679100083847454, .185908828631521}.

§=.25 #=.5 8=.75 =1
u=0 1 1 1 1
u=25 0.99974¢  0.99939  0.99902  0.99864
u=>50 1.00000 1.00000 1.00003 1.00007
u=75 1.00000 1.00000 1.00000 1.00060
u=100  1.00000 1.00000 1.00000 1.00000

4. NECESSARY AND SUFFICIENT CONDITIONS FOR TRIATOMIC FIT

Given three atoms {z,y,z} with mean=0 and va.riance:az, the probabilities are
determined to be

o2 +yz o242z 02+my }

L s oy R ey sy Rl gy e

The third to fifth moment equations can be written as:

ag+c=x3 (18.1)
(a2~ b)o? + ac = f4 (18.2)
(a3 — 2ab + c)a'2 + (a2 —b)e= V2 (18.3)

where I€3, )"4,1)5 are the third to fifth central moments and

a=z+y+z (19.)
b=zy+yz+zx (19.2)
¢ = ryz (19.3)
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Solve (18.1) for a, substitute in (18.2) to solve for b. Substitute both the a and
the b obtained into (18.3) to solve for c. Now substitute back for a and b. The solution
for {a,b,c) is

(%3 + 340205 | o2 —otph 1 B3 | 202eBfh 1 ot
6, 8_,258

o 4+ Kk’ —0

In stead of solving for z,y, and z from (19), we shift to make the a zero and
change scale to make b — 3/4. Whatever become of ¢, write it as — h.

T+7 47 =0 (20.1)
¥V 4YY +7% = -3 (20.2)
FYT =~k (20.3)

Solving (20.1) for ¥ and substitute into (20.2) and (20.3). Solve the resulting (20.2)
which is quadratic in ¥ for ¥ and substitute into the processed (20.3). Both solutions

for ¥ give the same equation in 7 :

Y(-3+7Y= -h @)
which has solutions
in =1 =1 . -1
{Sin(sig_ﬂ) , - Sin(sii_(_‘i_h) +3, Cos(ﬂn—zﬂ +5)}

This can be verified by using Sin3A = 3SinA — 4Sin3A. (Thus explains the strange
normalization of - 3/4 in {20.2).) Note that (21) will have three real root if and only if
LY 5;} as a plot of the left side of (21) will show. This then translates back to the

necessary and sufficient condition for having a triatomic fit.
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